Apoptosis-stimulating of p53 protein 2 (ASPP2) also known as Bcl2-binding protein (Bbp) and tumor suppressor p53-binding protein 2 (p53BP2) is a protein that in humans is encoded by the TP53BP2gene.[1][2][3] Multiple transcript variants encoding different isoforms have been found for this gene.
ASPP2 (amino acid residues 600 –1128) was initially identified as 53BP2 (p53-binding protein 2) in a yeast two hybrid screen using p53 as the bait.[2] Another yeast two hybrid screening in which Bcl-2 was used as the bait gave rise to the discovery of another fragment of ASPP2 (residues 123-1128) and it was called Bbp.[1] The full length ASPP2 (1128 amino acids) was identified later.[4]
Function
ASPP2 plays a central role in regulation of apoptosis and cell growth via its interactions. ASPP2 regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genesin vivo.[4] ASPP2 binds to wild-typep53 but fails to bind to mutantp53, suggesting that ASPP2 may be involved in the ability of wild-type p53 to suppress transformation.[2] ASPP2 induces apoptosis but no cell cycle arrest.[4]
Structure
ASPP2 contains several structural and functional domains. Its N-terminus (residues 1–83) has the structure of a β-grasp ubiquitin-like fold.[5][6] It is followed by a predicted α-helical domain located between aa 123 and 323.[1] and a proline-rich (ASPP2 Pro) domain between aa 674 and 902.[1] The C-terminal part of ASPP2 contains four ankyrin repeats and an SH3 domain involved in protein-protein interactions.[6][7] ASPP2 is found in the perinuclear region of the cytoplasm.[8][9]
Family members
The ASPP family includes ASPP1, ASPP2, and iASPP. The name ASPP stands for apoptosis stimulating protein of p53, the name emphasizes the ankyrin repeats, SH3 domain, and proline-rich domains that characterize this family.[4] The three family members come from different genes but ASPP1 and ASPP2 share a greater sequence similarity than either does with iASPP as the N terminus of iASPP has no homology with ASPP1 and ASPP2. The sequence similarities among ASPP family members indicates that ASPP1 and ASPP2 probably have similar biological functions that differ from that of iASPP.[10] The family plays a key role in apoptosis regulation in the intrinsic and extrinsic apoptotic pathways.[4][11] ASPP1 and ASPP2 promote, while iASPP inhibits, apoptosis.[12]
Binding partners
ASPP2 is the ASPP family member with the most known binding partners. The highly conserved C-terminus was first known to bind to p53 through its ankyrin repeats and SH3 domain in 1994 by a yeast two hybrid system and it was called p53 Binding Protein 2 (53BP2).[2] Other binding partners have been discovered through the years, indicating the importance of the ankyrin repeats and SH3 domains for protein-protein interactions. Some of the known binding partners of ASPP2 include BCL2, p63, p73, Hepatitis C virus core protein, Amyloid-b-Precursor Protein-Binding Protein 1 (APP-BP1), YES-Associated Protein (YAP), Adenomatosis Polyposis Coli 2 (APC2), RelA/p65, Protein Phosphatase 1 (PP1)[13] and NFκB (p65)[14]
Expression
The expression of ASPP2 is encoded by the gene TP53BP2 and is located in the long arm of chromosome 1 at q42.1. Northern-blot analyses showed that the ASPP2/53BP2 mRNA was expressed in many human tissues such as heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, but at varying levels. The highest expression level of ASPP2 was detected in skeletal tissue.[2][10]
Levels of expression of ASPP2 are important, high levels of expression play an important role in inducing apoptosis independently of p53, mediated by p63 and p73. The expression is enhanced in response to DNA damage.[18][19]
On the other hand, silencing of ASPP2 expression by methylation was observed in several human carcinoma cells.[15]
↑ 4.04.14.24.34.44.54.6Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T, Lu X (October 2001). "ASPP proteins specifically stimulate the apoptotic function of p53". Mol Cell. 8 (4): 781–94. doi:10.1016/S1097-2765(01)00367-7. PMID11684014.
↑Tidow H, Andreeva A, Rutherford TJ, Fersht AR (August 2007). "Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals a ubiquitin-like fold". J Mol Biol. 371 (4): 948–58. doi:10.1016/j.jmb.2007.05.024. PMID17594908.
↑ 6.06.1Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rüdiger S, Danieli T, Friedler A (April 2008). "The structure and interactions of the proline-rich domain of ASPP2". J Biol Chem. 283 (27): 18990–9. doi:10.1074/jbc.M708717200. PMID18448430.
↑Gorina S, Pavletich NP (November 1996). "Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2". Science. 274 (5289): 1001–5. doi:10.1126/science.274.5289.1001. PMID8875926.
↑Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y (Jan 2000). "APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53-binding protein 2 and translocates it to the perinucleus". Cancer Res. 60 (1): 101–5. PMID10646860.
↑Uhlmann-Schiffler H, Kiermayer S, Stahl H (May 2009). "The DEAD box protein Ddx42p modulates the function of ASPP2, a stimulator of apoptosis". Oncogene. 28 (20): 2065–73. doi:10.1038/onc.2009.75. PMID19377511.
↑Yang JP, Hori M, Takahashi N, Kawabe T, Kato H, Okamoto T (September 1999). "NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2". Oncogene. 18 (37): 5177–86. doi:10.1038/sj.onc.1202904. PMID10498867.
↑ 16.016.1Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr, Elkahloun AG (November 1999). "In vivogene expression profile analysis of human breast cancer progression". Cancer Res. 59 (22): 5656–61. PMID10582678.
↑ 17.017.1Ju H, Lee KA, Yang M, Kim HJ, Kang CP, Sohn TS, Rhee JC, Kang C, Kim JW (December 2005). "TP53BP2 locus is associated with gastric cancer susceptibility". Int J Cancer. 117 (6): 957–60. doi:10.1002/ijc.21281. PMID15986435.
↑Slee EA, O'Connor DJ, Lu X (April 2004). "To die or not to die: how does p53 decide?". Oncogene. 23 (16): 2809–18. doi:10.1038/sj.onc.1207516. PMID15077144.
Helps NR, Barker HM, Elledge SJ, Cohen PT (1996). "Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53". FEBS Lett. 377 (3): 295–300. doi:10.1016/0014-5793(95)01347-4. PMID8549741.
Gorina S, Pavletich NP (1996). "Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2". Science. 274 (5289): 1001–5. doi:10.1126/science.274.5289.1001. PMID8875926.
Pirozzi G, McConnell SJ, Uveges AJ, et al. (1997). "Identification of novel human WW domain-containing proteins by cloning of ligand targets". J. Biol. Chem. 272 (23): 14611–6. doi:10.1074/jbc.272.23.14611. PMID9169421.
Yang JP, Ono T, Sonta S, et al. (1997). "Assignment of p53 binding protein (TP53BP2) to human chromosome band 1q42.1 by in situ hybridization". Cytogenet. Cell Genet. 78 (1): 61–2. doi:10.1159/000134630. PMID9345910.
Iwabuchi K, Li B, Massa HF, et al. (1998). "Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2". J. Biol. Chem. 273 (40): 26061–8. doi:10.1074/jbc.273.40.26061. PMID9748285.
Yang JP, Hori M, Takahashi N, et al. (1999). "NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2". Oncogene. 18 (37): 5177–86. doi:10.1038/sj.onc.1202904. PMID10498867.
Mori T, Okamoto H, Takahashi N, et al. (2000). "Aberrant overexpression of 53BP2 mRNA in lung cancer cell lines". FEBS Lett. 465 (2–3): 124–8. doi:10.1016/S0014-5793(99)01726-3. PMID10631318.
Nakagawa H, Koyama K, Murata Y, et al. (2000). "APCL, a central nervous system-specific homologue of adenomatous polyposis coli tumor suppressor, binds to p53-binding protein 2 and translocates it to the perinucleus". Cancer Res. 60 (1): 101–5. PMID10646860.
Espanel X, Sudol M (2001). "Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains". J. Biol. Chem. 276 (17): 14514–23. doi:10.1074/jbc.M008568200. PMID11278422.
Kajkowski EM, Lo CF, Ning X, et al. (2001). "beta -Amyloid peptide-induced apoptosis regulated by a novel protein containing a g protein activation module". J. Biol. Chem. 276 (22): 18748–56. doi:10.1074/jbc.M011161200. PMID11278849.
Samuels-Lev Y, O'Connor DJ, Bergamaschi D, et al. (2001). "ASPP proteins specifically stimulate the apoptotic function of p53". Mol. Cell. 8 (4): 781–94. doi:10.1016/S1097-2765(01)00367-7. PMID11684014.
Chen Y, Liu W, Naumovski L, Neve RL (2003). "ASPP2 inhibits APP-BP1-mediated NEDD8 conjugation to cullin-1 and decreases APP-BP1-induced cell proliferation and neuronal apoptosis". J. Neurochem. 85 (3): 801–9. doi:10.1046/j.1471-4159.2003.01727.x. PMID12694406.
Takahashi N, Kobayashi S, Jiang X, et al. (2004). "Expression of 53BP2 and ASPP2 proteins from TP53BP2 gene by alternative splicing". Biochem. Biophys. Res. Commun. 315 (2): 434–8. doi:10.1016/j.bbrc.2004.01.079. PMID14766226.