Synovium

Jump to navigation Jump to search

WikiDoc Resources for Synovium

Articles

Most recent articles on Synovium

Most cited articles on Synovium

Review articles on Synovium

Articles on Synovium in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Synovium

Images of Synovium

Photos of Synovium

Podcasts & MP3s on Synovium

Videos on Synovium

Evidence Based Medicine

Cochrane Collaboration on Synovium

Bandolier on Synovium

TRIP on Synovium

Clinical Trials

Ongoing Trials on Synovium at Clinical Trials.gov

Trial results on Synovium

Clinical Trials on Synovium at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Synovium

NICE Guidance on Synovium

NHS PRODIGY Guidance

FDA on Synovium

CDC on Synovium

Books

Books on Synovium

News

Synovium in the news

Be alerted to news on Synovium

News trends on Synovium

Commentary

Blogs on Synovium

Definitions

Definitions of Synovium

Patient Resources / Community

Patient resources on Synovium

Discussion groups on Synovium

Patient Handouts on Synovium

Directions to Hospitals Treating Synovium

Risk calculators and risk factors for Synovium

Healthcare Provider Resources

Symptoms of Synovium

Causes & Risk Factors for Synovium

Diagnostic studies for Synovium

Treatment of Synovium

Continuing Medical Education (CME)

CME Programs on Synovium

International

Synovium en Espanol

Synovium en Francais

Business

Synovium in the Marketplace

Patents on Synovium

Experimental / Informatics

List of terms related to Synovium

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Overview

Synovium is the soft tissue that lines the non-cartilaginous surfaces within joints with cavities (synovial joints). The word synovium comes from a Latin word meaning "with egg," because the synovial fluid in joints that have a cavity between the bearing surfaces is like egg white.

Structure

Synovium is very variable but often has two layers. The outer layer, or subintima, can be of almost any type: fibrous, fatty or loosely "areolar". The inner layer, or intima, consists of a sheet of cells thinner than a piece of paper. Where the underlying subintima is loose the intima sits on a pliable membrane, giving rise to the term synovial membrane. This membrane, together with the cells of the intima, provides something like an inner tube, sealing the synovial fluid from the surrounding tissue (effectively stopping the joints being squeezed dry when subject to impact, such as running). The intimal cells are of two types, fibroblasts and macrophages, both of which are different in certain respects from similar cells in other tissues. The fibroblasts manufacture a long chain sugar polymer called hyaluronan, which is what makes the synovial fluid "ropy" like egg-white, together with a molecule called lubricin, which lubricates the joint surfaces. The water of synovial fluid is not secreted as such, but is effectively trapped in the joint space by the hyaluronan. The macrophages are responsible for the removal of undesirable substances from the synovial fluid. The surface of synovium may be flat or may be covered with finger-like projections or villi, which probably help to allow the soft tissue to change shape as the joint surfaces move one on another. Just beneath the intima most synovium has a dense net of small blood vessels which provide nutrients not only for synovium, but also for the avascular cartilage. In any one position much of the cartilage is close enough to get nutrition direct from synovium. Some areas of cartilage have to obtain nutrients indirectly and may do so either from diffusion through cartilage or possibly by 'stirring' of synovial fluid, although the film is very thin.

Mechanics

Although a biological joint can resemble a man-made joint in being a hinge or a ball and socket, the engineering problems that nature must solve are very different because the joint works within an almost completely solid structure, with no wheels or nuts and bolts. In general the bearing surfaces of man made joints interlock, as in a hinge. This is rare for biological joints, although the badger's jaw interlocks. More often the surfaces are held together by cord-like ligaments. Virtually all the space between muscles, ligaments, bones and cartilage is filled with pliable solid tissue. The fluid-filled gap is mostly only a twentieth of a millimetre thick. This means that synovium has certain rather unexpected jobs to do. These may include:

  1. Providing a plane of separation, or disconnection, between solid tissues so that movement can occur with minimum bending of solid components. If this separation is lost, as in a 'frozen shoulder' the joint cannot move.
  2. Providing a packing that can change shape in whatever way is needed to allow the bearing surfaces to move on each other.
  3. Controlling the volume of fluid in the cavity so that it is just enough to allow the solid components to move over each other freely. This volume is normally so small that the joint is under slight suction.

Pathology

Synovium can become irritated and thickened in conditions such as rheumatoid arthritis. When this happens, the synovium can become a danger to the bearing surface structure in a variety of ways. Excess synovial fluid weeping from inflamed synovium can provide a barrier to diffusion of nutrients to cartilage. The synovial cells may also use up nutrients so that the glucose level in the tissue is almost zero. These factors may lead to starvation and death of cartilage cells. Synovial cells may also produce enzymes which can digest the cartilage surface, although it is not clear that these will damage cartilage with healthy cells.

References

  • Edwards, JCW. The Synovium. In 'Rheumatology', editors Hochberg MC et al, Mosby (an imprint of Elsevier), Edinburgh, 2003, chapter 17, pp 159-168.

Template:Joints nl:Synovium

Template:WH Template:WS