Food microbiology: Difference between revisions

Jump to navigation Jump to search
Anjelica Montemayor (talk | contribs)
No edit summary
 
WikiBot (talk | contribs)
m Changes made per Mahshid's request
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{SI}}
{{SI}}
{{EH}}
 




Line 75: Line 75:


==References==
==References==
{{reflist}}
{{reflist|2}}


== External links ==
== External links ==
Line 83: Line 83:
* [http://www.horizonpress.com/gateway/micro.html Microbiology]
* [http://www.horizonpress.com/gateway/micro.html Microbiology]


{{SIB}}
 


[[Category:Microbiology]]
[[Category:Microbiology]]
Line 90: Line 90:
[[Category:Food safety]]
[[Category:Food safety]]
[[Category:Foodborne illnesses]]
[[Category:Foodborne illnesses]]
[[Category:Infectious disease]]
 


{{WH}}
{{WH}}
{{WS}}
{{WS}}

Latest revision as of 17:45, 18 September 2017

WikiDoc Resources for Food microbiology

Articles

Most recent articles on Food microbiology

Most cited articles on Food microbiology

Review articles on Food microbiology

Articles on Food microbiology in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Food microbiology

Images of Food microbiology

Photos of Food microbiology

Podcasts & MP3s on Food microbiology

Videos on Food microbiology

Evidence Based Medicine

Cochrane Collaboration on Food microbiology

Bandolier on Food microbiology

TRIP on Food microbiology

Clinical Trials

Ongoing Trials on Food microbiology at Clinical Trials.gov

Trial results on Food microbiology

Clinical Trials on Food microbiology at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Food microbiology

NICE Guidance on Food microbiology

NHS PRODIGY Guidance

FDA on Food microbiology

CDC on Food microbiology

Books

Books on Food microbiology

News

Food microbiology in the news

Be alerted to news on Food microbiology

News trends on Food microbiology

Commentary

Blogs on Food microbiology

Definitions

Definitions of Food microbiology

Patient Resources / Community

Patient resources on Food microbiology

Discussion groups on Food microbiology

Patient Handouts on Food microbiology

Directions to Hospitals Treating Food microbiology

Risk calculators and risk factors for Food microbiology

Healthcare Provider Resources

Symptoms of Food microbiology

Causes & Risk Factors for Food microbiology

Diagnostic studies for Food microbiology

Treatment of Food microbiology

Continuing Medical Education (CME)

CME Programs on Food microbiology

International

Food microbiology en Espanol

Food microbiology en Francais

Business

Food microbiology in the Marketplace

Patents on Food microbiology

Experimental / Informatics

List of terms related to Food microbiology


Overview

Food microbiology is the study of the microorganisms which inhabit, create or contaminate food. Of major importance is the study of microorganisms causing food spoilage.[1] However "good" bacteria such as probiotics are becoming increasingly important in food science.[2] In addition, microorganisms are essential for the production of foods such as cheese, yogurt, other fermented foods, bread, beer and wine.

Food safety

Food safety is a major focus of food microbiology. Pathogenic bacteria, viruses and toxins produced by microorganisms are all possible contaminants of food. However, microorganisms and their products can also be used to combat these pathogenic microbes. Probiotic bacteria, including those which produce bacteriocins can kill and inhibit pathogens. Alternatively, purified bacteriocins such as nisin can be added directly to food products. Finally, bacteriophage, viruses which only infect bacteria, can be used to kill bacterial pathogens. Thorough preparation of food, including proper cooking will eliminate most bacteria and viruses. However, toxins produced by contaminants may not be heat-labile, and some will not be eliminated by cooking.

Fermentation

Fermentation is one way microorganisms can change a food. Yeast, especially S. cerevisiae, is used to leaven bread, brew beer and make wine. Certain bacteria, including lactic acid bacteria, are used to make yogurt, cheese, hot sauce, pickles and dishes such as kimchi. A common effect of these fermentations is that the food product is less hospitable to other microorganisms, including pathogens and spoilage-causing microorganisms, thus extending the food's shelf-life.

Some cheese varieties also require mold microorganisms to ripen and develop their characteristic flavors.

Foodborne pathogens

Foodborne pathogens are the leading causes of illness and death in less developed countries killing approximately 1.8 million people annually. In developed countries foodborne pathogens are responsible for millions of cases of infectious gastrointestinal diseases each year, costing billions of dollars in medical care and lost productivity. New foodborne pathogens and foodborne diseases are likely to emerge driven by factors such as pathogen evolution, changes in agricultural and food manufacturing practices, and changes to the human host status. There are growing concerns that terrorists could use pathogens to contaminate food and water supplies in attempts to incapacitate thousands of people and disrupt economic growth.[1]

Enteric Viruses

Food- and waterborne viruses contribute to a substantial number of illnesses throughout the world. Among those most commonly known are hepatitis A virus, rotavirus, astrovirus, enteric adenovirus, hepatitis E virus, and the human caliciviruses consisting of the noroviruses and the Sapporo viruses. This diverse group are transmitted by the fecal-oral route, often by ingestion of contaminated food and water.[3]

You are not currently logged in. Editing this way will cause your IP address to be recorded publicly in this page's edit history. If you create an account, you can conceal your IP address and be provided with many other benefits. Messages sent to your IP can be viewed on your talk page.

Protozoan Parasites

Protozoan parasites associated with food and water can cause illness in humans. Although parasites are more commonly found in developing countries, developed countries have also experienced several foodborne outbreaks. Contaminants may be inadvertently introduced to the foods by inadequate handling practices, either on the farm or during processing of foods. Protozoan parasites can be found worldwide, either infecting wild animals or in water and contaminating crops grown for human consumption. The disease can be much more severe and prolonged in immunocompromissed individuals.[4]

Mycotoxins

Molds produce mycotoxins, which are secondary metabolites that can cause acute or chronic diseases in humans when ingested from contaminated foods. Potential diseases include cancers and tumors in different organs (heart, liver, kidney, nerves), gastrointestinal disturbances, alteration of the immune system, and reproductive problems. Species of Aspergillus, Fusarium, Penicillium, and Claviceps grow in agricultural commodities or foods and produce the mycotoxins such as aflatoxins, deoxynivalenol, ochratoxin A, fumonisins, ergot alkaloids, T-2 toxin, and zearalenone and other minor mycotoxins such as cyclopiazonic acid and patulin. Mycotoxins occur mainly in cereal grains (barley, maize, rye, wheat), coffee, dairy products, fruits, nuts and spices. Control of mycotoxins in foods has focused on minimizing mycotoxin production in the field, during storage or destruction once produced. Monitoring foods for mycotoxins is important to manage strategies such as regulations and guidelines, which are used by 77 countries, and for developing exposure assessments essential for accurate risk characterization.[5]

Yersinia enterocolitica

Yersinia enterocolitica includes pathogens and environmental strains that are ubiquitous in terrestrial and fresh water ecosystems. Evidence from large outbreaks of yersiniosis and from epidemiological studies of sporadic cases has shown that Y. enterocolitica is a foodborne pathogen. Pork is often implicated as the source of infection. The pig is the only animal consumed by man that regularly harbours pathogenic Y. enterocolitica. An important property of the bacterium is its ability to multiply at temperatures near to 0°C, and therefore in many chilled foods. The pathogenic serovars (mainly O:3, O:5,27, O:8 and O:9) show different geographical distribution. However, the appearance of strains of serovars O:3 and O:9 in Europe, Japan in the 1970s, and in North America by the end of the 1980s, is an example of a global pandemic. There is a possible risk of reactive arthritis following infection with Y. enterocolitica.[6]

Vibrio

Vibrio species are prevalent in estuarine and marine environments and seven species can cause foodborne infections associated with seafood. Vibrio cholerae O1 and O139 serovtypes produce cholera toxin and are agents of cholera. However, fecal-oral route infections in the terrestrial environment are responsible for epidemic cholera. V. cholerae non-O1/O139 strains may cause gastroenteritis through production of known toxins or unknown mechanism. Vibrio parahaemolytitucs strains capable of producing thermostable direct hemolysin (TDH) and/or TDH-related hemolysin are most important cause of gastroenteritis associated with seafood consumption. Vibrio vulnificus is responsible for seafoodborne primary septicemia and its infectivity depends primarily on the risk factors of the host. V. vulnificus infection has the highest case fatality rate (50%) of any foodborne pathogen. Four other species (Vibrio mimicus, Vibrio hollisae, Vibrio fluvialis, and Vibrio furnissii) can cause gastroenteritis. Some strains of these species produce known toxins but the pathogenic mechanism is largely not understood. The ecology of and detection and control methods for all seafoodborne Vibrio pathogens are essentially similar.[7]

Staphylococcus aureus

Staphylococcus aureus is a common cause of bacterial foodborne disease worldwide. Symptoms include vomiting and diarrhea that occur shortly after ingestion of S. aureus-contaminated food. The symptoms arise from ingestion of preformed enterotoxin, which accounts for the short incubation time. Staphylococcal enterotoxins are superantigens and, as such, have adverse effects on the immune system. The enterotoxin genes are accessory genetic elements in S. aureus, meaning that not all strains of this organism are enterotoxin-producing. The enterotoxin genes are found on prophage, plasmids, and pathogenicity islands in different strains of S. aureus. Expression of the enterotoxin genes is often under the control of global virulence gene regulatory systems.[8]

Campylobacter

Campylobacter spp., primarily C. jejuni subsp. jejuni is one of the major causes of bacterial gastroenteritis in the U.S. and worldwide. Campylobacter infection is primarily a foodborne illness, usually without complications; however, serious sequelae such as Guillain-Barre Syndrome occur in a small subset of infected patients. Detection of C. jejuni in clinical samples is readily accomplished by culture and non-culture methods.[9]

Listeria monocytogenes

Listeria monocytogenes is Gram-positive foodborne bacterial pathogen and the causative agent of human listeriosis. Listeriae are acquired primarily through the consumption of contaminated foods including soft cheese, raw milk, deli salads, and ready-to-eat foods such as luncheon meats and frankfurters. Although L. monocytogenes infection is usually limited to individuals that are immunocompromised, the high mortality rate associated with human listeriosis makes L. monocytogenes the leading cause of death amongst foodborne bacterial pathogens. As a result, tremendous effort has been made at developing methods for the isolation, detection and control of L. monocytogenes in foods.[10]

Salmonella

Salmonella serotypes continue to be a prominent threat to food safety worldwide. Infections are commonly acquired by animal to human transmission though consumption of undercooked food products derived from livestock or domestic fowl. The second half of the 20th century saw the emergence of Salmonella serotypes that became associated with new food sources (i.e. chicken eggs) and the emergence of Salmonella serotypes with resistance against multiple antibiotics.[11]

Shigella

Shigella species are members of the family Enterobacteriacae and are Gram negative, non-motile rods. Four subgroups exist based on O-antigen structure and biochemical properties; S. dysenteriae (subgroup A), S. flexneri (subgroup B), S. boydii (subgroup C) and S. sonnei (subgroup D). Symptoms include mild to severe diarrhea with or without blood, fever, tenesmus, and abdominal pain. Further complications of the disease may be seizures, toxic megacolon, reactive arthritis and hemolytic uremic syndrome. Transmission of the pathogen is by the fecal-oral route, commonly through food and water. The infectious dose ranges from 10-100 organisms. Shigella spp. have a sophisticated pathogenic mechanism to invade colonic epithelial cells of the host, man and higher primates, and the ability to multiply intracellularly and spread from cell to adjacent cell via actin polymerization. Shigellae are one of the leading causes of bacterial foodborne illnesses and can spread quickly within a population.[12]

Escherichia coli

More information is available concerning Escherichia coli than any other organism, thus making E. coli the most thoroughly studied species in the microbial world. For many years, E. coli was considered a commensal of human and animal intestinal tracts with low virulence potential. It is now known that many strains of E. coli act as pathogens inducing serious gastrointestinal diseases and even death in humans. There are six major categories of E. coli strains that cause enteric diseases in humans including the (1) enterohemorrhagic E. coli, which cause hemorrhagic colitis and hemolytic uremic syndrome, (2) enterotoxigenic E. coli, which induce traveler's diarrhea, (3) enteropathogenic E. coli, which cause a persistent diarrhea in children living in developing countries, (4) enteroaggregative E. coli, which provoke diarrhea in children, (5) enteroinvasive E. coli that are biochemically and genetically related to Shigella species and can induce diarrhea, and (6) diffusely adherent E. coli, which cause diarrhea and are distinguished by a characteristic type of adherence to mammalian cells.[13]

Clostridium botulinum and Clostridium perfringens

Clostridium botulinum produces extremely potent neurotoxins that result in the severe neuroparalytic disease, botulism. The enterotoxin produced by C. perfringens during sporulation of vegetative cells in the host intestine results in debilitating acute diarrhea and abdominal pain. Sales of refrigerated, processed foods of extended durability including sous-vide foods, chilled ready-to-eat meals, and cook-chill foods have increased over recent years. Anaerobic spore-formers have been identified as the primary microbiological concerns in these foods. Heightened awareness over intentional food source tampering with botulinum neurotoxin has arisen with respect to genes encoding the toxins that are capable of transfer to nontoxigenic clostridia.[14]

Bacillus cereus

The Bacillus cereus group comprises six members: B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis and B. weihenstephanensis. These species are closely related and should be placed within one species, except for B. anthracis that possesses specific large virulence plasmids. B. cereus is a normal soil inhabitant and is frequently isolated from a variety of foods, including vegetables, dairy products and meat. It causes a vomiting or diarrhoea illness that is becoming increasingly important in the industrialized world. Some patients may experience both types of illness simultaneously. The diarrhoeal type of illness is most prevalent in the western hemisphere, whereas the emetic type is most prevalent in Japan. Desserts, meat dishes, and dairy products are the foods most frequently associated with diarrhoeal illness, whereas rice and pasta are the most common vehicles of emetic illness. The emetic toxin (cereulide) has been isolated and characterized; it is a small ring peptide synthesised non-ribosomally by a peptide synthetase. Three types of B. cereus enterotoxins involved in foodborne outbreaks have been identified. Two of these enterotoxins are three-component proteins and are related, while the last is a one-component protein (CytK). Deaths have been recorded both by strains that produce the emetic toxin and by a strain producing only CytK. Some strains of the B. cereus group are able to grow at refrigeration temperatures. These variants raise concern about the safety of cooked, refrigerated foods with an extended shelf life. B. cereus spores adhere to many surfaces and survive normal washing and disinfection (except for hypochlorite and UVC) procedures. B. cereus foodborne illness is likely underreported because of its relatively mild symptoms, which are of short duration.[15]

See also

References

  1. 1.0 1.1 Fratamico PM and Bayles DO (editor). (2005). Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  2. Tannock GW (editor). (2005). Probiotics and Prebiotics: Scientific Aspects. Caister Academic Press. ISBN 978-1-904455-01-1.
  3. Richards GP (2005). "Food- and Waterborne Enteric Viruses". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  4. Ortega Y (2005). "Food-and Waterborne Protozoan Parasites". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  5. Cousin; et al. (2005). "Foodborne Mycotoxins: Chemistry, Biology, Ecology, and Toxicology". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  6. Nesbakken T (2005). "Yersinia enterocolitica". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  7. Nishibuchi M (2005). "Vibrio spp.". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  8. Stewart GC (2005). "Staphylococcus aureus". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  9. Nachamkin I and Guerry P (2005). "Campylobacter Infections". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  10. Paoli; et al. (2005). "Listeria monocytogenes". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  11. Andrews; et al. (2005). "Salmonella spp.". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  12. Lampel KA (2005). "Shigella spp.". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  13. Smith and Fratamico (2005). "Diarrhea-inducing Escherichia coli". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  14. Novak; et al. (2005). "Clostridium botulinum and Clostridium perfringens". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.
  15. Granum PE (2005). "Bacillus cereus". Foodborne Pathogens: Microbiology and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-00-4.

External links


Template:WH Template:WS