Stavudine microbiology
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ahmed Zaghw, M.D. [2]
Microbiology
Mechanism of Action
Stavudine, a nucleoside analogue of thymidine, is phosphorylated by cellular kinases to the active metabolite stavudine triphosphate. Stavudine triphosphate inhibits the activity of HIV-1 reverse transcriptase (RT) by competing with the natural substrate thymidine triphosphate (Ki=0.0083 to 0.032 µM) and by causing DNA chain termination following its incorporation into viral DNA. Stavudine triphosphate inhibits cellular DNA polymerases β and γ and markedly reduces the synthesis of mitochondrial DNA.
Antiviral Activity in Cell Culture
The cell culture antiviral activity of stavudine was measured in peripheral blood mononuclear cells, monocytic cells, and lymphoblastoid cell lines. The concentration of drug necessary to inhibit HIV-1 replication by 50% (EC50) ranged from 0.009 to 4 µM against laboratory and clinical isolates of HIV-1. In cell culture, stavudine exhibited additive to antagonistic activity in combination with zidovudine. Stavudine in combination with either abacavir, didanosine, tenofovir, or zalcitabine exhibited additive to synergistic anti-HIV-1 activity. Ribavirin, at the 9–45 µM concentrations tested, reduced the anti-HIV-1 activity of stavudine by 2.5- to 5-fold. The relationship between cell culture susceptibility of HIV-1 to stavudine and the inhibition of HIV-1 replication in humans has not been established.
Resistance
HIV-1 isolates with reduced susceptibility to stavudine have been selected in cell culture (strain-specific) and were also obtained from patients treated with stavudine. Phenotypic analysis of HIV-1 isolates from 61 patients receiving prolonged (6–29 months) stavudine monotherapy showed that post-therapy isolates from four patients exhibited EC50 values more than 4-fold (range 7- to 16-fold) higher than the average pretreatment susceptibility of baseline isolates. Of these, HIV-1 isolates from one patient contained the zidovudine-resistance-associated substitutions T215Y and K219E, and isolates from another patient contained the multiple-nucleoside-resistance-associated substitution Q151M. Mutations in the RT gene of HIV-1 isolates from the other two patients were not detected. The genetic basis for stavudine susceptibility changes has not been identified.
Cross-Resistance
Cross-resistance among HIV-1 reverse transcriptase inhibitors has been observed. Several studies have demonstrated that prolonged stavudine treatment can select and/or maintain thymidine analogue mutations (TAMs; M41L, D67N, K70R, L210W, T215Y/F, K219Q/E) associated with zidovudine resistance. HIV-1 isolates with one or more TAMs exhibited reduced susceptibility to stavudine in cell culture. These TAMs are seen at a similar frequency with stavudine and zidovudine in virological treatment. The clinical relevance of these findings suggests that stavudine should be avoided in the presence of thymidine analogue mutations.[1]
References
Adapted from the FDA Package Insert.