Wheat allergy

Jump to navigation Jump to search
Wheat allergy
Classification and external resources
Wheat
MeSH D021182

WikiDoc Resources for Wheat allergy

Articles

Most recent articles on Wheat allergy

Most cited articles on Wheat allergy

Review articles on Wheat allergy

Articles on Wheat allergy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Wheat allergy

Images of Wheat allergy

Photos of Wheat allergy

Podcasts & MP3s on Wheat allergy

Videos on Wheat allergy

Evidence Based Medicine

Cochrane Collaboration on Wheat allergy

Bandolier on Wheat allergy

TRIP on Wheat allergy

Clinical Trials

Ongoing Trials on Wheat allergy at Clinical Trials.gov

Trial results on Wheat allergy

Clinical Trials on Wheat allergy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Wheat allergy

NICE Guidance on Wheat allergy

NHS PRODIGY Guidance

FDA on Wheat allergy

CDC on Wheat allergy

Books

Books on Wheat allergy

News

Wheat allergy in the news

Be alerted to news on Wheat allergy

News trends on Wheat allergy

Commentary

Blogs on Wheat allergy

Definitions

Definitions of Wheat allergy

Patient Resources / Community

Patient resources on Wheat allergy

Discussion groups on Wheat allergy

Patient Handouts on Wheat allergy

Directions to Hospitals Treating Wheat allergy

Risk calculators and risk factors for Wheat allergy

Healthcare Provider Resources

Symptoms of Wheat allergy

Causes & Risk Factors for Wheat allergy

Diagnostic studies for Wheat allergy

Treatment of Wheat allergy

Continuing Medical Education (CME)

CME Programs on Wheat allergy

International

Wheat allergy en Espanol

Wheat allergy en Francais

Business

Wheat allergy in the Marketplace

Patents on Wheat allergy

Experimental / Informatics

List of terms related to Wheat allergy

Overview

Wheat allergy, is a food allergy, but can also be a respiratory or contact allergy resulting from occupational exposure. Like all allergies wheat allergy involves IgE and mast cell response. Typically the allergy is limited to the seed storage proteins of wheat, some reactions are restricted to wheat proteins, while others can react across many varieties of seeds and other plant tissues. Wheat allergy may be a misnomer since there are many allergenic components in wheat, for example serine proteinase inhibitors, glutelins and prolamins and different responses are often attributed to different proteins. The most severe response is exercise/aspirin induced anaphylaxis attributed to one omega gliadin that is a relative of the protein that causes coeliac disease.[1] Other more common symptoms include nausea, urticaria, atopy.[2]

Types of allergens

There are four major classes of seed storage proteins: albumins, globulins, prolamins and glutelins. Within wheat prolamins are called gliadins and glutelins are called glutenins. These two protein groups form the classic glutens. While gluten is a causative agent of Coeliac disease (CD), coeliac disease can be contrasted to gluten allergy by the involvement of different immune cells and antibody types (See Comparative pathophysiology of gluten sensitivities), and because the list of allergens extend beyond the classic gluten category of proteins.

Gluten Allergy

Prolamin allergies

Prolamins and the closely related glutelins, a recent study in Japan found that glutinins are a more frequent allergen, however gliadins are associated with the most severe disease. A proteomics based study found a γ-gliadin isoform gene.[1] Wheat dependent exercise induced anaphylaxis (WDEIA) is primarily mediated by ω-5 gliadin which is encoded by the Gli-1B gene derived from the Aegilops speltoides B genome within wheat.

Glutelin allergies

Glutenin (wheat glutelin) is a predominant allergen in wheat.[1] Nine subunits of LMW-glutinen have been found to bind to wheat allergy associated.

Albumin and globulin allergy

At present many of the allergens of wheat have not been characterized; however, the early studies found many to be in the albumin class[3]. A recent study in Europe confirmed the increased presence of allergies to amylase/trypsin inhibitors (serpins)[1][4] and lipid transfer protein (LPT).[5] but less reactivity to the globulin fraction[6] The allergies tend to differ between populations (Italian, Japanese, Danish or Swiss), indicating a potential genetic component to these reactivities.

Other allergies

Wheat pollen and grass allergies

Respiratory allergies are an occupational disease that develop in food service workers. Previous studies detected 40 allergens from wheat; some cross-reacted with rye proteins and a few cross-reacted with grass pollens.[7] A later study showed that baker's allergy extend over a broad range of cereal grasses (wheat, durum wheat, triticale, cereal rye, barley, rye grass, oats, canary grass, rice, maize, sorghum and Johnson grass) though the greatest similarities were seen between wheat and rye [8] and that these allergies show cross reactivity between seed proteins and pollen proteins[9] including a prominent crossreactivity between the common environment rye pollen and wheat gluten[10][11]

Derivative allergies

Proteins are made of a chain of dehydrated amino acids. When enzymes cut proteins into pieces they add water back to the site at which they cut, called enzymatic hydrolysis, for proteins it is called proteolysis. The initial products of this hydrolysis are polypeptides, and smaller products are called simply peptides; these are called wheat protein hydrolysates. These hydrolysates can create allergens out of wheat proteins that previously did not exist by the exposure of buried antigenic sites in the proteins.

When proteins are cut into polypeptides, buried regions are exposed to the surface, and these buried regions may possibly be antigenic. Such hydrolyzed wheat protein is used as an additive in foods and cosmetics. The peptides are often 1 kD in size (9 amino acid residues in length) and may increase the allergic response. [12] These wheat polypeptides can cause immediate contact urticaria in susceptible people.[13]

Signs and Symptoms

Wheat allergies are not altogether different from other food allergies or respiratory allergies. However two conditions, exercise/aspirin induced anaphylaxis and urticaria occur more frequently with wheat allergies.

Common symptoms of a wheat allergy include eczema (atopic dermatitis), hives (urticaria), asthma, "Hay fever" (allergic rhinitis), angioedema (tissue swelling due to fluid leakage from blood vessels), abdominal cramps, nausea, and vomiting.[14] Rarer symptoms include anaphylactic shock, arthritis, bloated stomach, chest pains, depression or mood swings, diarrhea, dizziness, headache, joint and muscle aches and pains (may be associated with progressive arthritis), palpitations, psoriasis, irritable bowel syndrome (IBS), swollen throat or tongue, tiredness and lethargy, and unexplained cough. Reactions may become more severe with repeated exposure.

Asthma, Anaphylaxis, Nasal Allergies

Exercise-induced anaphylaxis

Wheat gliadins and potentially oat avenins are associated with another disease, known as wheat- dependent exercise Induced Anaphylaxis (WDEIA) which is similar to Baker's Allergy as both are mediated by IgE responses.[15] In WDEIA, however, the ω-gliadins[16] or a high molecular weight glutenin subunit, and similar proteins in other Triticeae genera enter the blood stream during exercise where they cause acute asthmatic or allergic reaction.[17] One recent study of ω-gliadins demonstrated these gliadins are more similar to the bulk of oat avenins than α/β or γ gliadins but, so far, oat avenins have not been linked to WDEIA. Wheat may specifically induce WDEIA and certain chronic urticaria because the anti-gliadin IgE detects ω5-gliadins expressed by most of the Gli-B1 alleles but almost no responses prolamins extracted from rye or wheat/rye translocates. The Gli-B1 gene in wheat, Triticum aestivum comes from one of three progenitor species, Aegilops speltoides, indicating that nascent mutations on the B genome of wheat or from a small number of cultivated triticeae species.[18].

Aspirin sensitivity and wheat allergy

Recent study of WDEIA shows that both aspirin and exercise increase the presence of gliadin in the blood stream[19] and the chronic induced behavior may extend to NSAIDs, MSG, Benzoate and other synthetic chemical food additives.

Baker's Allergy

Baker's allergy has a ω-gliadin component and thioredoxin hB component.[20] In addition, a gluten-extrinsic allergen has been identified as aspergillus amylase, added to flour to increase its baking properties.

Allergic urticaria on the shin

Urticaria, Atopy, Eczema

Contact Sensitivity[21], Atopic Dermatitis[22], Eczema, and Urticaria appear to be related phenomena the cause is generally the believed to be the hydrophobic prolamin components of certain Triticeae, Aveneae cultivars, in wheat one of these proteins is ω-gliadin (Gli-B1 gene product). A study of mothers and infants on an allergen-free diet demonstrated that these conditions can be avoided if wheat sensitive cohort in the population avoid wheat in the first year of life[23]. As with exercise induced anaphylaxis aspirin (also: tartrazine, sodium benzoate, sodium glutamate (MSG), sodium metabisulfite, tyramine) may be sensitizing factors for reactivity.[24] Studies of the wheat-dependent exercise induced anaphylaxis demonstrate that atopy and EIA can be triggered from the ingestion of that aspirin and probably NSAIDs allow the entry of wheat proteins into the blood, where IgE reacts within allergens in the dermal tissues. Some individuals may be so sensitive that low dose aspirin therapy can increase risk for both atopy and WDEIA.

Wheat allergies were also common with contact dermatitis. A primary cause was the donning agent used for latex gloves prior to the 1990s, however most gloves now use protein free starch as donning agents.

Autoimmune (Rheumatoid) arthritis

There appears to be an association of autoimmune rheumatoid arthritis (ARA) both with GSE and gluten allergies[25]. ARA in GSE/CD may be secondary to tTG autoimmunity. In a recent study in Turkey, 8 of 20 ARA patients had wheat reactivities on the RAST tests. When this allergic food and all other patient specific RAST+ foods were removed half of the patients had improved ARA by serological markers. In patients with wheat allergies, rye was effectively substituted.[26] This may indicate that some proportion of RA in GSE/CD is due to downstream effects of allergic responses. In addition, cross-reactive anti-beef-collagen antibodies (IgG) may explain some rheumatoid arthritis (RA) incidences.[27]

Neuropathies

Migraines. In the late 70s it was reported that people with migraines had reactions to food allergens, like ARA, the most common reaction was to wheat (78%), orange, eggs, tea, coffee, chocolate, milk, beef, corn, cane sugar, and yeast. When 10 foods causing the most reactions were removed migranes fell precipitously, hypertension declined.[28] Some specific instances are attributed to wheat.[29]

Autism. Parents of children with autism often ascribe the children's gastrointestinal symptoms to allergies to wheat and other foods. The published data on this approach are sparse, with the only double-blind study reporting negative results.[30]

Acute psychosis. Wheat and rye allergy (IgE) antibodies have also been found in acute psychosis patients.[31]

Diagnosis

Diagnoses of wheat allergy may deserve special consideration. Omega-5 gliadin, the most potent wheat allergen, cannot be detected in whole wheat preparations, it must be extracted and partially digested (similar to how it degrades in the intestine) to reach full activity. Other studies show that digestion of wheat proteins to about 10 amino acids can increase the allergic response 10 fold. Certain allergy test may not be suitable to detect all wheat allergies, resulting in cryptic allergies.[16]

Treatment

See Gluten-free diet. Wheat allergies differ from gluten-diet exclusion in that some types of allergens do not create species crossreactive responses, an individual may be able to consume barley and rye safely, although more than likely they will be allergic to other wheat such as spelt and Kamut. Wheat is often a cryptic contaminant of many foods more obvious items are bread crumbs, maltodextrin,bran, cereal extract, couscous, cracker meal, enriched flour, gluten, high-gluten flour, high-protein flour, seitan, semolina wheat, vital gluten, wheat bran, wheat germ, wheat gluten, wheat malt, wheat starch or whole wheat flour. Less obvious sources of wheat could be gelatinized starch, hydrolyzed vegetable protein, modified food starch, modified starch, natural flavoring, soy sauce, soy bean paste, hoisin sauce, starch, vegetable gum, specifically Beta-glucan, vegetable starch.

People with wheat allergy who are gluten sensitive may also need to avoid related cereals, rye and barley, which have similar glutinous proteins.

Alternative Cereals

Triticeae gluten-free oats (free of Wheat, rye or barley) may be a useful source of cereal fiber. Some wheat allergies allow the use of rye bread as a substitute. Wheat-free Millet flour, buckwheat, flax seed meal, corn meal, quinoa flour, and chia seed flour can also be used a substitutes. Spelt and kamut are grains closely related to common wheat, and are not usually a suitable substitute for people with wheat allergy or coeliac disease. Rice flour is a commonly used alternative for those allergic to wheat.

Many people with wheat allergies are also allergic to soy, milk and alternate food ingredients. Many alternative cereals/flours substitute soy and/or dairy products. Those with wheat/gluten sensitivity should read labels carefully.

References

  1. 1.0 1.1 1.2 1.3 Akagawa M, Handoyo T, Ishii T, Kumazawa S, Morita N, Suyama K (2007). "Proteomic analysis of wheat flour allergens". J. Agric. Food Chem. 55 (17): 6863–70. doi:10.1021/jf070843a. PMID 17655322.
  2. Perr HA (2006). "Novel foods to treat food allergy and gastrointestinal infection". Current allergy and asthma reports. 6 (2): 153–9. doi:10.1007/s11882-006-0054-z. PMID 16566866.
  3. Sutton R, Hill DJ, Baldo BA, Wrigley CW (1982). "Immunoglobulin E antibodies to ingested cereal flour components: studies with sera from subjects with asthma and eczema". Clin. Allergy. 12 (1): 63–74. doi:10.1111/j.1365-2222.1982.tb03127.x. PMID 7067068.
  4. Armentia A, Sanchez-Monge R, Gomez L, Barber D, Salcedo G (1993). "In vivo allergenic activities of eleven purified members of a major allergen family from wheat and barley flour". Clin. Exp. Allergy. 23 (5): 410–5. doi:10.1111/j.1365-2222.1993.tb00347.x. PMID 8334538.
  5. Pastorello EA, Farioli L, Conti A; et al. (2007). "Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge". Int. Arch. Allergy Immunol. 144 (1): 10–22. doi:10.1159/000102609. PMID 17496422.
  6. Walsh BJ, Wrigley CW, Musk AW, Baldo BA (1985). "A comparison of the binding of IgE in the sera of patients with bakers' asthma to soluble and insoluble wheat-grain proteins". J. Allergy Clin. Immunol. 76 (1): 23–8. doi:10.1016/0091-6749(85)90799-7. PMID 3839248.
  7. Blands J, Diamant B, Kallós P, Kallós-Deffner L, Lowenstein H (1976). "Flour allergy in bakers. I. Identification of allergenic fractions in flour and comparison of diagnostic methods". Int. Arch. Allergy Appl. Immunol. 52 (1–4): 392–406. PMID 65335.
  8. Baldo BA, Krilis S, Wrigley CW (1980). "Hypersensitivity to inhaled flour allergens. Comparison between cereals". Allergy. 35 (1): 45–56. doi:10.1111/j.1398-9995.1980.tb01716.x. PMID 6154431.
  9. Valero Santiago A, Amat Par P, Sanosa Valls J, Sierra Martínez P, Malet Casajuana A, García Calderón PA (1988). "Hypersensitivity to wheat flour in bakers". Allergologia et immunopathologia. 16 (5): 309–14. PMID 3228051.
  10. Donovan GR, Baldo BA (1990). "Crossreactivity of IgE antibodies from sera of subjects allergic to both ryegrass pollen and wheat endosperm proteins: evidence for common allergenic determinants". Clin. Exp. Allergy. 20 (5): 501–9. doi:10.1111/j.1365-2222.1990.tb03142.x. PMID 2253081.
  11. Yazicioglu M, Oner N, Celtik C, Okutan O, Pala O (2004). "Sensitization to common allergens, especially pollens, among children with respiratory allergy in the Trakya region of Turkey". Asian Pac. J. Allergy Immunol. 22 (4): 183–90. PMID 15783130..
  12. Akiyama H, Sakata K, Yoshioka Y; et al. (2006). "Profile analysis and immunoglobulin E reactivity of wheat protein hydrolysates". Int. Arch. Allergy Immunol. 140 (1): 36–42. doi:10.1159/000092000. PMID 16534217.
  13. Laurière M, Pecquet C, Bouchez-Mahiout I; et al. (2006). "Hydrolysed wheat proteins present in cosmetics can induce immediate hypersensitivities". Contact Derm. 54 (5): 283–9. doi:10.1111/j.0105-1873.2006.00830.x. PMID 16689814.
  14. "Allergy Society of South Africa - Wheat Allergy". Retrieved 2008-10-20.
  15. Mittag D, Niggemann B, Sander I, Reese I, Fiedler EM, Worm M, Vieths S, Reese G. (2004). "Immunoglobulin E-reactivity of wheat-allergic subjects (baker's asthma, food allergy, wheat-dependent, exercise-induced anaphylaxis) to wheat protein fractions with different solubility and digestibility". Mol Nutr Food Res. 48 (5): 380–389. doi:10.1002/mnfr.200400016. PMID 15672478.
  16. 16.0 16.1 Matsuo H, Morita E, Tatham AS, Morimoto K, Horikawa T, Osuna H, Ikezawa Z, Kaneko S, Kohno K, and Dekio S. (2004). "Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis". J Biol Chem. 279 (13): 12135–12140. doi:10.1074/jbc.M311340200. PMID 14699123.
  17. Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, Niihara H, Hide M, and Morita E. (2005). "Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis". Clin Exp Allergy. 35 (4): 461–466. doi:10.1111/j.1365-2222.2005.02213.x. PMID 15836754.
  18. Denery-Papini S, Lauriére M, Branlard G; et al. (2007). "Influence of the allelic variants encoded at the Gli-B1 locus, responsible for a major allergen of wheat, on IgE reactivity for patients suffering from food allergy to wheat". J. Agric. Food Chem. 55 (3): 799–805. doi:10.1021/jf062749k. PMID 17263477.
  19. Morita E, Kunie K, Matsuo H (2007). "Food-dependent exercise-induced anaphylaxis". J. Dermatol. Sci. 47 (2): 109–17. doi:10.1016/ j.jdermsci.2007.03.004 Check |doi= value (help). PMID 17507204.
  20. Weichel M, Glaser AG, Ballmer-Weber BK, Schmid-Grendelmeier P, Crameri R (2006). "Wheat and maize thioredoxins: a novel cross-reactive cereal allergen family related to baker's asthma". J. Allergy Clin. Immunol. 117 (3): 676–81. doi:10.1016/j.jaci.2005.11.040. PMID 16522470.
  21. Langeland T, Nyrud M (1982). "Contact urticaria to wheat bran bath: a case report". Acta Derm. Venereol. 62 (1): 82–3. PMID 6175150.
  22. Barnetson RS, Wright AL, Benton EC (1989). "IgE-mediated allergy in adults with severe atopic eczema". Clin. Exp. Allergy. 19 (3): 321–5. doi:10.1111/j.1365-2222.1989.tb02390.x. PMID 2736432.
  23. Zeiger RS, Heller S, Mellon MH; et al. (1989). "Effect of combined maternal and infant food-allergen avoidance on development of atopy in early infancy: a randomized study". J. Allergy Clin. Immunol. 84 (1): 72–89. doi:10.1016/0091-6749(89)90181-4. PMID 2754147.
  24. Van Bever HP, Docx M, Stevens WJ (1989). "Food and food additives in severe atopic dermatitis". Allergy. 44 (8): 588–94. doi:10.1111/j.1398-9995.1989.tb04205.x. PMID 2610332.
  25. Hvatum M, Kanerud L, Hällgren R, Brandtzaeg P (2006). "The gut-joint axis: cross reactive food antibodies in rheumatoid arthritis". Gut. 55 (9): 1240–7. doi:10.1136/gut.2005.076901. PMID 16484508.
  26. Karatay S, Erdem T, Kiziltunc A; et al. (2006). "General or personal diet: the individualized model for diet challenges in patients with rheumatoid arthritis". Rheumatol. Int. 26 (6): 556–60. doi:10.1007/s00296-005-0018-y. PMID 16025333.
  27. Dieterich W, Esslinger B, Trapp D, Hahn E, Huff T, Seilmeier W, Wieser H, and Schuppan D. (2006). "Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease". Gut. 55 (4): 478–84. doi:10.1136/gut.2005.069385. PMID 16188922.
  28. Grant EC (1979). "Food allergies and migraine". Lancet. 1 (8123): 966–9. doi:10.1016/S0140-6736(79)91735-5. PMID 87628.
  29. Pascual J, Leno C (2005). "A woman with daily headaches". The journal of headache and pain : official journal of the Italian Society for the Study of Headaches. 6 (2): 91–2. doi:10.1007/s10194-005-0158-1. PMID 16362649.
  30. Elder JH (2008). "The gluten-free, casein-free diet in autism: an overview with clinical implications". Nutr Clin Pract. 23 (6): 583–8. doi:10.1177/0884533608326061. PMID 19033217.
  31. Rix KJ, Ditchfield J, Freed DL, Goldberg DP, Hillier VF (1985). "Food antibodies in acute psychoses". Psychological medicine. 15 (2): 347–54. PMID 4023138.

External links

Template:Gluten sensitivity

Template:Hypersensitivity and autoimmune diseases


Template:WH Template:WS