Lecithin cholesterol acyltransferase deficiency: Difference between revisions

Jump to navigation Jump to search
Aravind Kuchkuntla (talk | contribs)
Usama Talib (talk | contribs)
 
(25 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Hypolipoproteinemia}}
{{SI}}
'''To view Lipoprotein Disorders Main Page [[ Lipoprotein disorders| Click here]]'''<br>
'''To view Hypolipoproteinemia Main Page [[ Hypolipoproteinemia | Click here]]''' <br>
{{CMG}} {{AE}} {{AKI}}
{{CMG}} {{AE}} {{AKI}}


Line 6: Line 8:


==Overview==
==Overview==
Lecithin cholesterol acyltransferase(LCAT) enzyme is an enzyme with 2 subunits which is responsible for esterification of free cholesterol into cholesterol esters, an important step in the reverse cholesterol transport. LCAT deficiency is a monogenic [[autosomal]] recessive disease resulting from the mutation in the LCAT gene on [[chromosome]] number 16. Patients with [[homozygous]] and [[compound heterozygous]] mutations are symptomatic from the accumulation of excessive free cholesterol in the cornea, RBC membrane and the kidney. LCAT deficiency is classified into Familial LCAT deficiency(FLD) and Fish Eye Disease (FED) based on the degree of the enzyme function lost.The characteristic feature of these diseases is low plasma HDL C. FLD is a severe form with low HDL C and increase in LDL type protein called lipoprotein-X causing progressive renal failure, FED has a benign course with corneal opacities and low HDL C alone. Low HDL is a risk factor for development of [[cardiovascular disease|cardiovascular disease,]]<ref name="pmid24222018">{{cite journal| author=Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R et al.| title=2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. | journal=Circulation | year= 2014 | volume= 129 | issue= 25 Suppl 2 | pages= S49-73 | pmid=24222018 | doi=10.1161/01.cir.0000437741.48606.98 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24222018  }} </ref>but the risk of developing [[atherosclerosis]] and cardiovascular disease in LCAT deficiency is still not well defined and is controversial.<ref name="pmid19687369">{{cite journal| author=Calabresi L, Baldassarre D, Castelnuovo S, Conca P, Bocchi L, Candini C et al.| title=Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. | journal=Circulation | year= 2009 | volume= 120 | issue= 7 | pages= 628-35 | pmid=19687369 | doi=10.1161/CIRCULATIONAHA.108.818143 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19687369  }} </ref><ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>
[[Lecithin cholesterol acyltransferase]] ([[LCAT]]) is an [[enzyme]] with 2 subunits [[catalyzing]] the [[esterification]] of free [[cholesterol]] into [[cholesterol esters]], an important step in the [[reverse cholesterol transport]]. [[LCAT]] deficiency is a [[monogenic]] [[autosomal recessive]] disease resulting from mutation in the [[LCAT]] [[gene]] on [[chromosome]] number 16. Patients with [[homozygous]] and [[compound heterozygous]] [[mutations]] are symptomatic due to the accumulation of excessive free [[cholesterol]] in the [[cornea]], [[RBC]] [[cell membrane]] and the [[kidney]]. [[LCAT]] deficiency is classified into Familial [[LCAT]] deficiency(FLD) and Fish Eye Disease (FED) based on the degree of the [[enzyme]] function lost. The characteristic feature of these diseases is low plasma [[HDL]] C. FLD is a severe form with low [[HDL]] C and increase in [[LDL]] type protein called [[lipoprotein-X]] causing progressive [[renal failure]], FED has a benign course with [[corneal opacities]] and low [[HDL]] C alone. Low [[HDL]] is a risk factor for development of [[cardiovascular disease|cardiovascular disease,]]<ref name="pmid24222018">{{cite journal| author=Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R et al.| title=2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. | journal=Circulation | year= 2014 | volume= 129 | issue= 25 Suppl 2 | pages= S49-73 | pmid=24222018 | doi=10.1161/01.cir.0000437741.48606.98 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24222018  }} </ref>but the risk of developing [[atherosclerosis]] and cardiovascular disease in LCAT deficiency is still not well defined and is controversial.<ref name="pmid19687369">{{cite journal| author=Calabresi L, Baldassarre D, Castelnuovo S, Conca P, Bocchi L, Candini C et al.| title=Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. | journal=Circulation | year= 2009 | volume= 120 | issue= 7 | pages= 628-35 | pmid=19687369 | doi=10.1161/CIRCULATIONAHA.108.818143 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19687369  }} </ref><ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>


==Historical Perspective==
==Historical Perspective==
*In 1962, Glomset identified an enzyme ([[plasma]] [[fatty acid]] [[transferase]]) which transfers fatty acid onto free cholesterol forming a [[cholesterol ester]].
*In 1962, Glomset identified an enzyme ([[plasma]] [[fatty acid]] [[transferase]]) which transfers fatty acid onto free cholesterol forming a [[cholesterol ester]] helping in the formation of a mature HDL particle, a crucial step of reverse cholesterol transport. <ref name="pmid13948499">{{cite journal| author=GLOMSET JA| title=The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase. | journal=Biochim Biophys Acta | year= 1962 | volume= 65 | issue=  | pages= 128-35 | pmid=13948499 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=13948499  }} </ref>
**This helps in the formation of a mature HDL particle, a crucial step in reverse cholesterol transport. <ref name="pmid13948499">{{cite journal| author=GLOMSET JA| title=The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase. | journal=Biochim Biophys Acta | year= 1962 | volume= 65 | issue=  | pages= 128-35 | pmid=13948499 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=13948499  }} </ref>
*In 1967, Norum and Gjone described a disease for the first time in a patient from Norway with features of [[normochromic anemia]], [[proteinuria]] and corneal [[lipid]] deposits.<ref name="pmid6078131">{{cite journal| author=Norum KR, Gjone E| title=Familial serum-cholesterol esterification failure. A new inborn error of metabolism. | journal=Biochim Biophys Acta | year= 1967 | volume= 144 | issue= 3 | pages= 698-700 | pmid=6078131 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6078131  }} </ref>
*In 1967, Norum and Gjone described a disease for the first time in a patient from Norway with features of [[normochromic anemia]], [[proteinuria]] and corneal [[lipid]] deposits.<ref name="pmid6078131">{{cite journal| author=Norum KR, Gjone E| title=Familial serum-cholesterol esterification failure. A new inborn error of metabolism. | journal=Biochim Biophys Acta | year= 1967 | volume= 144 | issue= 3 | pages= 698-700 | pmid=6078131 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6078131  }} </ref>
*In 1967, Norum and Gjone reported that two sisters of the affected patient had similar presentation along with low levels of cholesterol esters and [[Lysolecithin acylmutase|lysolecithin]] in the [[serum]], with increased total body cholesterol, [[triglyceride]] and [[phospholipid]]. Other additional findings included were :
*In 1967, Norum and Gjone reported two sisters of the affected patient had similar presentation along with low levels of [[cholesterol esters]] and [[Lysolecithin acylmutase|lysolecithin]] in the [[serum]], with increased total body [[cholesterol]], [[triglyceride]] and [[phospholipid]]. Other additional findings included were :
**[[Foam cells]] in the [[bone marrow]] and [[glomerulus]] on [[microscopy]].  
**[[Foam cells]] were demonstrated in [[bone marrow]] and [[glomerulus]] on [[microscopy]].  
**Patients had absent [[hepatomegaly]] and normal [[tonsils]], differentiating it from [[liver disease]] causing the defect in esterification and [[Tangier disease]] respectively.  
**Patients had absent [[hepatomegaly]] differentiating it from [[liver disease]] causing the defect in esterification.
**Low serum cholesterol esters were attributed to the LCAT enzyme deficiency.<ref name="pmid5669813">{{cite journal| author=Gjone E, Norum KR| title=Familial serum cholesterol ester deficiency. Clinical study of a patient with a new syndrome. | journal=Acta Med Scand | year= 1968 | volume= 183 | issue= 1-2 | pages= 107-12 | pmid=5669813 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5669813  }} </ref>
**Patients had normal [[tonsils]] differentiating it from [[Tangier disease]].  
*In 1986, McLean and colleagues reported the complete gene sequence and the sites of expression on lecithin cholesterol acyl transferase gene (LCAT). The location of the gene is identified to be on q21-22 region of [[chromosome 16]], <ref name="pmid3797244">{{cite journal| author=McLean J, Wion K, Drayna D, Fielding C, Lawn R| title=Human lecithin-cholesterol acyltransferase gene: complete gene sequence and sites of expression. | journal=Nucleic Acids Res | year= 1986 | volume= 14 | issue= 23 | pages= 9397-406 | pmid=3797244 | doi= | pmc=311966 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3797244  }} </ref> and is synthesized mainly in the liver.
**Low [[serum]] [[cholesterol esters]] were attributed to the [[LCAT]] [[enzyme]] deficiency.<ref name="pmid5669813">{{cite journal| author=Gjone E, Norum KR| title=Familial serum cholesterol ester deficiency. Clinical study of a patient with a new syndrome. | journal=Acta Med Scand | year= 1968 | volume= 183 | issue= 1-2 | pages= 107-12 | pmid=5669813 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=5669813  }} </ref>
*In 1986, McLean and colleagues reported the complete [[gene sequence]] and the sites of expression on [[lecithin cholesterol acyl transferase]] [[gene]] (LCAT). The location of the gene is identified to be on q21-22 region of [[chromosome 16]]. <ref name="pmid3797244">{{cite journal| author=McLean J, Wion K, Drayna D, Fielding C, Lawn R| title=Human lecithin-cholesterol acyltransferase gene: complete gene sequence and sites of expression. | journal=Nucleic Acids Res | year= 1986 | volume= 14 | issue= 23 | pages= 9397-406 | pmid=3797244 | doi= | pmc=311966 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3797244  }} </ref>


==Classification==
==Classification==
Severity of the disease is determined by the quantity of enzyme deficiency. Mutation can cause either a complete loss of function or a partial loss of function, based on which LCAT deficiency can be classified into:<ref name="pmid3141686">{{cite journal| author=McIntyre N| title=Familial LCAT deficiency and fish-eye disease. | journal=J Inherit Metab Dis | year= 1988 | volume= 11 Suppl 1 | issue=  | pages= 45-56 | pmid=3141686 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3141686  }} </ref>
[[LCAT]] deficiency is classified based on the quantity of [[enzyme]] function defective. A [[mutation]] in the [[LCAT]] [[gene]] can cause either a complete loss of function or a partial loss of function which is the basis of [[LCAT]] deficiency classification:<ref name="pmid3141686">{{cite journal| author=McIntyre N| title=Familial LCAT deficiency and fish-eye disease. | journal=J Inherit Metab Dis | year= 1988 | volume= 11 Suppl 1 | issue=  | pages= 45-56 | pmid=3141686 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3141686  }} </ref>
*Familial LCAT deficiency(FLD): Complete loss of alpha and beta LCAT function.
*Familial LCAT deficiency(FLD): Complete loss of alpha and beta [[LCAT]] function.
*Fish Eye Disease (FED): Loss of alpha LCAT function with preserved beta function.<ref name="pmid2052566">{{cite journal| author=Funke H, von Eckardstein A, Pritchard PH, Albers JJ, Kastelein JJ, Droste C et al.| title=A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity. | journal=Proc Natl Acad Sci U S A | year= 1991 | volume= 88 | issue= 11 | pages= 4855-9 | pmid=2052566 | doi= | pmc=51765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2052566  }} </ref>
*Fish Eye Disease (FED): Loss of alpha LCAT function with preserved beta function.<ref name="pmid2052566">{{cite journal| author=Funke H, von Eckardstein A, Pritchard PH, Albers JJ, Kastelein JJ, Droste C et al.| title=A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity. | journal=Proc Natl Acad Sci U S A | year= 1991 | volume= 88 | issue= 11 | pages= 4855-9 | pmid=2052566 | doi= | pmc=51765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2052566  }} </ref>
{| class="wikitable"
{| class="wikitable"
Line 27: Line 29:
!Fish Eye Disease (FED)
!Fish Eye Disease (FED)
|-
|-
|Enzyme Function  
|[[Enzyme Function]]
|Completely dysfunctional  
|Completely dysfunctional  
|Loss of alpha function only
|Loss of alpha function only
Line 38: Line 40:
|-
|-
|Microscopy
|Microscopy
|Deposition of free cholesterol (FC) and phospholipids
|Deposition of free [[cholesterol]] and [[phospholipids]] in [[cornea]], [[RBC]] [[cell membrane]] and in the [[kidney]]
in cornea, RBC membrane and in the kidney.
|Deposition of free [[cholesterol]] and [[phospholipids]] in the [[cornea]]
|Deposition of FC and phospholipids  
in the cornea.
|-
|-
|Laboratory findings
|Laboratory findings
|Elevated Free cholesterol
|Elevated free [[cholesterol]]
HDL-C < 10 mg/dL<ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>
[[HDL]]C < 10 mg/dL<ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>
Low [[Apo A1]] and [[Apo AII]]
Elevated [[Apo E]] and [[triglycerides]]
Low [[LDL]] C
|Elevated free [[cholesterol]]
[[HDL]] C < 27 mg/dL 


Low Apo A1 and Apo A2
[[Apo A1]]<30mg/dl and low [[Apo AII]]


Elevated Apo E and Triglycerides
Elevated [[Apo E]] and [[triglycerides]]


Low LDL C
Normal [[LDL]] and [[VLDL]]
|Elevated free cholesterol
HDL C < 27 mg/dL 
 
Apo A1<30mg/dl and low Apo A2
 
Elevated Apo E and Triglycerides
 
Normal LDL and VLDL
|-
|-
|Electrophoresis
|Electrophoresis
|Pre β-1 and α-4 HDL, LDL C with β mobility due to
|Pre β-1 and α-4 [[HDL]], [[LDL]] C with β mobility due to
Lipoprotien-X
[[Lipoprotien-X]]
|Pre β-1and α-4 HDL with normal
|Pre β-1and α-4 [[HDL]] with normal
pre-β LDL.
pre-β [[LDL]]
|-
|-
|Treatment
|Treatment
|Preserve kidney function
|Preserve kidney function
Kidney Transplant
[[Kidney transplant]]


Human recombinant enzyme replacement
Human [[recombinant enzyme replacement]]
|Optimize lipid levels
|Optimize lipid levels
Responds to statins<ref name="pmid24636183">{{cite journal| author=Dimick SM, Sallee B, Asztalos BF, Pritchard PH, Frohlich J, Schaefer EJ| title=A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy. | journal=J Clin Lipidol | year= 2014 | volume= 8 | issue= 2 | pages= 223-30 | pmid=24636183 | doi=10.1016/j.jacl.2013.11.005 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24636183  }} </ref>
Responds to statins<ref name="pmid24636183">{{cite journal| author=Dimick SM, Sallee B, Asztalos BF, Pritchard PH, Frohlich J, Schaefer EJ| title=A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy. | journal=J Clin Lipidol | year= 2014 | volume= 8 | issue= 2 | pages= 223-30 | pmid=24636183 | doi=10.1016/j.jacl.2013.11.005 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24636183  }} </ref>
Line 79: Line 76:


===Pathogenesis===
===Pathogenesis===
LCAT deficiency is caused by a mutation in the [[LCAT]] [[gene]], resulting in disruption of the [[reverse cholesterol transport]].


====LCAT Function====
====LCAT Function====
{{Family tree/start}}
{{Family tree/start}}
{{Family tree | | | | A01 | | | |A01= LCAT is synthesized in liver and released into circulation and is picked up by HDL C}}
{{Family tree | | | | A01 | | | |A01= [[LCAT]] is synthesized in [[liver]] and released into circulation and is picked up by [[HDL]] C}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | B01 | | | |B01= Apo A1 activates LCAT on HDL, Apo E activates LCAT associated with LDL C}}
{{Family tree | | | | B01 | | | |B01= [[Apo A1]] activates LCAT associated with [[HDL]], [[Apo E]] activates [[LCAT]] associated with [[LDL]] C}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | C01 | | | |C01= LCAT cleaves fatty acid from phosphotidylcholine}}
{{Family tree | | | | C01 | | | |C01= [[LCAT]] cleaves fatty acid from [[phosphotidylcholine]]}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | D01 | | | |D01= Transfers fatty acid to beta hydroxyl group of free cholesterol(FC) taken up by HDL C}}
{{Family tree | | | | D01 | | | |D01= Transfers fatty acid to beta hydroxyl group of free cholesterol taken up by [[HDL]] C}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | E01 | | | |E01= Results in the formation of cholesterol esters which
{{Family tree | | | | E01 | | | |E01= Results in the formation of [[cholesterol esters]] which
help in maturation of HDL C and also forms lysophosphotidylcholine}}
help in maturation of HDL C and also forms lysophosphotidylcholine}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | F01 | | | |F01= Esterification of FC taken up by HDL C, is α-LCAT activity.
{{Family tree | | | | F01 | | | |F01= Esterification of free cholesterol taken up by [[HDL]] C, is α-LCAT activity.
Esterification of FC associated with Apo B ( LDL C), is β-LCAT activity. This differentiation into alpha and beta is based on the HDL and LDL mobility on electrophoresis<ref name="pmid17183024">{{cite journal| author=Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G et al.| title=Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. | journal=J Lipid Res | year= 2007 | volume= 48 | issue= 3 | pages= 592-9 | pmid=17183024 | doi=10.1194/jlr.M600403-JLR200 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17183024  }} </ref>}}
Esterification of free [[cholesterol]] associated with [[Apo B]]( LDL C), is β-LCAT activity. This differentiation into alpha and beta is based on the [[HDL]] and [[LDL]] mobility on electrophoresis<ref name="pmid17183024">{{cite journal| author=Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G et al.| title=Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. | journal=J Lipid Res | year= 2007 | volume= 48 | issue= 3 | pages= 592-9 | pmid=17183024 | doi=10.1194/jlr.M600403-JLR200 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17183024  }} </ref>}}
{{Family tree/end}}
{{Family tree/end}}


*Majority of the enzyme is associated with HDL C; only a very small amount is associated with LDL C.<ref name="pmid7138515">{{cite journal| author=Chen CH, Albers JJ| title=Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins. | journal=Biochem Biophys Res Commun | year= 1982 | volume= 107 | issue= 3 | pages= 1091-6 | pmid=7138515 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7138515  }} </ref>
*Majority of the enzyme is associated with [[HDL]] C; only a very minor amount is associated with [[LDL]] C.<ref name="pmid7138515">{{cite journal| author=Chen CH, Albers JJ| title=Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins. | journal=Biochem Biophys Res Commun | year= 1982 | volume= 107 | issue= 3 | pages= 1091-6 | pmid=7138515 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7138515  }} </ref>
*LCAT helps with reverse cholesterol transport by:<ref name="pmid2200802">{{cite journal| author=Tall AR| title=Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. | journal=J Clin Invest | year= 1990 | volume= 86 | issue= 2 | pages= 379-84 | pmid=2200802 | doi=10.1172/JCI114722 | pmc=296738 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2200802  }} </ref>
*LCAT helps in reverse cholesterol transport by:<ref name="pmid2200802">{{cite journal| author=Tall AR| title=Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. | journal=J Clin Invest | year= 1990 | volume= 86 | issue= 2 | pages= 379-84 | pmid=2200802 | doi=10.1172/JCI114722 | pmc=296738 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=2200802  }} </ref>
**Cholesterol esters are hydrophobic and occupy the core of the lipoprotien preventing backflow of cholesterol into the cells.
**[[Cholesterol esters]] are hydrophobic and occupy the core of the [[lipoprotien]] preventing backflow of [[cholesterol]] back into the cells.
**Promoting unidirectional [[efflux]] of free cholesterol from the cells via [[ABCA1]] and [[scavenger receptor]] type B-I (SR-BI) by creating a [[concentration gradient]].
**Promoting unidirectional [[efflux]] of free cholesterol from the cells via [[ABCA1]] and [[scavenger receptor]] type B-I (SR-BI) by creating a [[concentration gradient]].


====LCAT Deficiency====
====LCAT Deficiency====
{{Family tree/start}}
{{Family tree/start}}
{{Family tree | | | | A01 | | | |A01= Loss of LCAT function}}
{{Family tree | | | | A01 | | | |A01= Loss of [[LCAT]] function}}
{{Family tree | |,|-|-|^|-|-|.| | }}
{{Family tree | |,|-|-|^|-|-|.| | }}
{{Family tree | B01 | | | | B02 |B01= Loss of alpha function leads to failure of HDL maturation resulting in elevated FC, phospholipids, Apo E, pre beta HDL, and low Apo A1 and Apo A2 levels|B02= Loss of beta function results in elevated FC, phospholipids, and formation of cholesterol rich multilamellar particles called Lipoprotein X <ref name="pmid6476782">{{cite journal| author=Narayanan S| title=Biochemistry and clinical relevance of lipoprotein X. | journal=Ann Clin Lab Sci | year= 1984 | volume= 14 | issue= 5 | pages= 371-4 | pmid=6476782 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6476782  }} </ref>, which are implicated in the development of [[glomerulopathy]]<ref name="pmid26919698">{{cite journal| author=Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA et al.| title=Lipoprotein X Causes Renal Disease in LCAT Deficiency. | journal=PLoS One | year= 2016 | volume= 11 | issue= 2 | pages= e0150083 | pmid=26919698 | doi=10.1371/journal.pone.0150083 | pmc=4769176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26919698  }} </ref> <ref name="pmid11473635">{{cite journal| author=Lynn EG, Siow YL, Frohlich J, Cheung GT, O K| title=Lipoprotein-X stimulates monocyte chemoattractant protein-1 expression in mesangial cells via nuclear factor-kappa B. | journal=Kidney Int | year= 2001 | volume= 60 | issue= 2 | pages= 520-32 | pmid=11473635 | doi=10.1046/j.1523-1755.2001.060002520.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11473635  }} </ref>.
{{Family tree | B01 | | | | B02 |B01= Loss of alpha function leads to failure of HDL maturation resulting in elevated FC, phospholipids, Apo E, pre beta HDL, and low Apo A1 and Apo A2 levels|B02= Loss of beta function results in elevated FC, phospholipids, and formation of cholesterol rich multilamellar particles called Lipoprotein X <ref name="pmid6476782">{{cite journal| author=Narayanan S| title=Biochemistry and clinical relevance of lipoprotein X. | journal=Ann Clin Lab Sci | year= 1984 | volume= 14 | issue= 5 | pages= 371-4 | pmid=6476782 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6476782  }} </ref>, which are implicated in the development of [[glomerulopathy]]<ref name="pmid26919698">{{cite journal| author=Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA et al.| title=Lipoprotein X Causes Renal Disease in LCAT Deficiency. | journal=PLoS One | year= 2016 | volume= 11 | issue= 2 | pages= e0150083 | pmid=26919698 | doi=10.1371/journal.pone.0150083 | pmc=4769176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26919698  }} </ref> <ref name="pmid11473635">{{cite journal| author=Lynn EG, Siow YL, Frohlich J, Cheung GT, O K| title=Lipoprotein-X stimulates monocyte chemoattractant protein-1 expression in mesangial cells via nuclear factor-kappa B. | journal=Kidney Int | year= 2001 | volume= 60 | issue= 2 | pages= 520-32 | pmid=11473635 | doi=10.1046/j.1523-1755.2001.060002520.x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11473635  }} </ref>.
Line 112: Line 110:
===Genetics===
===Genetics===
LCAT deficiency presents the following genetic characteristics:
LCAT deficiency presents the following genetic characteristics:
*LCAT deficiency follows a autosomal recessive inheritance.
*LCAT deficiency is transmitted in a [[autosomal recessive]] inheritance.
*LCAT gene is on chromosome 16, with multiple mutation sites identified.<ref name="pmid8432868">{{cite journal| author=Funke H, von Eckardstein A, Pritchard PH, Hornby AE, Wiebusch H, Motti C et al.| title=Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease. | journal=J Clin Invest | year= 1993 | volume= 91 | issue= 2 | pages= 677-83 | pmid=8432868 | doi=10.1172/JCI116248 | pmc=288009 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8432868  }} </ref>
*LCAT gene is located on [[chromosome]] 16, and multiple mutation sites have been identified.<ref name="pmid8432868">{{cite journal| author=Funke H, von Eckardstein A, Pritchard PH, Hornby AE, Wiebusch H, Motti C et al.| title=Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease. | journal=J Clin Invest | year= 1993 | volume= 91 | issue= 2 | pages= 677-83 | pmid=8432868 | doi=10.1172/JCI116248 | pmc=288009 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8432868  }} </ref>
*Expression of clinical features and severity of disease in homozygous patients are determined by the type and locus of the mutation.<ref name="pmid1681161">{{cite journal| author=Gotoda T, Yamada N, Murase T, Sakuma M, Murayama N, Shimano H et al.| title=Differential phenotypic expression by three mutant alleles in familial lecithin:cholesterol acyltransferase deficiency. | journal=Lancet | year= 1991 | volume= 338 | issue= 8770 | pages= 778-81 | pmid=1681161 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1681161  }} </ref>
*The expression of clinical features and severity of disease in [[homozygous]] patients is determined by the type and [[locus]] of the [[mutation]].<ref name="pmid1681161">{{cite journal| author=Gotoda T, Yamada N, Murase T, Sakuma M, Murayama N, Shimano H et al.| title=Differential phenotypic expression by three mutant alleles in familial lecithin:cholesterol acyltransferase deficiency. | journal=Lancet | year= 1991 | volume= 338 | issue= 8770 | pages= 778-81 | pmid=1681161 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1681161  }} </ref>
*Heterozygous patients have a intermediate biochemical expression with reduced plasma HLD-C and [[apoA-I]] levels.<ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>
*[[Heterozygous]] patients have an intermediate biochemical expression with reduced plasma [[HDL]]C and [[Apo A1]] levels.<ref name="pmid26607351">{{cite journal| author=Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L| title=Role of LCAT in Atherosclerosis. | journal=J Atheroscler Thromb | year= 2016 | volume= 23 | issue= 2 | pages= 119-27 | pmid=26607351 | doi=10.5551/jat.32854 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26607351  }} </ref>


===Microscopy===
===Microscopy===
Microscopic and histopathological examinations of tissues in LCAT deficiency will reveal the following:
Microscopic and histopathological examinations of tissues in [[LCAT]] deficiency will reveal the following:
*Deposition of free cholesterol and phospholipids can in the cornea and RBC membrane.
*Deposition of free cholesterol and phospholipids in the cornea and RBC membrane.
*Kidney [[biopsy]] in the early stage of the disease show mild [[mesangium]] enlargement and thickening of [[Glomerular basement membrane|glomerular basement membrane (GBM)]].  
*Kidney [[biopsy]] in the early stage of the disease show mild [[mesangium]] enlargement and thickening of [[Glomerular basement membrane|glomerular basement membrane (GBM)]].  
**Lipid filled foamy deposits are seen in the glomerular basement membrane.  
**[[Lipid]] filled foamy deposits are demonstrated in the [[glomerular basement membrane]].  
**Lipid analysis of isolated glomeruli shows marked increase in the amount of free cholesterol and phospholipids.<ref name="pmid26919698">{{cite journal| author=Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA et al.| title=Lipoprotein X Causes Renal Disease in LCAT Deficiency. | journal=PLoS One | year= 2016 | volume= 11 | issue= 2 | pages= e0150083 | pmid=26919698 | doi=10.1371/journal.pone.0150083 | pmc=4769176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26919698  }} </ref>
**[[Lipid analysis]] of isolated [[glomeruli]] show marked increase in the amount of free [[cholesterol]] and [[phospholipids]].<ref name="pmid26919698">{{cite journal| author=Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA et al.| title=Lipoprotein X Causes Renal Disease in LCAT Deficiency. | journal=PLoS One | year= 2016 | volume= 11 | issue= 2 | pages= e0150083 | pmid=26919698 | doi=10.1371/journal.pone.0150083 | pmc=4769176 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26919698  }} </ref>
*Sea blue [[histiocytes]] on Wright-Giemsa are seen in [[bone marrow]] and [[spleen]].<ref name="pmid19592052">{{cite journal| author=Naghashpour M, Cualing H| title=Splenomegaly with sea-blue histiocytosis, dyslipidemia, and nephropathy in a patient with lecithin-cholesterol acyltransferase deficiency: a clinicopathologic correlation. | journal=Metabolism | year= 2009 | volume= 58 | issue= 10 | pages= 1459-64 | pmid=19592052 | doi=10.1016/j.metabol.2009.04.033 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19592052  }} </ref>
*Sea blue [[histiocytes]] on [[Wright-Giemsa]] are observed in [[bone marrow]] and [[spleen]].<ref name="pmid19592052">{{cite journal| author=Naghashpour M, Cualing H| title=Splenomegaly with sea-blue histiocytosis, dyslipidemia, and nephropathy in a patient with lecithin-cholesterol acyltransferase deficiency: a clinicopathologic correlation. | journal=Metabolism | year= 2009 | volume= 58 | issue= 10 | pages= 1459-64 | pmid=19592052 | doi=10.1016/j.metabol.2009.04.033 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19592052  }} </ref>


== Epidemiology and Demographics ==
== Epidemiology and Demographics ==
*The prevalence of Familial LCAT deficiency rare and is estimated to be less than 1/1,000,000. About 125 cases have been reported to date worldwide.<ref name="urlOrphanet: LCAT deficiency">{{cite web |url=http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=650 |title=Orphanet: LCAT deficiency |format= |work= |accessdate=}}</ref>  
*The prevalence of Familial [[LCAT]] deficiency rare and is estimated to be less than 1/1,000,000. About 125 cases have been reported to date worldwide.<ref name="urlOrphanet: LCAT deficiency">{{cite web |url=http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=650 |title=Orphanet: LCAT deficiency |format= |work= |accessdate=}}</ref>  
*Majority of the cases were reported in Europe, Japan and Canada.
*Majority of the cases are reported in Europe, Japan and Canada.


==Natural History, Complications and Prognosis ==
==Natural History, Complications and Prognosis ==
*If left untreated, patients with FLD will develop progressive decline in renal function, resulting in [[end stage renal disease]].
*If left untreated, patients with FLD will develop progressive decline in [[renal function]], resulting in [[end stage renal disease]].
*Mortality and morbidity of FLD is dependent on the progression of kidney disease.
*[[Corneal opacities]] are the earliest manifestation and appear in early childhood; it usually starts at the [[limbus]] as an annular opacity resembling [[Arcus lipoides corneae|arcus lipoides]] senilis which is different from [[Tangier disease]] where it is more central and dense.Visual disturbances are not common.<ref name="pmid14767661">{{cite journal| author=Hirano K, Kachi S, Ushida C, Naito M| title=Corneal and macular manifestations in a case of deficient lecithin: cholesterol acyltransferase. | journal=Jpn J Ophthalmol | year= 2004 | volume= 48 | issue= 1 | pages= 82-4 | pmid=14767661 | doi=10.1007/s10384-003-0007-1 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14767661  }} </ref>
*[[Hemolytic anemia]] results from excessive free [[cholesterol]], [[phospholipid]] deposition, and increased [[phosphotidylcholine]] in the [[RBC]] membrane causing [[erythrocyte]] fragility.<ref name="pmid12323004">{{cite journal| author=Suda T, Akamatsu A, Nakaya Y, Masuda Y, Desaki J| title=Alterations in erythrocyte membrane lipid and its fragility in a patient with familial lecithin:cholesterol acyltrasferase (LCAT) deficiency. | journal=J Med Invest | year= 2002 | volume= 49 | issue= 3-4 | pages= 147-55 | pmid=12323004 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12323004  }} </ref>
*[[Renal disease]] is the major complication and begins in [[adolescence]] with [[proteinuria]] and progresses to [[end stage renal disease]] requiring [[hemodialysis]] or [[transplantation]] in the patient's 30's and 40's
*Mortality and morbidity of FLD is dependent on the progression of kidney disease and prognosis is poor.
*FED has a benign course.
*FED has a benign course.


==Diagnosis==
==Diagnosis==
===History and Physical Exam===
 
=== History and Symptoms ===
The most common features of clinical presentation include annular [[corneal opacity]], [[hemolytic anemia]] and [[renal disease]].<ref name="pmid7746888">{{cite journal| author=Hrycek A, Cieślik P, Trzeciak HI| title=[Clinical features of lecithin-cholesterol acyltransferase deficiency]. | journal=Przegl Lek | year= 1994 | volume= 51 | issue= 12 | pages= 516-9 | pmid=7746888 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7746888  }} </ref> The common presenting features include:
*[[Corneal]] opacities in childhood
*[[Fatigue]]
*[[Dyspnea]] on [[exertion]]
*[[Jaundice]]
*Generalized [[body swelling]]
*[[Bloody urine]]
*Less common presenting features include:
**Abdominal discomfort
**[[Palpitations]]
 
===Physical Examination===
Physical examination of patients with LCAT deficiency is remarkable for the following:
Physical examination of patients with LCAT deficiency is remarkable for the following:
*Bilateral annular corneal opacities are characteristic clinical manifestation of FLD and FED.
*Bilateral annular [[corneal opacities]], characteristic clinical manifestation of FLD and FED
*The most common clinical manifestations of FLD include annular corneal opacity, [[hemolytic anemia]] and [[renal disease]].<ref name="pmid7746888">{{cite journal| author=Hrycek A, Cieślik P, Trzeciak HI| title=[Clinical features of lecithin-cholesterol acyltransferase deficiency]. | journal=Przegl Lek | year= 1994 | volume= 51 | issue= 12 | pages= 516-9 | pmid=7746888 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7746888  }} </ref>
*[[Hepatomegaly]] and [[splenomegaly]]
** Corneal opacities: It is the earliest manifestation and appear in early childhood; starts at the [[limbus]] as an annular opacity resembling [[Arcus lipoides corneae|arcus lipoides]] senilis which is different from Tangier disease where it is more central and dense.
*[[Icterus]]
*** Visual disturbances are not common.<ref name="pmid14767661">{{cite journal| author=Hirano K, Kachi S, Ushida C, Naito M| title=Corneal and macular manifestations in a case of deficient lecithin: cholesterol acyltransferase. | journal=Jpn J Ophthalmol | year= 2004 | volume= 48 | issue= 1 | pages= 82-4 | pmid=14767661 | doi=10.1007/s10384-003-0007-1 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14767661  }} </ref>
*[[Pallor]]
**Hemolytic anemia: Excess free cholesterol, phospholipid deposition, and increased phosphotidylcholine in the RBC membrane causes [[erythrocyte]] fragility.<ref name="pmid12323004">{{cite journal| author=Suda T, Akamatsu A, Nakaya Y, Masuda Y, Desaki J| title=Alterations in erythrocyte membrane lipid and its fragility in a patient with familial lecithin:cholesterol acyltrasferase (LCAT) deficiency. | journal=J Med Invest | year= 2002 | volume= 49 | issue= 3-4 | pages= 147-55 | pmid=12323004 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12323004  }} </ref>
***Patients present with [[jaundice]], [[dyspnea]] and [[fatigue]].
**Renal disease: Proteinuria begins in adolescence and progresses to end stage renal disease requiring [[hemodialysis]] or transplantation in the patient's 30's and 40's
***Presents with generalized swelling and [[hematuria]].


===Laboratory Findings===
===Laboratory Findings===
Laboratory findings for FLD include the following:
Laboratory findings consistent with the diagnosis of Familial [[LCAT]] deficiency include:
*Very low HDL C <ref name="pmid25172171">{{cite journal| author=Saeedi R, Li M, Frohlich J| title=A review on lecithin:cholesterol acyltransferase deficiency. | journal=Clin Biochem | year= 2015 | volume= 48 | issue= 7-8 | pages= 472-5 | pmid=25172171 | doi=10.1016/j.clinbiochem.2014.08.014 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25172171  }} </ref>
*Very low [[HDL]] C levels <ref name="pmid25172171">{{cite journal| author=Saeedi R, Li M, Frohlich J| title=A review on lecithin:cholesterol acyltransferase deficiency. | journal=Clin Biochem | year= 2015 | volume= 48 | issue= 7-8 | pages= 472-5 | pmid=25172171 | doi=10.1016/j.clinbiochem.2014.08.014 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25172171  }} </ref>
*High unesterified cholesterol(UC) to total cholesterol ratio (TC) is the characteristic laboratory finding.
*High unesterified cholesterol(UC) to total cholesterol ratio (TC) is the characteristic laboratory finding.
*Low Apo A1 and Apo A2 levels due to increased catabolism from failure in cholesterol ester formation, causing structural and composition changes in HDL.<ref name="pmid8282802">{{cite journal| author=Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J et al.| title=Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. | journal=J Clin Invest | year= 1994 | volume= 93 | issue= 1 | pages= 321-30 | pmid=8282802 | doi=10.1172/JCI116962 | pmc=293770 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8282802  }} </ref>
*Low [[Apo A1]] and [[Apo AII]] levels due to increased [[catabolism]] resulting from the failure in [[cholesterol ester]] formation, causing structural and composition changes in [[HDL]] C particles.<ref name="pmid8282802">{{cite journal| author=Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J et al.| title=Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. | journal=J Clin Invest | year= 1994 | volume= 93 | issue= 1 | pages= 321-30 | pmid=8282802 | doi=10.1172/JCI116962 | pmc=293770 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8282802  }} </ref>
*LDL C in these patients display a characteristic morphology with large LDL C particles containing high levels of free cholesterol, phospholipids and with low cholesterol ester content.
*[[LDL]] C in these patients displays a characteristic morphology with large [[LDL]] C particles containing high levels of free [[cholesterol]], [[phospholipids]] and low [[cholesterol ester]] content.
**This is classed into lipoprotein X due to its beta mobility on [[electrophoresis]].
**This is classed into [[lipoprotein X]] due to its beta-mobility on [[electrophoresis]].
*[[Urinalysis]] show nephrotic range proteinuria.
*[[Urinalysis]] show [[nephrotic]] range [[proteinuria]].
====Electrophoresis====
====Electrophoresis====
2D gel electrophoresis in FLD is remarkable for the following:<ref name="pmid27565770">{{cite journal| author=Schaefer EJ, Anthanont P, Diffenderfer MR, Polisecki E, Asztalos BF| title=Diagnosis and treatment of high density lipoprotein deficiency. | journal=Prog Cardiovasc Dis | year= 2016 | volume= 59 | issue= 2 | pages= 97-106 | pmid=27565770 | doi=10.1016/j.pcad.2016.08.006 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27565770  }} </ref>
2D gel electrophoresis in FLD is remarkable for the following:<ref name="pmid27565770">{{cite journal| author=Schaefer EJ, Anthanont P, Diffenderfer MR, Polisecki E, Asztalos BF| title=Diagnosis and treatment of high density lipoprotein deficiency. | journal=Prog Cardiovasc Dis | year= 2016 | volume= 59 | issue= 2 | pages= 97-106 | pmid=27565770 | doi=10.1016/j.pcad.2016.08.006 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27565770  }} </ref>
* [[Homozygotes]] have Apo AI in plasma present only in preβ-1 and α-4 discoidal HDL particles.<ref name="pmid20616715">{{cite journal| author=Schaefer EJ, Santos RD, Asztalos BF| title=Marked HDL deficiency and premature coronary heart disease. | journal=Curr Opin Lipidol | year= 2010 | volume= 21 | issue= 4 | pages= 289-97 | pmid=20616715 | doi=10.1097/MOL.0b013e32833c1ef6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20616715  }} </ref><ref name="pmid17183024">{{cite journal| author=Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G et al.| title=Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. | journal=J Lipid Res | year= 2007 | volume= 48 | issue= 3 | pages= 592-9 | pmid=17183024 | doi=10.1194/jlr.M600403-JLR200 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17183024  }} </ref>
* [[Homozygotes]] have [[Apo A1]] in [[plasma]] present only in preβ-1 and α-4 discoidal [[HDL]] particles after [[Apo A1]] [[immunoblotting]].<ref name="pmid20616715">{{cite journal| author=Schaefer EJ, Santos RD, Asztalos BF| title=Marked HDL deficiency and premature coronary heart disease. | journal=Curr Opin Lipidol | year= 2010 | volume= 21 | issue= 4 | pages= 289-97 | pmid=20616715 | doi=10.1097/MOL.0b013e32833c1ef6 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20616715  }} </ref><ref name="pmid17183024">{{cite journal| author=Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G et al.| title=Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. | journal=J Lipid Res | year= 2007 | volume= 48 | issue= 3 | pages= 592-9 | pmid=17183024 | doi=10.1194/jlr.M600403-JLR200 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17183024  }} </ref>
*Heterozygotes for LCAT deficiency have less than 50% of normal large a-1 HDL, but two-fold increases in very small β 1 HDL.
*[[Heterozygotes]] for [[LCAT]] deficiency have less than 50% of normal large alpha-1 [[HDL]], but two-fold increases in very small beta-1 [[HDL]] C.
*Elevation in free cholesterol-enriched [[VLDL]] has β instead of pre β mobility.
*Elevation in free [[cholesterol]]-enriched [[VLDL|LDL]]<nowiki/>hCaving β betanmobility stead of pre β mobility.
*Two-dimensional gel electrophoresis of whole plasma followed by [[immunoblotting]] with specific antibody for apoA-I is used to distinguish homozygous apoA-I deficiency, ABCA1 deficiency and LCAT deficiency.
*Two-dimensional gel [[electrophoresis]] after [[immunoblotting]] with specific antibody for [[Apo A1]] helps differentiate between [[homozygous]] [[Apo A1]] deficiency, [[ABCA1]] deficiency and [[LCAT]] deficiency.


==Low HDL C differential diagnosis==
==Low HDL C differential diagnosis==
Line 265: Line 275:


==Treatment==
==Treatment==
Goals of therapy include:
===Medical Therapy===
The mainstay of therapy for Familial [[LCAT]] deficiency include:
*Preserving kidney function
*Preserving kidney function
*Controlling hypertension
*Controlling [[hypertension]]
===Medical Therapy===
While there is no definitive medical therapy to treat LCAT deficiency, the following methods can help mitigate complications and alleviate symptoms:
While there is no definitive medical therapy to treat LCAT deficiency, the following methods can help mitigate complications and alleviate symptoms:
*Recombinant human LCAT enzyme replacement has shown to improve anemia and HDL C levels and preserve kidney function.<ref name="pmid27055967">{{cite journal| author=Shamburek RD, Bakker-Arkema R, Auerbach BJ, Krause BR, Homan R, Amar MJ et al.| title=Familial lecithin:cholesterol acyltransferase deficiency: First-in-human treatment with enzyme replacement. | journal=J Clin Lipidol | year= 2016 | volume= 10 | issue= 2 | pages= 356-67 | pmid=27055967 | doi=10.1016/j.jacl.2015.12.007 | pmc=4826469 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27055967  }} </ref> <ref name="pmid24140107">{{cite journal| author=Simonelli S, Tinti C, Salvini L, Tinti L, Ossoli A, Vitali C et al.| title=Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency. | journal=Biologicals | year= 2013 | volume= 41 | issue= 6 | pages= 446-9 | pmid=24140107 | doi=10.1016/j.biologicals.2013.09.007 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24140107  }} </ref>  
*Recombinant human [[LCAT]] enzyme replacement has shown to improve [[anemia]] and [[HDL]] C levels and to preserve kidney function.<ref name="pmid27055967">{{cite journal| author=Shamburek RD, Bakker-Arkema R, Auerbach BJ, Krause BR, Homan R, Amar MJ et al.| title=Familial lecithin:cholesterol acyltransferase deficiency: First-in-human treatment with enzyme replacement. | journal=J Clin Lipidol | year= 2016 | volume= 10 | issue= 2 | pages= 356-67 | pmid=27055967 | doi=10.1016/j.jacl.2015.12.007 | pmc=4826469 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27055967  }} </ref> <ref name="pmid24140107">{{cite journal| author=Simonelli S, Tinti C, Salvini L, Tinti L, Ossoli A, Vitali C et al.| title=Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency. | journal=Biologicals | year= 2013 | volume= 41 | issue= 6 | pages= 446-9 | pmid=24140107 | doi=10.1016/j.biologicals.2013.09.007 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24140107  }} </ref>  
**Currently it is at the manufacturing stage and is not yet available for widespread use.
**Currently it is at the manufacturing stage and is not yet available for widespread use.
*High dose [[angiotensin receptor]] blockers help in improving [[blood pressure]], proteinuria and kidney function.<ref name="pmid18397721">{{cite journal| author=Aranda P, Valdivielso P, Pisciotta L, Garcia I, Garcã A-Arias C, Bertolini S et al.| title=Therapeutic management of a new case of LCAT deficiency with a multifactorial long-term approach based on high doses of angiotensin II receptor blockers (ARBs). | journal=Clin Nephrol | year= 2008 | volume= 69 | issue= 3 | pages= 213-8 | pmid=18397721 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18397721  }} </ref>
*High dose [[angiotensin receptor]] blockers help in improving [[blood pressure]], [[proteinuria]] and kidney function.<ref name="pmid18397721">{{cite journal| author=Aranda P, Valdivielso P, Pisciotta L, Garcia I, Garcã A-Arias C, Bertolini S et al.| title=Therapeutic management of a new case of LCAT deficiency with a multifactorial long-term approach based on high doses of angiotensin II receptor blockers (ARBs). | journal=Clin Nephrol | year= 2008 | volume= 69 | issue= 3 | pages= 213-8 | pmid=18397721 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18397721  }} </ref>


===Surgery===
===Surgery===
*Patients that are dependent on [[hemodialysis]] with worsening renal function are indicated for [[renal transplant]]  
*Patients dependent on [[hemodialysis]] with worsening renal function are indicated for [[renal transplant]].
**Lipid abnormalities usually recur after a renal transplant .<ref name="pmid27490864">{{cite journal| author=Ahmad SB, Miller M, Hanish S, Bartlett ST, Hutson W, Barth RN et al.| title=Sequential kidney-liver transplantation from the same living donor for lecithin cholesterol acyl transferase deficiency. | journal=Clin Transplant | year= 2016 | volume= 30 | issue= 10 | pages= 1370-1374 | pmid=27490864 | doi=10.1111/ctr.12826 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27490864  }} </ref>
**Lipid abnormalities usually recur after a renal transplant .<ref name="pmid27490864">{{cite journal| author=Ahmad SB, Miller M, Hanish S, Bartlett ST, Hutson W, Barth RN et al.| title=Sequential kidney-liver transplantation from the same living donor for lecithin cholesterol acyl transferase deficiency. | journal=Clin Transplant | year= 2016 | volume= 30 | issue= 10 | pages= 1370-1374 | pmid=27490864 | doi=10.1111/ctr.12826 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27490864  }} </ref>


===Prevention===
==Prevention==
*There are no screening methods for the disease. Patients are advised regular follow up, medication compliance and monitoring of the renal function to prevent progressive decline in renal function.
*There are no screening recommendations for the disease. Patients are advised regular follow up, medication compliance and monitoring of the renal function to prevent progressive decline in renal function.


==References==
==References==

Latest revision as of 16:20, 4 April 2017

WikiDoc Resources for Lecithin cholesterol acyltransferase deficiency

Articles

Most recent articles on Lecithin cholesterol acyltransferase deficiency

Most cited articles on Lecithin cholesterol acyltransferase deficiency

Review articles on Lecithin cholesterol acyltransferase deficiency

Articles on Lecithin cholesterol acyltransferase deficiency in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Lecithin cholesterol acyltransferase deficiency

Images of Lecithin cholesterol acyltransferase deficiency

Photos of Lecithin cholesterol acyltransferase deficiency

Podcasts & MP3s on Lecithin cholesterol acyltransferase deficiency

Videos on Lecithin cholesterol acyltransferase deficiency

Evidence Based Medicine

Cochrane Collaboration on Lecithin cholesterol acyltransferase deficiency

Bandolier on Lecithin cholesterol acyltransferase deficiency

TRIP on Lecithin cholesterol acyltransferase deficiency

Clinical Trials

Ongoing Trials on Lecithin cholesterol acyltransferase deficiency at Clinical Trials.gov

Trial results on Lecithin cholesterol acyltransferase deficiency

Clinical Trials on Lecithin cholesterol acyltransferase deficiency at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Lecithin cholesterol acyltransferase deficiency

NICE Guidance on Lecithin cholesterol acyltransferase deficiency

NHS PRODIGY Guidance

FDA on Lecithin cholesterol acyltransferase deficiency

CDC on Lecithin cholesterol acyltransferase deficiency

Books

Books on Lecithin cholesterol acyltransferase deficiency

News

Lecithin cholesterol acyltransferase deficiency in the news

Be alerted to news on Lecithin cholesterol acyltransferase deficiency

News trends on Lecithin cholesterol acyltransferase deficiency

Commentary

Blogs on Lecithin cholesterol acyltransferase deficiency

Definitions

Definitions of Lecithin cholesterol acyltransferase deficiency

Patient Resources / Community

Patient resources on Lecithin cholesterol acyltransferase deficiency

Discussion groups on Lecithin cholesterol acyltransferase deficiency

Patient Handouts on Lecithin cholesterol acyltransferase deficiency

Directions to Hospitals Treating Lecithin cholesterol acyltransferase deficiency

Risk calculators and risk factors for Lecithin cholesterol acyltransferase deficiency

Healthcare Provider Resources

Symptoms of Lecithin cholesterol acyltransferase deficiency

Causes & Risk Factors for Lecithin cholesterol acyltransferase deficiency

Diagnostic studies for Lecithin cholesterol acyltransferase deficiency

Treatment of Lecithin cholesterol acyltransferase deficiency

Continuing Medical Education (CME)

CME Programs on Lecithin cholesterol acyltransferase deficiency

International

Lecithin cholesterol acyltransferase deficiency en Espanol

Lecithin cholesterol acyltransferase deficiency en Francais

Business

Lecithin cholesterol acyltransferase deficiency in the Marketplace

Patents on Lecithin cholesterol acyltransferase deficiency

Experimental / Informatics

List of terms related to Lecithin cholesterol acyltransferase deficiency

To view Lipoprotein Disorders Main Page Click here
To view Hypolipoproteinemia Main Page Click here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2]

Synonyms and keywords:LCAT deficiency, dyslipoproteinemic corneal dystrophy, fish eye disease, Norum disease, partial LCAT deficiency, Familial LCAT deficiency

Overview

Lecithin cholesterol acyltransferase (LCAT) is an enzyme with 2 subunits catalyzing the esterification of free cholesterol into cholesterol esters, an important step in the reverse cholesterol transport. LCAT deficiency is a monogenic autosomal recessive disease resulting from mutation in the LCAT gene on chromosome number 16. Patients with homozygous and compound heterozygous mutations are symptomatic due to the accumulation of excessive free cholesterol in the cornea, RBC cell membrane and the kidney. LCAT deficiency is classified into Familial LCAT deficiency(FLD) and Fish Eye Disease (FED) based on the degree of the enzyme function lost. The characteristic feature of these diseases is low plasma HDL C. FLD is a severe form with low HDL C and increase in LDL type protein called lipoprotein-X causing progressive renal failure, FED has a benign course with corneal opacities and low HDL C alone. Low HDL is a risk factor for development of cardiovascular disease,[1]but the risk of developing atherosclerosis and cardiovascular disease in LCAT deficiency is still not well defined and is controversial.[2][3]

Historical Perspective

Classification

LCAT deficiency is classified based on the quantity of enzyme function defective. A mutation in the LCAT gene can cause either a complete loss of function or a partial loss of function which is the basis of LCAT deficiency classification:[8]

  • Familial LCAT deficiency(FLD): Complete loss of alpha and beta LCAT function.
  • Fish Eye Disease (FED): Loss of alpha LCAT function with preserved beta function.[9]
Familial LCAT deficiency (FLD) Fish Eye Disease (FED)
Enzyme Function Completely dysfunctional Loss of alpha function only
Clinical Features Corneal opacities, anaemia

and progressive renal disease with proteinuria

Corneal opacities only;

Normal renal function

Microscopy Deposition of free cholesterol and phospholipids in cornea, RBC cell membrane and in the kidney Deposition of free cholesterol and phospholipids in the cornea
Laboratory findings Elevated free cholesterol

HDLC < 10 mg/dL[3] Low Apo A1 and Apo AII Elevated Apo E and triglycerides Low LDL C

Elevated free cholesterol

HDL C < 27 mg/dL

Apo A1<30mg/dl and low Apo AII

Elevated Apo E and triglycerides

Normal LDL and VLDL

Electrophoresis Pre β-1 and α-4 HDL, LDL C with β mobility due to

Lipoprotien-X

Pre β-1and α-4 HDL with normal

pre-β LDL

Treatment Preserve kidney function

Kidney transplant

Human recombinant enzyme replacement

Optimize lipid levels

Responds to statins[10]

Pathophysiology

Pathogenesis

LCAT deficiency is caused by a mutation in the LCAT gene, resulting in disruption of the reverse cholesterol transport.

LCAT Function

 
 
 
LCAT is synthesized in liver and released into circulation and is picked up by HDL C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apo A1 activates LCAT associated with HDL, Apo E activates LCAT associated with LDL C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LCAT cleaves fatty acid from phosphotidylcholine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Transfers fatty acid to beta hydroxyl group of free cholesterol taken up by HDL C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results in the formation of cholesterol esters which help in maturation of HDL C and also forms lysophosphotidylcholine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Esterification of free cholesterol taken up by HDL C, is α-LCAT activity. Esterification of free cholesterol associated with Apo B( LDL C), is β-LCAT activity. This differentiation into alpha and beta is based on the HDL and LDL mobility on electrophoresis[11]
 
 
 

LCAT Deficiency

 
 
 
Loss of LCAT function
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Loss of alpha function leads to failure of HDL maturation resulting in elevated FC, phospholipids, Apo E, pre beta HDL, and low Apo A1 and Apo A2 levels
 
 
 
Loss of beta function results in elevated FC, phospholipids, and formation of cholesterol rich multilamellar particles called Lipoprotein X [14], which are implicated in the development of glomerulopathy[15] [16].

Genetics

LCAT deficiency presents the following genetic characteristics:

Microscopy

Microscopic and histopathological examinations of tissues in LCAT deficiency will reveal the following:

Epidemiology and Demographics

  • The prevalence of Familial LCAT deficiency rare and is estimated to be less than 1/1,000,000. About 125 cases have been reported to date worldwide.[20]
  • Majority of the cases are reported in Europe, Japan and Canada.

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

The most common features of clinical presentation include annular corneal opacity, hemolytic anemia and renal disease.[23] The common presenting features include:

Physical Examination

Physical examination of patients with LCAT deficiency is remarkable for the following:

Laboratory Findings

Laboratory findings consistent with the diagnosis of Familial LCAT deficiency include:

Electrophoresis

2D gel electrophoresis in FLD is remarkable for the following:[26]

Low HDL C differential diagnosis

Familial LCAT

Deficiency

Fish Eye

Disease

Homozygous Tangier

Disease

Heterozygous Tangier

Disease

Apo A1 Deficiency
Gene Defect LCAT LCAT ABCA1 ABCA1 Apo A1
Inheritance Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Dominant
Pathogenesis
  • Loss of alpha and beta LCAT function
  • Failure of cholesterol ester formation.
Loss of alpha function only

Pre beta-1 HDL fails to picks up free cholesterol from cells due to mutation in ABCA1 transporter.

Similar to homozygous Defective synthesis of Apo A1 resulting in failure of maturation of HDL and defective reverse cholesterol transport.
Clinical Features
  • Annular corneal opacity
  • Anaemia
  • Progressive renal disease with proteinuria
  • Corneal opacities only
  • Normal renal function
  • Large yellow-orange tonsils
  • Dense central corneal opacity
  • Relapsing and remitting course of neuropathy
Asymptomatic
  • Corneal Opacities
  • Tuboeruptive, Planar and palmar Xanthomas
  • Premature Heart Disease
Lipid Panel
  • Elevated Free cholesterol
  • HDL-C < 10 mg/dL
  • Low Apo A1 and Apo AII
  • Elevated Apo E and Triglycerides
  • Low LDL C
  • Elevated free cholesterol
  • HDL C < 27 mg/dL
  • Apo A1<30mg/dl and low Apo A2
  • Elevated Apo E and Triglycerides
  • Normal LDL and VLDL
  • HDL < 5% of normal
  • Apo A1 < 1% of normal
  • LDL < 40% of normal
  • HDL C, Apo A1 and LDL 50% less than normal.
  • Undetectable Apo A1
  • HDL C less than 10mg/dl
  • Normal or low Apo AII
  • LDL C normal
  • Triglyceride normal or elevated
2D Gel Electrophoresis Pre β-1 and α-4 HDL, LDL with β mobility due to Lipoprotien-X Pre β-1and α-4 HDL with normal pre-β LDL. Only preβ-1 HDL present
  • Lack of large α-1 and α-2 HDL particles
  • Normal preβ-1 HDL
Lack of Apo A1 containing HDL particles.

Treatment

Medical Therapy

The mainstay of therapy for Familial LCAT deficiency include:

While there is no definitive medical therapy to treat LCAT deficiency, the following methods can help mitigate complications and alleviate symptoms:

Surgery

  • Patients dependent on hemodialysis with worsening renal function are indicated for renal transplant.
    • Lipid abnormalities usually recur after a renal transplant .[31]

Prevention

  • There are no screening recommendations for the disease. Patients are advised regular follow up, medication compliance and monitoring of the renal function to prevent progressive decline in renal function.

References

  1. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R; et al. (2014). "2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". Circulation. 129 (25 Suppl 2): S49–73. doi:10.1161/01.cir.0000437741.48606.98. PMID 24222018.
  2. Calabresi L, Baldassarre D, Castelnuovo S, Conca P, Bocchi L, Candini C; et al. (2009). "Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans". Circulation. 120 (7): 628–35. doi:10.1161/CIRCULATIONAHA.108.818143. PMID 19687369.
  3. 3.0 3.1 3.2 Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L (2016). "Role of LCAT in Atherosclerosis". J Atheroscler Thromb. 23 (2): 119–27. doi:10.5551/jat.32854. PMID 26607351.
  4. GLOMSET JA (1962). "The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase". Biochim Biophys Acta. 65: 128–35. PMID 13948499.
  5. Norum KR, Gjone E (1967). "Familial serum-cholesterol esterification failure. A new inborn error of metabolism". Biochim Biophys Acta. 144 (3): 698–700. PMID 6078131.
  6. Gjone E, Norum KR (1968). "Familial serum cholesterol ester deficiency. Clinical study of a patient with a new syndrome". Acta Med Scand. 183 (1–2): 107–12. PMID 5669813.
  7. McLean J, Wion K, Drayna D, Fielding C, Lawn R (1986). "Human lecithin-cholesterol acyltransferase gene: complete gene sequence and sites of expression". Nucleic Acids Res. 14 (23): 9397–406. PMC 311966. PMID 3797244.
  8. McIntyre N (1988). "Familial LCAT deficiency and fish-eye disease". J Inherit Metab Dis. 11 Suppl 1: 45–56. PMID 3141686.
  9. Funke H, von Eckardstein A, Pritchard PH, Albers JJ, Kastelein JJ, Droste C; et al. (1991). "A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity". Proc Natl Acad Sci U S A. 88 (11): 4855–9. PMC 51765. PMID 2052566.
  10. Dimick SM, Sallee B, Asztalos BF, Pritchard PH, Frohlich J, Schaefer EJ (2014). "A kindred with fish eye disease, corneal opacities, marked high-density lipoprotein deficiency, and statin therapy". J Clin Lipidol. 8 (2): 223–30. doi:10.1016/j.jacl.2013.11.005. PMID 24636183.
  11. 11.0 11.1 Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G; et al. (2007). "Role of LCAT in HDL remodeling: investigation of LCAT deficiency states". J Lipid Res. 48 (3): 592–9. doi:10.1194/jlr.M600403-JLR200. PMID 17183024.
  12. Chen CH, Albers JJ (1982). "Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins". Biochem Biophys Res Commun. 107 (3): 1091–6. PMID 7138515.
  13. Tall AR (1990). "Plasma high density lipoproteins. Metabolism and relationship to atherogenesis". J Clin Invest. 86 (2): 379–84. doi:10.1172/JCI114722. PMC 296738. PMID 2200802.
  14. Narayanan S (1984). "Biochemistry and clinical relevance of lipoprotein X." Ann Clin Lab Sci. 14 (5): 371–4. PMID 6476782.
  15. 15.0 15.1 Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA; et al. (2016). "Lipoprotein X Causes Renal Disease in LCAT Deficiency". PLoS One. 11 (2): e0150083. doi:10.1371/journal.pone.0150083. PMC 4769176. PMID 26919698.
  16. Lynn EG, Siow YL, Frohlich J, Cheung GT, O K (2001). "Lipoprotein-X stimulates monocyte chemoattractant protein-1 expression in mesangial cells via nuclear factor-kappa B." Kidney Int. 60 (2): 520–32. doi:10.1046/j.1523-1755.2001.060002520.x. PMID 11473635.
  17. Funke H, von Eckardstein A, Pritchard PH, Hornby AE, Wiebusch H, Motti C; et al. (1993). "Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease". J Clin Invest. 91 (2): 677–83. doi:10.1172/JCI116248. PMC 288009. PMID 8432868.
  18. Gotoda T, Yamada N, Murase T, Sakuma M, Murayama N, Shimano H; et al. (1991). "Differential phenotypic expression by three mutant alleles in familial lecithin:cholesterol acyltransferase deficiency". Lancet. 338 (8770): 778–81. PMID 1681161.
  19. Naghashpour M, Cualing H (2009). "Splenomegaly with sea-blue histiocytosis, dyslipidemia, and nephropathy in a patient with lecithin-cholesterol acyltransferase deficiency: a clinicopathologic correlation". Metabolism. 58 (10): 1459–64. doi:10.1016/j.metabol.2009.04.033. PMID 19592052.
  20. "Orphanet: LCAT deficiency".
  21. Hirano K, Kachi S, Ushida C, Naito M (2004). "Corneal and macular manifestations in a case of deficient lecithin: cholesterol acyltransferase". Jpn J Ophthalmol. 48 (1): 82–4. doi:10.1007/s10384-003-0007-1. PMID 14767661.
  22. Suda T, Akamatsu A, Nakaya Y, Masuda Y, Desaki J (2002). "Alterations in erythrocyte membrane lipid and its fragility in a patient with familial lecithin:cholesterol acyltrasferase (LCAT) deficiency". J Med Invest. 49 (3–4): 147–55. PMID 12323004.
  23. Hrycek A, Cieślik P, Trzeciak HI (1994). "[Clinical features of lecithin-cholesterol acyltransferase deficiency]". Przegl Lek. 51 (12): 516–9. PMID 7746888.
  24. Saeedi R, Li M, Frohlich J (2015). "A review on lecithin:cholesterol acyltransferase deficiency". Clin Biochem. 48 (7–8): 472–5. doi:10.1016/j.clinbiochem.2014.08.014. PMID 25172171.
  25. Rader DJ, Ikewaki K, Duverger N, Schmidt H, Pritchard H, Frohlich J; et al. (1994). "Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease". J Clin Invest. 93 (1): 321–30. doi:10.1172/JCI116962. PMC 293770. PMID 8282802.
  26. Schaefer EJ, Anthanont P, Diffenderfer MR, Polisecki E, Asztalos BF (2016). "Diagnosis and treatment of high density lipoprotein deficiency". Prog Cardiovasc Dis. 59 (2): 97–106. doi:10.1016/j.pcad.2016.08.006. PMID 27565770.
  27. Schaefer EJ, Santos RD, Asztalos BF (2010). "Marked HDL deficiency and premature coronary heart disease". Curr Opin Lipidol. 21 (4): 289–97. doi:10.1097/MOL.0b013e32833c1ef6. PMID 20616715.
  28. Shamburek RD, Bakker-Arkema R, Auerbach BJ, Krause BR, Homan R, Amar MJ; et al. (2016). "Familial lecithin:cholesterol acyltransferase deficiency: First-in-human treatment with enzyme replacement". J Clin Lipidol. 10 (2): 356–67. doi:10.1016/j.jacl.2015.12.007. PMC 4826469. PMID 27055967.
  29. Simonelli S, Tinti C, Salvini L, Tinti L, Ossoli A, Vitali C; et al. (2013). "Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency". Biologicals. 41 (6): 446–9. doi:10.1016/j.biologicals.2013.09.007. PMID 24140107.
  30. Aranda P, Valdivielso P, Pisciotta L, Garcia I, Garcã A-Arias C, Bertolini S; et al. (2008). "Therapeutic management of a new case of LCAT deficiency with a multifactorial long-term approach based on high doses of angiotensin II receptor blockers (ARBs)". Clin Nephrol. 69 (3): 213–8. PMID 18397721.
  31. Ahmad SB, Miller M, Hanish S, Bartlett ST, Hutson W, Barth RN; et al. (2016). "Sequential kidney-liver transplantation from the same living donor for lecithin cholesterol acyl transferase deficiency". Clin Transplant. 30 (10): 1370–1374. doi:10.1111/ctr.12826. PMID 27490864.


Template:WikiDoc Sources