Symbiosis
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
The term symbiosis (from the Greek: συμ, sym, "with"; and βίοσίς, biosis, "living") commonly describes close and often long-term interactions between different biological species. The term was first used in 1879 by the German mycologist, Heinrich Anton de Bary, who defined it as: "the living together of unlike organisms".[2][3]
The definition of symbiosis is in flux and the term has been applied to a wide range of biological interactions. The symbiotic relationship may be categorized as being mutualistic, parasitic, or commensal in nature [4][5]. Others define it more narrowly, as only those relationships from which both organisms benefit, in which case it would be synonymous with mutualism.[6][7][8]
Symbiotic relationships included those associations in which one organisms lives on another (ectosymbiosis, such as mistletoe), or where one partner lives inside another (endosymbiosis, such as lactobacilli and other bacteria in humans or zooxanthelles in corals). Symbiotic relationships may be either obligate, i.e., necessary to the survival of at least one of the organisms involved, or facultative, where the relationship is beneficial but not essential to survival of the organisms. [9][10]
Physical interaction
Endosymbiosis is any symbiotic relationship in which the symbiote lives within the tissues of the host; either in the intracellular space or extracellularly.[11][12] Examples are nitrogen-fixing bacteria (called rhizobia) which live in root nodules on legume roots, Actinomycete nitrogen-bacteria called Frankia which live in Alder tree root nodules, single-celled algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to about 10%–15% of insects.
Ectosymbiosis, also referred to as exosymbiosis, is any symbiotic relationship in which the symbiont lives on the body surface of the host, including the inner surface of the digestive tract or the ducts of exocrine glands.[13][14] Examples of this include ectoparasites such as lice, commensal ectosymbionts, such as the barnacles that attach themselves to the jaw of baleen whales, and mutualist ectosymbionts such as cleaner fish.
Mutualism
The term Mutualism describes any relationship between individuals of different species where both individuals derive a fitness benefit.[15] Generally only lifelong interactions involving close physical and biochemical contact, can properly be considered symbiotic. Mutualistic relationships, may be either obligate for both species, obligate for one but facultative for the other, or facultative for both. Many biologists restrict the definition of symbiosis to close mutualist relationships.
A large percentage of herbivores have mutualistic gut fauna that help them digest plant matter, which is more difficult to digest than animal prey.[16] Coral reefs are the result of mutualisms between coral organisms and various types of algae that live inside them.[17] Most land plants and land ecosystems rely on mutualisms between the plants which fix carbon from the air, and Mycorrhyzal fungi which help in extracting minerals from the ground.[18]
Another example is the goby fish, which sometimes lives together with a shrimp. The shrimp digs and cleans up a burrow in the sand in which both the shrimp and the goby fish live. The shrimp is almost blind leaving it vulnerable to predators when above ground. In case of danger the goby fish touches the shrimp with its tail to warn it. When that happens both the shrimp and goby fish quickly retract into the burrow.[19]
One of the most spectacular examples of obligate mutualism is between the siboglinid tube worms and symbiotic bacteria that live at hydrothermal vents and cold seeps. The worm has no digestive tract and is solely reliant on their internal symbionts for nutrition. The bacteria oxidize either hydrogen sulfide or methane which the host supplies to them. These worms were discovered in the late 1980s at the hydrothermal vents near the Galapagos Islands and have since been found at deep-sea hydrothermal vents and cold seeps in all of the world's oceans.[20]
Commensalism
Commensalism describes a relationship between two living organisms where one benefits and the other is not significantly harmed or helped. It is derived from the English word commensal, meaning the sharing of food, and used of human social interaction. The word derives from the Latin com mensa, meaning sharing a table.[21][22]
Commensal relationships may involve an organism using another for transportation (phoresy), for housing (inquilinism), or it may also involve an organism using something another created, after the death of the first (metabiosis). An example is the hermit crabs that use gastropod shells to protect their bodies. Further examples include spiders building their webs on trees.
Parasitism
A parasitic relationship is one in which one member of the association benefits while the other is harmed.[23] Parasitic symbioses take many forms, from endoparasites that live within the host's body, to ectoparasites that live on its surface. In addition, parasites may be necrotrophic, which is to say they kill their host, or biotrophic, meaning they rely on their host surviving. Biotrophic parasitism is an extremely successful mode of life. Depending on the definition used, as many as half of all animals have at least one parasitic phase in their life cycles, and it is also frequent in plants and fungi. Moreover, almost all free-living animals are host to one or more parasite taxa.
Symbiosis and evolution
While historically, symbiosis has received less attention than other interactions such as predation or competition,[24] it is increasingly recognised as an important selective force behind evolution,[25][26] with many species having a long history of interdependent co-evolution.[27] In fact the evolution of all eukaryotes (plants, animals, fungi, protists) is believed to have resulted from a symbiosis between various sorts of bacteria.[28][29][30]
Symbiogenesis
The biologist Lynn Margulis, famous for the work on endosymbiosis, contends that symbiosis is a major driving force behind evolution. She considers Darwin's notion of evolution, driven by competition, as incomplete, and claims evolution is strongly based on co-operation, interaction, and mutual dependence among organisms. According to Margulis and Dorion Sagan, "Life did not take over the globe by combat, but by networking."[31]
Co-evolution
Symbiosis played a major role in the co-evolution of flowering plants and the animals that pollinate them. Many plants that are pollinated by insects, bats or birds, have very specialized flowers modified to promote pollination by a specific pollinator that is also correspondingly adapted. The first flowering plants in the fossil record had relatively simple flowers. Adaptive speciation quickly gave rise to many diverse groups of plants, and at the same time, corresponding speciation occurred in certain insects groups. Some groups of plants developed nectar and large sticky pollen while insects evolved more specialized morphologies to access and collect these rich food sources. In some taxa of plants and insects the relationship has become dependent,[32] where the plant species can only be pollinated by one species of insect. [33]
Objections
Creationists have long claimed that obligate symbioses are evidence against evolution, arguing that since neither organism can survive without the other, they must have come into existence at exactly the same time.[34] This point of view is countered in scientific claims by the extreme variety of symbiotic relationships as well the mutability of species over time: obligate mutualisms could have evolved from facultative relationships in which neither species is fully committed. Many examples of facultative symbioses and multiple theoretical and computational models describing how such a relationship would evolve do in fact exist.[35][36][37][38]
Notes
- ↑ Lee 2003
- ↑ Wilkinson 2001
- ↑ Douglas 1994, p. 1
- ↑ Dethlefsen L, McFall-Ngai M, Relman DA (2007). "An ecological and evolutionary perspective on human-microbe mutualism and disease". Nature. 449: 811–808. doi:10.1038/nature06245. PMID 17943117.
- ↑ Paszkowski U. (2006). "Mutualism and parasitism: the yin and yang of plant symbioses". Curr Opin Plant Biol. 9: 364–370. doi:10.1016/j.pbi.2006.05.008. PMID 16713732.
- ↑ Wilkinson 2001
- ↑ Isaac 1992, p. 266
- ↑ Saffo 1993
- ↑ Moran 2006
- ↑ Ahmadjian & Paracer 2000, p. 12
- ↑ Ahmadjian & Paracer 2000, p. 12
- ↑ Sapp 1994, p. 142
- ↑ Ahmadjian & Paracer 2000, p. 12
- ↑ Nardon & Charles 2002
- ↑ Ahmadjian & Paracer 2000, p. 6
- ↑ Moran 2006
- ↑ Toller, Rowan & Knowlton 2001
- ↑ Harrison 2005
- ↑ Facey, Helfman & Collette 1997
- ↑ Cordes 2005
- ↑ Ahmadjian & Paracer 2000, p. 6
- ↑ Nair 2005
- ↑ Ahmadjian & Paracer 2000, p. 7
- ↑ Townsend, Begon & Harper 1996
- ↑ Wernegreen 2004
- ↑ Moran 2006
- ↑ Ahmadjian & Paracer 2000, p. 3-4
- ↑ Brinkman 2002
- ↑ Golding & Gupta 1995
- ↑ Moran 2006
- ↑ Sagan & Margulis 1986
- ↑ Harrison 2002
- ↑ Danforth & Ascher 1997
- ↑ Isaak 2004
- ↑ Roughgarden 1975
- ↑ Powell 1992
- ↑ Weiblen 2002
- ↑ Boucher 1988
References
- Ahmadjian, Vernon; Paracer, Surindar (2000), Symbiosis: an introduction to biological associations, Oxford [Oxfordshire]: Oxford University Press, ISBN 0-195-11806-5
- Burgess, Jeremy (1994), Forum: What's in it for me, New Scientist
- Boucher, Douglas H (1988), The Biology of Mutualism: Ecology and Evolution, New York: Oxford University Press, ISBN 0195053923
- Cordes, E.E. (2005), "Modeling the mutualistic interactions between tubeworms and microbial consortia", PLoS Biol, 3 (3): 1–10, doi:10.1371/journal.pbio.0030077 Unknown parameter
|coauthors=
ignored (help);|access-date=
requires|url=
(help) - Brinkman, F.S.L. (2002), "Evidence That Plant-Like Genes in Chlamydia Species Reflect an Ancestral Relationship between Chlamydiaceae, Cyanobacteria, and the Chloroplast", Genome Research, 12 (8): 1159–1167, doi:10.1101/gr.341802, retrieved 2007-09-30 Unknown parameter
|coauthors=
ignored (help) - Danforth, B.N.; Ascher, J. (1997), "Flowers and Insect Evolution" (PDF), Science, 99: 42, doi:10.1126/science.283.5399.143a, retrieved 2007-09-25
- Douglas, A. E. (1994), Symbiotic interactions, Oxford [Oxfordshire]: Oxford University Press, ISBN 0-19-854294-1
- Facey, Douglas E.; Helfman, Gene S.; Collette, Bruce B. (1997), The diversity of fishes, Oxford: Blackwell Science, ISBN 0-86542-256-7
- Golding, RS; Gupta (1995), "Protein-based phylogenies support a chimeric origin for the eukaryotic genome", Mol. Biol. Evol., 12 (1): 1–6, PMID 7877484
- Harrison, Rhett (2002), "Balanced mutual use (symbiosis)", Quarterly journal Biohistory, 10 (2), retrieved 2007-09-23
- Harrison, Maria J. (2005), "Signaling in the arbuscular mycorrhizal symbiosis", Annu. Rev. Microbiol., 59: 19–42, doi:10.1146/annurev.micro.58.030603.123749, PMID 16153162
- Lee, J. (2003), "Amphiprion percula" (On-line), Animal Diversity Web, retrieved 2007-09-29
- Isaac, Susan (1992), Fungal-plant interactions, London: Chapman & Hall, ISBN 0-412-36470-0
- Isaak, Mark (2004), CB630: Evolution of obligate mutualism, TalkOrigins, retrieved 2007-09-25
- Moran, N.A. (2006), "Symbiosis", Current Biology, 16 (20): 866–871, retrieved 2007-09-23
- Nardon, P.; Charles, H. (2002), "Morphological aspects of symbiosis", Symbiosis: Mechanisms and Systems. Dordercht/boson/London, Kluwer Academic Publishers: 15–44, doi:10.1007/0-306-48173-1_2
|access-date=
requires|url=
(help) - Powell, Jerry (1992), "Interrelationships of yuccas and yucca moths", Trends in Ecology and Evolution, 7: 10–15
- Nair, S. (2005), "Bacterial Associations: Antagonism to Symbiosis", in Ramaiah, N, Marine Microbiology: Facets & Opportunities;, National Institute of Oceanography, Goa, pp. 83–89, retrieved 2007-10-12
- Roughgarden, J. (1975), "Evolution of Marine Symbiosis--A Simple Cost-Benefit Model", Ecology, 56 (5): 1201–1208, doi:10.1046/j.1420-9101.2000.00157.x, retrieved 2007-09-25
- Saffo, M.B. (1993), "Coming to terms with a field: Words and concepts in symbiosis.", Symbiosis., 14 (1–3), retrieved 2007-10-05
- Sagan, Dorion; Margulis, Lynn (1986), Origins of sex: three billion years of genetic recombination, New Haven, Conn: Yale University Press, ISBN 0-300-03340-0
- Sagan, Dorion; Margulis, Lynn (1997), Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors, Berkeley: University of California Press, ISBN 0-520-21064-6
- Sapp, Jan (1994), Evolution by association: a history of symbiosis, Oxford [Oxfordshire]: Oxford University Press, ISBN 0-19-508821-2
- Toller, W. W.; Rowan, R.; Knowlton, N. (2001), "Repopulation of Zooxanthellae in the Caribbean Corals Montastraea annularis and M. faveolata following Experimental and Disease-Associated Bleaching", The Biological Bulletin, 201 (3): 360–373
- Townsend, Colin R; Begon, Michael; Harper, John D. (1996), Ecology: individuals, populations and communities, Oxford: Blackwell Science, ISBN 0-632-03801-2
- Weiblen, G.D. (2002), "How to be a fig wasp", Annual Review of Entomology, 47 (1): 299–330, doi:10.1146/annurev.ento.47.091201.145213
- Wernegreen, J.J. (2004), "Endosymbiosis: lessons in conflict resolution.", PLoS Biology, 2 (3): e68, doi:10.1371/journal.pbio.0020068
- Wilkinson, David M. (2001), "At cross purposes", Nature, 412 (6846): 485, doi:10.1038/35087676
See also
- aposymbiotic
- aquaponics
- decompiculture
- list of symbiotic relationships
External links
- Mycorrhizas – a successful symbiosis Biosafety research into gm-barley.
- Symbiosis at Biology Reference.
- Symbiosis Online Biology textbook, by Dr. John W. Kimball
- Video: Symbiosis, Orchids and Orchid Bees
Template:Biological interaction-footer
af:Simbiose be-x-old:Сымбіёз bg:Симбиоза ca:Simbiosi cs:Symbióza da:Symbiose de:Symbiose et:Sümbioos el:Συμβίωση (βιολογία) eo:Simbiozo eu:Sinbiosi gl:Simbiose id:Simbiosis is:Samlífi it:Simbiosi (ecologia) he:סימביוזה lv:Simbioze lt:Simbiozė hu:Szimbiózis mk:Симбиоза nl:Symbiose no:Symbiose nn:Symbiose om:Symbiosis simple:Symbiosis sk:Symbióza sr:Симбиоза fi:Symbioosi sv:Symbios uk:Симбіоз