Splenic vein thrombosis pathophysiology

Jump to navigation Jump to search

Splenic vein thrombosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Splenic vein thrombosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Guidelines for Management

Case Studies

Case #1

Splenic vein thrombosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Splenic vein thrombosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Splenic vein thrombosis pathophysiology

CDC on Splenic vein thrombosis pathophysiology

Splenic vein thrombosis pathophysiology in the news

Blogs on Splenic vein thrombosis pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Splenic vein thrombosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Vindhya BellamKonda, M.B.B.S [2]

Overview

Splenic vein thrombosis in acute or chronic pancreatitis results from peri-venous inflammation caused by the anatomic location of the splenic vein along the entire posterior aspect of the pancreatic tail, where it lies in direct contact with the peri-pancreatic inflammatory tissue. The exact mechanism of thrombosis is likely multi factorial, including both intrinsic endothelial damage from inflammatory or neoplastic processes and extrinsic damage secondary to venous compression from fibrosis, adjacent pseudocysts or edema.

Structure

Following are important facts regarding vasculature of splenic venous system:

Pathophysiology

Pathogenesis

It is thought that splenic vein thrombosis is caused by Virchow's triad which includes:[1]

<figure-inline><figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline></figure-inline>

Shown below is a table depicting the elements of Virchow's triad and their modern counterparts.

Virchow's[2] Modern Notes
Phenomena of interrupted blood-flow "Stasis" or "venous stasis"[3]
Phenomena associated with irritation of the vessel and its vicinity "Endothelial injury" or "vessel wall injury"
Phenomena of blood-coagulation "Hypercoagulability"

Mechanism of development of splenic vein thrombosis:

  • Splenic vein thrombosis in acute or chronic pancreatitis results from acute inflammation.
  • The pathophysiology of thrombosis is likely multi factorial.
  • Endothelial damage from inflammatory or neoplastic process is also one of the mechanism reported.
  • Another mechanism known to cause thrombosis is extrinsic damage secondary to venous compression from fibrosis, adjacent pseudocysts, or edema.
  • Obstruction of the splenic vein caused by enlarged retroperitoneal lymph nodes or by pancreatic or peri-splenic nodes which are located near the splenic artery,above the splenic vein.
  • When thrombosis of the splenic vein occurs, collateral vessels develop to shunt blood around the occluded splenic vein. The two most common collateral pathways use the short gastric vessels.
  • In the distal esophagus, portosystemic collaterals connect the short gastric veins into the azygous system. Spleno-portal collaterals decompress the short gastric veins through both the coronary vein into the portal vein and via the gastroepiploic arcade into the superior mesenteric vein. In either case, the hypertensive short gastric veins cause increased pressure within the submucosal veins of the gastric fundus, resulting in varices.
  • At times, an enlarged gastroepiploic vein found at laparotomy may be the only indicator of occult splenic vein thrombosis. Isolated esophageal varices, although uncommon in SVT, can occur in cases in which the coronary vein joins the splenic vein proximal to the obstruction. This anatomic variant has been reported to occur in 17 % of the cases.

Genetics

The exact genetics of splenic vein thrombosis is not fully understood.

Associated conditions

The conditions associated with splenic vein thrombosis include:

Gross pathology

Microscopic pathology

References

  1. Chawla YK, Bodh V (2015). "Portal vein thrombosis". J Clin Exp Hepatol. 5 (1): 22–40. doi:10.1016/j.jceh.2014.12.008. PMC 4415192. PMID 25941431.
  2. Agutter, Paul S. (2008). The Aetiology of Deep Venous Thrombosis: A Critical, Historical and Epistemological Survey. Berlin: Springer. p. 84. ISBN 1-4020-6649-X.
  3. Lowe GD (2003). "Virchow's triad revisited: abnormal flow". Pathophysiol. Haemost. Thromb. 33 (5–6): 455–7. doi:10.1159/000083845. PMID 15692260.
  4. "Further reflections on Virchow's triad. - Free Online Library". Retrieved 2009-02-10.
  5. Chung I, Lip GY (2003). "Virchow's triad revisited: blood constituents". Pathophysiol. Haemost. Thromb. 33 (5–6): 449–54. doi:10.1159/000083844. PMID 15692259.