Germinal center kinases (GCKs), such as TNIK, are characterized by an N-terminalkinase domain and a C-terminal GCK domain that serves a regulatory function.[2][3]
Interactions
TNIK has been shown to interact with KIAA0090,[4] although the significance is unclear. TNIK has been shown to phosphorylate Gelsolin, a protein involved in F-actin depolymerisation thus inducing cytoskeletal changes.[2]
References
↑Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Aug 1998). "Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Res. 5 (1): 31–9. doi:10.1093/dnares/5.1.31. PMID9628581.
↑ 2.02.12.2Fu CA, Shen M, Huang BC, Lasaga J, Payan DG, Luo Y (Nov 1999). "TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton". J Biol Chem. 274 (43): 30729–37. doi:10.1074/jbc.274.43.30729. PMID10521462.
Brill LM, Salomon AR, Ficarro SB, et al. (2004). "Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry". Anal. Chem. 76 (10): 2763–72. doi:10.1021/ac035352d. PMID15144186.
Taira K, Umikawa M, Takei K, et al. (2005). "The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton". J. Biol. Chem. 279 (47): 49488–96. doi:10.1074/jbc.M406370200. PMID15342639.
Wissing J, Jänsch L, Nimtz M, et al. (2007). "Proteomics analysis of protein kinases by target class-selective prefractionation and tandem mass spectrometry". Mol. Cell. Proteomics. 6 (3): 537–47. doi:10.1074/mcp.T600062-MCP200. PMID17192257.