Tubulin beta-4A chain is a protein that in humans is encoded by the TUBB4Agene. Two tubulin beta-4 chain proteins are encoded in the human genome by the genes TUBB4A (this entry) and TUBB4B.[1][2][3] Tubulin is the major constituent of microtubules, a key components of the cytoskeleton. It binds two moles of GTP, one at an exchangeable site on the beta-chain and one at a non-exchangeable site on the alpha-chain. TUBB4A is preferentially and highly expressed in the central nervous system.[4]
↑Shimojima, K; Okumura, A; Ikeno, M; Nishimura, A; Saito, A; Saitsu, H; Matsumoto, N; Yamamoto, T (2014). "A de novo TUBB4A mutation in a patient with hypomyelination mimicking Pelizaeus-Merzbacher disease". Brain & Development. 37: 281–285. doi:10.1016/j.braindev.2014.05.004. PMID24974158.
Baumann MH, Wisniewski T, Levy E, et al. (1996). "C-terminal fragments of alpha- and beta-tubulin form amyloid fibrils in vitro and associate with amyloid deposits of familial cerebral amyloid angiopathy, British type". Biochem. Biophys. Res. Commun. 219 (1): 238–242. doi:10.1006/bbrc.1996.0211. PMID8619814.
Tarazona R, López-Lluch G, Galiani MD, et al. (2001). "HLA-B2702 (77-83/83-77) peptide binds to beta-tubulin on human NK cells and blocks their cytotoxic capacity". Journal of Immunology. 165 (12): 6776–6782. doi:10.4049/jimmunol.165.12.6776. PMID11120798.
Zhang C, Dowd DR, Staal A, et al. (2003). "Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing". Journal of Biological Chemistry. 278 (37): 35325–35336. doi:10.1074/jbc.M305191200. PMID12840015.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nature Genetics. 36 (1): 40–45. doi:10.1038/ng1285. PMID14702039.
Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nature Cell Biology. 6 (2): 97–105. doi:10.1038/ncb1086. PMID14743216.
Hassel S, Eichner A, Yakymovych M, et al. (2004). "Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry". Proteomics. 4 (5): 1346–1358. doi:10.1002/pmic.200300770. PMID15188402.
Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–1450. doi:10.1016/j.cub.2004.07.051. PMID15324660.
Campbell GR, Pasquier E, Watkins J, et al. (2005). "The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis". Journal of Biological Chemistry. 279 (46): 48197–48204. doi:10.1074/jbc.M406195200. PMID15331610.
Otsuki T, Ota T, Nishikawa T, et al. (2007). "Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries". DNA Res. 12 (2): 117–126. doi:10.1093/dnares/12.2.117. PMID16303743.
Coiras M, Camafeita E, Ureña T, et al. (2006). "Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression". Proteomics. 6 Suppl 1: S63–7S3. doi:10.1002/pmic.200500437. PMID16526095.