Vancomycin-resistant Staphylococcus aureus screening

Jump to navigation Jump to search

Vancomycin-resistant Staphylococcus aureus Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Vancomycin-resistant Staphylococcus aureus screening On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Vancomycin-resistant Staphylococcus aureus screening

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Vancomycin-resistant Staphylococcus aureus screening

CDC on Vancomycin-resistant Staphylococcus aureus screening

Vancomycin-resistant Staphylococcus aureus screening in the news

Blogs on Vancomycin-resistant Staphylococcus aureus screening

Directions to Hospitals Treating Vancomycin-resistant Staphylococcus aureus

Risk calculators and risk factors for Vancomycin-resistant Staphylococcus aureus screening

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Screening

Method

Laboratories that use automated methods that are not validated for VRSA detection should also include a vancomycin screen agar plate for enhanced detection of VRSA. If possible, laboratories should incorporate the vancomycin agar screen plate for testing all S. aureus. Alternatively, the screening may be limited to MRSA isolates, since nearly all VISA and all VRSA reported to date (i.e., April 2006) were also MRSA. Laboratories using disk diffusion to determine vancomycin susceptibility should consider adding a second method for VISA detection. The vancomycin screen plate is useful for detecting VISA (MIC = 8 µg/ml). Reliable detection of VISA (MIC = 4 µg/ml) may require a non-automated MIC method.

  • Vancomycin agar screen test:

The vancomycin agar screen test uses commercially prepared agar plates to screen pure cultures of bacteria for vancomycin. These plates contain BHI agar and 6 µg/ml of vancomycin. A 10µl inoculum of a 0.5 McFarland suspension should be spotted on the agar using a micropipette (final concentration=106 CFU/ml). Alternatively, a swab may be dipped in the McFarland suspension, the excess liquid expressed, and used to inoculate the vancomycin agar screen plate. For quality control, laboratories should use Entercococcus faecalis ATCC 29212 as the susceptible control and E. faecalis ATCC 51299 as the resistant control. Up to eight isolates can be tested per plate; quality control should be performed each day of testing. Growth of more than one colony is considered a positive result. All staphylococci that grow on these plates should be inspected for purity, and the original clinical isolates should be tested using an FDA-cleared MIC method for confirmation. Plates prepared in-house using various lots of media performed inconsistently and were inferior to those obtained commercially (CDC unpublished data). Performance of commercially prepared plates varies by individual manufacturer.

References

Template:WH Template:WS