Complement deficiencies: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
==Overview== | ==Overview== | ||
The complement system is a biochemical cascade which helps clear pathogens from an organism. It belongs to the innate immune system. Complement deficiencies can be inherited or acquired (as a result of complement-consuming disease state). Complement deficiency states may predispose affected individuals to angioedema, collagen vascular disease, or infection due to encapsulated organisms, especially Neisseria meningitidis.<ref>{{Cite journal | The complement system is a biochemical cascade which helps clear pathogens from an organism. It belongs to the [[innate immune system]]. Complement deficiencies can be inherited or acquired (as a result of complement-consuming disease state). Complement deficiency states may predispose affected individuals to [[angioedema]], [[collagen vascular disease]], or infection due to encapsulated organisms, especially ''[[Neisseria meningitidis]]''.<ref>{{Cite journal | ||
| author = [[Michael Corvini]], [[Christopher Randolph]] & [[Steven I. Aronin]] | | author = [[Michael Corvini]], [[Christopher Randolph]] & [[Steven I. Aronin]] | ||
| title = Complement C7 deficiency presenting as recurrent aseptic meningitis | | title = Complement C7 deficiency presenting as recurrent aseptic meningitis | ||
Line 22: | Line 22: | ||
<div style="width: 80%; font-size: 85%;"> | <div style="width: 80%; font-size: 85%;"> | ||
{{familytree/start}} | {{familytree/start}} | ||
{{familytree | | | | | | | | | | | | | | | | | A01 | {{familytree | | | | | | | | | | | | | | | | | A01 | | | | | | | | | | | | | | | | |A01=Complement Deficiencies }} | ||
{{familytree | | | | | | | | | | | | | | | | | |! | {{familytree | | | | | | | | | | | | | | | | | |!| | | | | | | | | | | | | | | | | | }} | ||
{{familytree | | | | | | | | | | | | | | | | | B01 | {{familytree | | | | | | | | | | | | | | | | | B01 | | | | | | | | | | | | | | | | |B01=Susceptibility to infections }} | ||
{{familytree | | | | | | | | | |,|-|-|-|-|-|-|-|^ | {{familytree | | | | | | | | | |,|-|-|-|-|-|-|-|^|-|-|-|-|-|-|-|.| | | | | | | | | | }} | ||
{{familytree | | | | | | | | | C01 | {{familytree | | | | | | | | | C01 | | | | | | | | | | | | | | C02 | | | | | | | | |C01=HIGH|C02=LOW }} | ||
{{familytree | | | | | |,|-|-|-|^|-|-|-|. | {{familytree | | | | | |,|-|-|-|^|-|-|-|.| | | | | |,|-|-|-|-|-|+|-|-|-|-|.| | | | | }} | ||
{{familytree | | | | | D01 | | | | | | D02 | {{familytree | | | | | D01 | | | | | | D02 | | | | D03 | | | | D04 | | | D05 | | | |D01=Disseminated Neisserial infections|D02=Recurrent pyogenic infections|D03=SLE like syndrome|D04=Atypical hemolytic uremic syndrome (aHUS)|D05=Others }} | ||
{{familytree | | |,|-|-|^|-|-|.| | | | |! | {{familytree | | |,|-|-|^|-|-|.| | | | |!| | | | | |!| | | | | |!| | | | |!| | | | | }} | ||
{{familytree | | E01 | | | | E02 | | | |)| E03 | {{familytree | | E01 | | | | E02 | | | |)| E03 | | |)| E04 | | |)| E05 | |)| E06 | |E01=Absent CH50 & AH50 hemolytic activity, defective bacterial activity|E02=Normal CH50, Absent AH50 hemolytic activity|E03=C3 loss-of-function|E04=C1Q deficiency: C1QA, C1QB, C1QC|E05=C3 gain-of-function|E06=C1-Inhibitor (C1NH) }} | ||
{{familytree | | |!| | | | | |!| | | | |! | {{familytree | | |!| | | | | |!| | | | |!| | | | | |!| | | | | |!| | | | |!| | | | | }} | ||
{{familytree | | |)| F01 | | |)| F02 | |)| F03 | {{familytree | | |)| F01 | | |)| F02 | |)| F03 | | |)| F04 | | |)| F05 | |)| F06 | |F01=C5 deficiency|F02=Properdin deficiency |F03=Mannan-binding lectin serine protease 2 (MASP2) deficiency|F04=C1R deficiency|F05=Factor B gain-of-function|F06=Membrane attack complex inhibitor (CD59) deficiency }} | ||
{{familytree | | |!| | | | | |!| | | | |! | {{familytree | | |!| | | | | |!| | | | |!| | | | | |!| | | | | |!| | | | |!| | | | | }} | ||
{{familytree | | |)| G01 | | |`| G02 | |)| G03 | {{familytree | | |)| G01 | | |`| G02 | |)| G03 | | |)| G04 | | |)| G05 | |`| G06 | |G01=C6 deficiency|G02=Factor D deficiency|G03=Ficolin-3 (FCN3) deficiency|G04=C1S deficiency|G05=Factor H deficiency|G06=Decay accelerating factor (DAF) or CD55 deficiency }} | ||
{{familytree | | |!| | | | | | | | | | |! | {{familytree | | |!| | | | | | | | | | |!| | | | | |!| | | | | |!| | | | | | | | | | }} | ||
{{familytree | | |)| H01 | | | | | | | |`| H02 | {{familytree | | |)| H01 | | | | | | | |`| H02 | | |)| H03 | | |)| H04 | | | | | | |H01=C7 deficiency|H02=Factor B loss-of-function|H03=C2 deficiency|H04=Factor H-related protein deficiencies }} | ||
{{familytree | | |! | {{familytree | | |!| | | | | | | | | | | | | | | | |!| | | | | |!| | | | | | | | | | }} | ||
{{familytree | | |)| I01 | {{familytree | | |)| I01 | | | | | | | | | | | | | |`| I02 | | |)| I03 | | | | | | |I01=C8 deficiency|I02=C4 deficiency|I03=Factor I deficiency }} | ||
{{familytree | | |! | {{familytree | | |!| | | | | | | | | | | | | | | | | | | | | | |!| | | | | | | | | | }} | ||
{{familytree | | |`| J01 | {{familytree | | |`| J01 | | | | | | | | | | | | | | | | | | | |)| J02 | | | | | | |J01=C9 deficiency|J02=Thrombomodulin deficiency }} | ||
{{familytree | {{familytree | | | | | | | | | | | | | | | | | | | | | | | | | |!| | | | | | | | | | }} | ||
{{familytree | {{familytree | | | | | | | | | | | | | | | | | | | | | | | | | |`| K01 | | | | | | |K01=Membrane cofactor protein (MCP) deficiency }} | ||
{{familytree | {{familytree | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | }} | ||
{{familytree/end}} | {{familytree/end}} | ||
</div> | </div> | ||
Line 411: | Line 411: | ||
}}</ref> | }}</ref> | ||
*It leads to the defects in the [[complement system]] as it plays a role in the activation of the [[lectin]] pathway of the [[complement system]]. | *It leads to the defects in the [[complement system]] as it plays a role in the activation of the [[lectin]] pathway of the [[complement system]]. | ||
*Patients present with [[ulcerative colitis]], erythema multiforme bullosum and [[SLE]] with favorable response to treatment with [[prednisolone]], and other [[Immunosuppressive drug|immunosuppressive drugs]].<ref>{{Cite journal | *Patients present with [[ulcerative colitis]], [[Erythema multiforme|erythema multiforme bullosum]] and [[SLE]] with favorable response to treatment with [[prednisolone]], and other [[Immunosuppressive drug|immunosuppressive drugs]].<ref>{{Cite journal | ||
| author = [[Kristian Stengaard-Pedersen]], [[Steffen Thiel]], [[Mihaela Gadjeva]], [[Mette Moller-Kristensen]], [[Rikke Sorensen]], [[Lise T. Jensen]], [[Anders G. Sjoholm]], [[Lars Fugger]] & [[Jens C. Jensenius]] | | author = [[Kristian Stengaard-Pedersen]], [[Steffen Thiel]], [[Mihaela Gadjeva]], [[Mette Moller-Kristensen]], [[Rikke Sorensen]], [[Lise T. Jensen]], [[Anders G. Sjoholm]], [[Lars Fugger]] & [[Jens C. Jensenius]] | ||
| title = Inherited deficiency of mannan-binding lectin-associated serine protease 2 | | title = Inherited deficiency of mannan-binding lectin-associated serine protease 2 | ||
Line 719: | Line 719: | ||
*[[Complement]] component [[C3 (complement)|C3]] plays a central role in the activation of all 3 [[complement]] pathways, [[Classical complement pathway|classical]], [[Alternative complement pathway|alternative]], and lectin.<ref name="pmid16499568">{{cite journal |vauthors=S Reis E, Falcão DA, Isaac L |title=Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H |journal=Scand. J. Immunol. |volume=63 |issue=3 |pages=155–68 |date=March 2006 |pmid=16499568 |doi=10.1111/j.1365-3083.2006.01729.x |url=}}</ref> | *[[Complement]] component [[C3 (complement)|C3]] plays a central role in the activation of all 3 [[complement]] pathways, [[Classical complement pathway|classical]], [[Alternative complement pathway|alternative]], and lectin.<ref name="pmid16499568">{{cite journal |vauthors=S Reis E, Falcão DA, Isaac L |title=Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H |journal=Scand. J. Immunol. |volume=63 |issue=3 |pages=155–68 |date=March 2006 |pmid=16499568 |doi=10.1111/j.1365-3083.2006.01729.x |url=}}</ref> | ||
*[[C3 (complement)|C3]] [[gain-of-function mutation]] follows an [[autosomal dominant]] inheritance leading to the increased activation of [[complement]].<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | *[[C3 (complement)|C3]] [[gain-of-function mutation]] follows an [[autosomal dominant]] inheritance leading to the increased activation of [[complement]].<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | ||
*It can present with [[glomerulonephritis]] and predispose individiuals to [[Hemolytic-uremic syndrome|atypical hemolytic uremic syndrome]], [[Hematuria|microhematuria]], [[hypertension]], and [[ | *It can present with [[glomerulonephritis]] and predispose individiuals to [[Hemolytic-uremic syndrome|atypical hemolytic uremic syndrome]], [[Hematuria|microhematuria]], [[hypertension]], and [[chronic renal failure]].<ref name="pmid19590060">{{cite journal |vauthors=Lhotta K, Janecke AR, Scheiring J, Petzlberger B, Giner T, Fally V, Würzner R, Zimmerhackl LB, Mayer G, Fremeaux-Bacchi V |title=A large family with a gain-of-function mutation of complement C3 predisposing to atypical hemolytic uremic syndrome, microhematuria, hypertension and chronic renal failure |journal=Clin J Am Soc Nephrol |volume=4 |issue=8 |pages=1356–62 |date=August 2009 |pmid=19590060 |pmc=2723975 |doi=10.2215/CJN.06281208 |url=}}</ref><ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | ||
===Factor B Gain-of-Function=== | ===Factor B Gain-of-Function=== | ||
*[[Factor B]] [[Gain-of-function mutation|gain-of-function]] is a [[mutation]] in the CFB [[gene]] that has [[autosomal dominant]] [[inheritance]].<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | *[[Factor B]] [[Gain-of-function mutation|gain-of-function]] is a [[mutation]] in the CFB [[gene]] that has [[autosomal dominant]] [[inheritance]].<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | ||
Line 746: | Line 746: | ||
*The deficiency may also influence [[collagen]] production by [[Fibroblast|fibroblasts]] in the [[wound]] [[matrix]].<ref name="pmid10550314">{{cite journal |vauthors=Peterson JJ, Rayburn HB, Lager DJ, Raife TJ, Kealey GP, Rosenberg RD, Lentz SR |title=Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds |journal=Am. J. Pathol. |volume=155 |issue=5 |pages=1569–75 |date=November 1999 |pmid=10550314 |pmc=1866991 |doi=10.1016/S0002-9440(10)65473-9 |url=}}</ref> | *The deficiency may also influence [[collagen]] production by [[Fibroblast|fibroblasts]] in the [[wound]] [[matrix]].<ref name="pmid10550314">{{cite journal |vauthors=Peterson JJ, Rayburn HB, Lager DJ, Raife TJ, Kealey GP, Rosenberg RD, Lentz SR |title=Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds |journal=Am. J. Pathol. |volume=155 |issue=5 |pages=1569–75 |date=November 1999 |pmid=10550314 |pmc=1866991 |doi=10.1016/S0002-9440(10)65473-9 |url=}}</ref> | ||
===Membrane Cofactor Protein (MCP) Deficiency=== | ===Membrane Cofactor Protein (MCP) Deficiency=== | ||
*Membrane | *Membrane cofactor protein (MCP), a [[C3b|C3B]]/C4B-binding [[molecule]] of the [[complement system]] with [[Cofactor (biochemistry)|cofactor]] activity for the [[Complement factor I|factor I]]-dependent cleavage of C3B and C4B.<ref name="pmid3260937">{{cite journal |vauthors=Lublin DM, Liszewski MK, Post TW, Arce MA, Le Beau MM, Rebentisch MB, Lemons LS, Seya T, Atkinson JP |title=Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins |journal=J. Exp. Med. |volume=168 |issue=1 |pages=181–94 |date=July 1988 |pmid=3260937 |pmc=2188957 |doi= |url=}}</ref> | ||
*Membrane Cofactor Protein (MCP) deficiency follows an [[autosomal dominant]] [[inheritance]] pattern.<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | *Membrane Cofactor Protein (MCP) deficiency follows an [[autosomal dominant]] [[inheritance]] pattern.<ref name="pmid29226301">{{cite journal |vauthors=Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang MLK, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE |title=The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies |journal=J. Clin. Immunol. |volume=38 |issue=1 |pages=129–143 |date=January 2018 |pmid=29226301 |pmc=5742599 |doi=10.1007/s10875-017-0465-8 |url=}}</ref> | ||
*Partial membrane cofactor protein (MCP) deficiency with or without [[Clostridium difficile infection|''Clostridium dfficile'' infection]] can result in [[Hemolytic-uremic syndrome|atypical hemolytic uremic syndrome (aHUS)]].<ref name="pmid23101426">{{cite journal |vauthors=Kalmanovich E, Kriger-Sharabi O, Shiloah E, Donin N, Fishelson Z, Rapoport MJ |title=Clostridium difficile infection and partial membrane cofactor protein (CD46) deficiency |journal=Isr. Med. Assoc. J. |volume=14 |issue=9 |pages=586–7 |date=September 2012 |pmid=23101426 |doi= |url=}}</ref><ref name="pmid16762990">{{cite journal |vauthors=Fremeaux-Bacchi V, Moulton EA, Kavanagh D, Dragon-Durey MA, Blouin J, Caudy A, Arzouk N, Cleper R, Francois M, Guest G, Pourrat J, Seligman R, Fridman WH, Loirat C, Atkinson JP |title=Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome |journal=J. Am. Soc. Nephrol. |volume=17 |issue=7 |pages=2017–25 |date=July 2006 |pmid=16762990 |doi=10.1681/ASN.2005101051 |url=}}</ref> | *Partial membrane cofactor protein (MCP) deficiency with or without [[Clostridium difficile infection|''Clostridium dfficile'' infection]] can result in [[Hemolytic-uremic syndrome|atypical hemolytic uremic syndrome (aHUS)]].<ref name="pmid23101426">{{cite journal |vauthors=Kalmanovich E, Kriger-Sharabi O, Shiloah E, Donin N, Fishelson Z, Rapoport MJ |title=Clostridium difficile infection and partial membrane cofactor protein (CD46) deficiency |journal=Isr. Med. Assoc. J. |volume=14 |issue=9 |pages=586–7 |date=September 2012 |pmid=23101426 |doi= |url=}}</ref><ref name="pmid16762990">{{cite journal |vauthors=Fremeaux-Bacchi V, Moulton EA, Kavanagh D, Dragon-Durey MA, Blouin J, Caudy A, Arzouk N, Cleper R, Francois M, Guest G, Pourrat J, Seligman R, Fridman WH, Loirat C, Atkinson JP |title=Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome |journal=J. Am. Soc. Nephrol. |volume=17 |issue=7 |pages=2017–25 |date=July 2006 |pmid=16762990 |doi=10.1681/ASN.2005101051 |url=}}</ref> | ||
Line 768: | Line 768: | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Medicine]] | |||
[[Category:Immunology]] | |||
[[Category:Hematology]] | |||
[[Category:Genetics]] |
Latest revision as of 13:26, 30 October 2018
Immunodeficiency Main Page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sabawoon Mirwais, M.B.B.S, M.D.[2], Zahir Ali Shaikh, MD[3], Anmol Pitliya, M.B.B.S. M.D.[4]
Overview
The complement system is a biochemical cascade which helps clear pathogens from an organism. It belongs to the innate immune system. Complement deficiencies can be inherited or acquired (as a result of complement-consuming disease state). Complement deficiency states may predispose affected individuals to angioedema, collagen vascular disease, or infection due to encapsulated organisms, especially Neisseria meningitidis.[1]
Classification
Complement Deficiencies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Susceptibility to infections | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HIGH | LOW | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Disseminated Neisserial infections | Recurrent pyogenic infections | SLE like syndrome | Atypical hemolytic uremic syndrome (aHUS) | Others | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Absent CH50 & AH50 hemolytic activity, defective bacterial activity | Normal CH50, Absent AH50 hemolytic activity | C3 loss-of-function | C1Q deficiency: C1QA, C1QB, C1QC | C3 gain-of-function | C1-Inhibitor (C1NH) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C5 deficiency | Properdin deficiency | Mannan-binding lectin serine protease 2 (MASP2) deficiency | C1R deficiency | Factor B gain-of-function | Membrane attack complex inhibitor (CD59) deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C6 deficiency | Factor D deficiency | Ficolin-3 (FCN3) deficiency | C1S deficiency | Factor H deficiency | Decay accelerating factor (DAF) or CD55 deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C7 deficiency | Factor B loss-of-function | C2 deficiency | Factor H-related protein deficiencies | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C8 deficiency | C4 deficiency | Factor I deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C9 deficiency | Thrombomodulin deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Membrane cofactor protein (MCP) deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Disseminated Neisserial Infections
C5 Deficiency
- C5 deficiency is the basis of lack of phagocytosis-enhancing activity of serum. [2]
- C5 deficiency leads to the failure to form the membrane attack complex (MAC) which is responsible for the lytic action of the complement.[3]
- It is associated with recurrent disseminated gonococcal infection.[4]
- Patients present with recurrent meningitis and meningococcemia, as well as recurrent purulent otitis media.[5]
C6 Deficiency
- C6 is structurally similar to other terminal complement components, C5b, C7, C8, and C9, all of which participate in the formation of the membrane attack complex (MAC).[6]
- C6 deficiency is a genetic disorder presenting as an increased susceptibility to invasive Neisseria meningitidis infections.[7]
- Complete C6 deficiency presents with recurrent Neisseria meningitidis infection and it should be distinguished from subtotal C6 deficiency in which the complement protein is functionally active and there is no association with neisserial infections.[8]
C7 Deficiency
- C7 is part of the membrane attack complex (MAC) and deficiency of this complement protein leads to the loss of complement lytic function.[9]
- Patients with C7 deficiency present with recurrent meningococcal infection.[10]
- It can also rarely present with severe and aggressive pyoderma gangrenosum.[11]
- Patients can also suffer from recurrent otitis media, tonsilitis and chronic mucopurulent rhinitis with subsequent pansinusitis complicated by nasal polyposis.[12]
- Antibiotics prophylaxis can be used to decrease the number of ear nose and throat (ENT) infections.
C8 Deficiency
- C8 deficiency results in the failure of membrane attack complex (MAC) assembly.[13]
- Patients suffer from recurrent neisserial infections, predominantly with meningococcus infection of rare serotypes.[14]
- It can present with juvenile chronic arthritis.[15]
- Prophylaxis with conjugate polysaccharide vaccines is recommended and antibiotic prophylaxis should be considered in individual cases.[16]
C9 Deficiency
- C9 deficiency impairs the assembly of membrane attack complex (MAC) and results in the failure of complement lytic activity.
- Patients have a significantly increased risk of developing meningococcal meningitis.[17]
- Patients with this deficiency have also presented with SLE-like and sicca symptoms.[18]
- An Arg95Stop mutation resulting in C9 deficiency is associated with membranoproliferative pattern of glomerular injury.[19]
- Patients with paroxysmal nocturnal hemoglobinuria (PNH) benefit by having high quality of life conferred by coexisting C9 deficiency.[20]
Properdin Deficiency
- Properdin, a part of the innate immune system, is a positive regulatory factor of the alternative complement pathway that binds to the microbial surfaces and stabilizes C3b, Bb convertase.[21]
- Properdin deficiency is associated with a heightened susceptibility to Neisseria species.[22]
- Patients can present with severe pneumococcal and Haemophilus influenza infections.[23][24]
- Recurrent infections are extremely rare, indicating a capacity for properdin-deficient individuals to develop-mediated defences against subsequent infections, hence promoting bactericidal and phagocytic activity via the intact classical complement pathway.[25][26]
Factor D Deficiency
- Factor D is the initial obligatory and rate-limiting catalytic component in the alternative complement pathway.[27]
- Factor D deficiency, an autosomal recessive immunologic disorder reflecting a defect in the alternative complement pathway, is characterized by the increased susceptibility to bacterial infections, particularly Neisseria infections.[28]
- A rare case of pneumococcal neonatal sepsis in infants with factor D deficiency has also been documented.[29]
Recurrent Pyogenic Infections
C3 Loss-of-Function
- C3 loss-of-function leads to absent alternate pathway hemolytic activity (AH50) and complement pathway hemolytic activity (CH50).[30]
- It results in defective opsonization and humoral response.
- The loss-of-function mutation in C3 complement does not lead to familial disease in contrast to the gain-of-function mutation.[31]
- It results in potential exacerbation of immune complex disorders.
Mannan-binding Lectin Serine Protease 2 (MASP2) Deficiency
- Mannan-binding lectin serine protease 2 (MASP2) deficiency has an autosomal recessive inheritance.[32]
- The deficiency is classically defined as mannan-binding lectin serine protease 2 (MASP2) protein level of less than 100 ng/ml.[33][34]
- It leads to the defects in the complement system as it plays a role in the activation of the lectin pathway of the complement system.
- Patients present with ulcerative colitis, erythema multiforme bullosum and SLE with favorable response to treatment with prednisolone, and other immunosuppressive drugs.[35]
- It is also associated with severe pneumococcal pneumonia and progressive lung fibrosis.
Ficolin-3 (FCN3) Deficiency
- Ficolin-3 (FCN3) deficiency follows an autosomal recessive inheritance pattern.[36][37]
- Ficolin-3 (FCN3), also known as H-ficolin, activates the lectin pathway of the complement system; deficiency may thus lead to defects in the complement system.[38][39]
- The consequences of Ficolin-3 (FCN3) deficiency are not clear-cut and it may act as a disease modifier.[40]
- Patients may show increased susceptibility to infection in the perinatal or neonatal period and autoimmune diseases as adults.
- Clinical features include brain abscesses, recurrent warts on the fingers, pneumonia, and selective deficient antibody response to pneumococcal polysaccharide vaccine.[41][42]
- Prematurely born infants with this deficiency have developed necrotizing enterocolitis followed by recurrent skin infections with Staphylococcus aureus.[43]
- It can present with nephrotic syndrome due to membranous nephropathy in adults.[44]
Factor B Loss-of-Function
- Factor B loss-of-function mutation has an autosomal recessive inheritance.[45]
- It leads to the failure of activation of alternative complement pathway.
- Patients are susceptible to infections with encapsulated organisms.
SLE-like Syndrome
C1Q Deficiency
- C1Q Deficiency can be caused by homozygous mutation in the C1QA, C1QB or C1QC gene.[46][47][48][49]
- It has 2 different forms, absent C1Q protein or presence of a dysfunctional molecule.[50][51]
- It is characterized by recurrent skin lesions, chronic infections, and an increased risk of autoimmune diseases, particularly systemic lupus erythematosus (SLE), or SLE-like illnesses, such as discoid lupus erythematosus, fever, joint pain, and oral ulceration.[52]
- Patients with cutaneous disorders can present with vesicles, hyperpigmentation, and atrophic areas with exacerbation upon light exposure.[53]
- It can present with the loss of eyelashes, eyebrows, and scalp hair.
- Patients with episodes of pneumonia, septicemia, bacterial meningitis, and bacterial keratitis have also been reported.[54][55]
- Patients can present with a wide range of renal pathologies, such as chronic glomerulonephritis, renal failure, and with biopsy results showing mesangioproliferative glomerulonephritis, IgA nephropathy, membranous glomerulopathy, deposition of immune complexes, and tubulointerstitial abnormalities.[56][57][58]
C1R Deficiency
- C1R is the catalytic subunit of complement component C1.[59]
- Clinical features include discoid lupus erythematosus, nondeforming rheumatoid-like arthritis, mild nephritis, and reurrent rhinobronchitis.[60]
- Missense or in-frame insertion/deletion mutations in the C1R gene results in Ehlers-Danlos syndrome periodontal type 1 (EDSPD1).[61]
- C1R deficiency usually accompanies a deficiency of C1S.[62]
C1S Deficiency
- C1S is a catalytic subunit of the complement component C1.[59]
- C1S deficiency is usually reported with a deficiency of C1R.[59]
- Patients can present with systemic lupus erythematosus (SLE)-like syndrome and chronic glomerulonephritis.[63]
- It can result in the absence of classic complement (CH50) pathway activity.[64]
- Missense mutation and an in-frame deletion in the C1S gene results in Ehlers-Danlos syndrome periodontal type 2 (EDSPD2).[61]
C2 Deficiency
- C2 deficiency is caused by homozygous or compound heterozygous mutation in the C2 gene on chromosome 6p21.
- Majority of the patients with this deficiency have autoimmune diseases, most commonly systemic lupus erythematosus (SLE), Henoch-Schonlein purpura, or polymyositis.[65][66]
- Patients can also present with discoid lupus erythematosus, polyarteritis, membranoproliferative glomerulonephritis, cutaneous vasculitis, sicca syndrome, and seropositive rheumatoid arthritis.[67][68][69]
C4 Deficiency
- C4 complement component is encoded by 2 distinct but closely linked genes, C4A and C4B.[70]
- It has an autosomal recessive inheritance.[71]
- C4 partial deficiency (either C4A or C4B) is common and has a modest effect on the host defense.[71]
- Complete C4 deficiency is associated with renal disease presenting as severe Henoch-Schonlein purpura and patients can develop hypertension, nephrotic syndrome requriring hemodialysis.[72]
- Homozygous deficiency of C4A is associated with systemic lupus erythematosus (SLE) and type I diabetes mellitus.[73]
- Homozygous deficiency of C4B is associated with susceptibility to bacterial meningitis.[74]
- C4 deficiency is a predisposing factor for Streptococcus pneumoniae-induced autoantibody production.[75]
Atypical Hemolytic Uremic Syndrome (aHUS)
C3 Gain-of-Function
- Complement component C3 plays a central role in the activation of all 3 complement pathways, classical, alternative, and lectin.[76]
- C3 gain-of-function mutation follows an autosomal dominant inheritance leading to the increased activation of complement.[71]
- It can present with glomerulonephritis and predispose individiuals to atypical hemolytic uremic syndrome, microhematuria, hypertension, and chronic renal failure.[77][71]
Factor B Gain-of-Function
- Factor B gain-of-function is a mutation in the CFB gene that has autosomal dominant inheritance.[71]
- It leads to the increased alternate pathway hemolytic activity (AH50) by enhancing the generation of C3b.[71][78]
- It increases the susceptibility of individuals to atypical hemolytic uremic syndrome-4 (aHUS4).
Factor H Deficiency
- Factor H is a serum glycoprotein that regulates the function of the alternative complement pathway in fluid phase and on cellular surfaces.
- Factor H deficiency is caused by a mutation in the gene encoding complement factor H on chromosome 1q31 and follows an autosomal dominant or recessive pattern of inheritance.[71]
- It can manifest as multiple phenotypes, including asymptomatic, recurrent bacterial infections, and renal failure.[79]
- Renal pathologies include atypical hemolytic-uremic syndrome (aHUS), membranoproliferative glomerulonephritis type II (MPGN II), IgA nephropathy, and nonspecific hematuria or nephritis.[79][80][81][82][83][84][85]
- Patients can also present with systemic lupus erythematosus (SLE) and neisserial infections.[86][87][88]
- Factor H-related proteins comprise a group of 5 plasma proteins, CFHR1, CFHR2, CFHR3, CFHR4, and CFHR5.[89]
- Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with multiple diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulonephritis, dense deposit disease (DDD), CFHR5 nephropathy, IgA nephropathy, age related macular degeneration (AMD), and systemic lupus erythematosus (SLE).
- The deficiencies follow an autosomal dominant or recessive mode of inheritance with later onset and may present with autoantibodies to complement factor H.[71]
Factor I Deficiency
- Factor I deficiency is caused by homozygous or compound heterozygous mutation in the gene encoding complement factor I on chromosome 4q25 and has an autosomal recessive inheritance.[71][90]
- Clinical features include bacterial meningitis due to Streptococcus pneumoniae and Neisseria meningitidis, otitis media, recurrent sinusitis, septic arthritis due to Staphylococcus epidermidis, recurrent pyogenic infections, bronchopneumonia, systemic vasculitis with purpura.[91][92][93]
- The deficiency leads to uncontrolled activation of the alternative complement pathway which causes serum depletion of other complement components, especially C3.[93]
- A progressive loss of renal function accompanied by proteinuria and hematuria has also been documented with renal biopsy showing focal segmental glomerulonephritis (FSGN) with glomerular deposits of immunoglobulins and complement C3, C4 fragments.
Thrombomodulin Deficiency
- Thrombomodulin, an anticoagulant glycoprotein, functions to modulate the activity of the hemostatic protease thrombin.[94]
- Thrombomodulin deficiency has an autosomal dominant inheritance.[71]
- It results in enhanced thrombus formation in a murine model of carotid artery thrombosis.[95]
- It may also contribute to microvascular ischemia in the pathogenesis of diabetic neuropathy.[96]
- The deficiency may also influence collagen production by fibroblasts in the wound matrix.[94]
Membrane Cofactor Protein (MCP) Deficiency
- Membrane cofactor protein (MCP), a C3B/C4B-binding molecule of the complement system with cofactor activity for the factor I-dependent cleavage of C3B and C4B.[97]
- Membrane Cofactor Protein (MCP) deficiency follows an autosomal dominant inheritance pattern.[71]
- Partial membrane cofactor protein (MCP) deficiency with or without Clostridium dfficile infection can result in atypical hemolytic uremic syndrome (aHUS).[98][99]
- The deficiency can also present with glomerulonephritis, infections, and decreased C3b binding.[71]
Others
C1-Inhibitor (C1NH)
- C1-inhibitor (C1NH), a plasma protein involved in the regulation of the complement cascade, is a member of a large serine protease inhibitor (serpin) gene family.
- Mutations in the C1-inhibitor (C1NH) gene has been known to cause hereditary angioedema.
- Patients with hereditary angioedema type I (absent or low levels of an antigenically-normal protein) have a deletion of the C1-inhibitor gene or a truncated transcript because of a stop codon while hereditary angioedema type II (elevated or normal levels of a dysfunctional protein) patients have a single base substitution.[100][101]
- C1-inhibitor (C1NH) deficiency can result in spontaneous activation of the complement pathway causing consumption of C4/C2 components.[71]
- Patients with low levels of C1-inhibitor (C1NH) have been reported to have presented with vasculitic neuropathy.[102]
- Acquired C1-inhibitor (C1NH) deficiency, causing angioedema, can be associated with benign or malignant B-cell lymphoproliferative disorders.[103]
Membrane Attack Complex Inhibitor (CD59) Deficiency
- Membrane Attack Complex Inhibitor (CD59) deficiency is caused by mutation in the CD59 gene, which maps to chromosome 11p13.[104]
- Pateints present with hemolytic anemia and immune-mediated polyneuropathy.[71][105]
Decay Accelerating Factor (DAF) or CD55 Deficiency
- Decay accelerating factor (DAF) or CD59 deficiency leads to CHAPLE (complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy) syndrome which is characterized by abdominal pain and diarrhea, primary intestinal lymphangiectasia, hypoproteinemic edema, and malabsorption.[106][107][108][106][109]
- Some patients also exhibit bowel inflammation, recurrent infections associated with hypogammaglobulinemia, and/or angiopathic thromboembolic disease.[106]
- Affected children with CHAPLE syndrome have presented with growth retardation, edema, clubbing, iron-deficiency anemia, and hypoproteinemia with death occuring in multiple cases and on autopsy, the liver revealed hepatic vein stenosis with Budd-Chiari syndrome.[110][107]
References
- ↑ Michael Corvini, Christopher Randolph & Steven I. Aronin (2004). "Complement C7 deficiency presenting as recurrent aseptic meningitis". Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 93 (2): 200–205. doi:10.1016/S1081-1206(10)61476-7. PMID 15328683. Unknown parameter
|month=
ignored (help) - ↑ Miller, Michael E.; Nilsson, Ulf R. (1970). "A Familial Deficiency of the Phagocytosis-Enhancing Activity of Serum Related to a Dysfunction of the Fifth Component of Complement (C5)". New England Journal of Medicine. 282 (7): 354–358. doi:10.1056/NEJM197002122820702. ISSN 0028-4793.
- ↑ A. Orren (2000). "Molecular mechanisms of complement component C6 deficiency; a hypervariable exon 6 region responsible for three of six reported defects". Clinical and experimental immunology. 119 (2): 255–258. PMID 10632659. Unknown parameter
|month=
ignored (help) - ↑ R. Snyderman, D. T. Durack, G. A. McCarty, F. E. Ward & L. Meadows (1979). "Deficiency of the fifth component of complement in human subjects. Clinical, genetic and immunologic studies in a large kindred". The American journal of medicine. 67 (4): 638–645. PMID 495634. Unknown parameter
|month=
ignored (help) - ↑ O. Sanal, M. Loos, F. Ersoy, G. Kanra, G. Secmeer & I. Tezcan (1992). "Complement component deficiencies and infection: C5, C8 and C3 deficiencies in three families". European journal of pediatrics. 151 (9): 676–679. PMID 1396929. Unknown parameter
|month=
ignored (help) - ↑ Z. Zhu, T. P. Atkinson, K. T. Hovanky, S. B. Boppana, Y. L. Dai, P. Densen, R. C. Go, J. S. Jablecki & J. E. Volanakis (2000). "High prevalence of complement component C6 deficiency among African-Americans in the south-eastern USA". Clinical and experimental immunology. 119 (2): 305–310. PMID 10632667. Unknown parameter
|month=
ignored (help) - ↑ M. R. Moya-Quiles, M. V. Bernardo-Pisa, P. Martinez, L. Gimeno, A. Bosch, G. Salgado, H. Martinez-Banaclocha, J. Eguia, J. A. Campillo, M. Muro, J. B. Vidal-Bugallo, M. R. Alvarez-Lopez & A. M. Garcia-Alonso (2013). "Complement component C6 deficiency in a Spanish family: implications for clinical and molecular diagnosis". Gene. 521 (1): 204–206. doi:10.1016/j.gene.2013.03.027. PMID 23537992. Unknown parameter
|month=
ignored (help) - ↑ A. Orren (2000). "Molecular mechanisms of complement component C6 deficiency; a hypervariable exon 6 region responsible for three of six reported defects". Clinical and experimental immunology. 119 (2): 255–258. PMID 10632659. Unknown parameter
|month=
ignored (help) - ↑ Sung Hoon Sim, Jung Yeon Heo, Eui-Chong Kim & Kang-Won Choe (2013). "A case of meningococcal sepsis and meningitis with complement 7 deficiency in a military trainee". Infection & chemotherapy. 45 (1): 94–98. doi:10.3947/ic.2013.45.1.94. PMID 24265955. Unknown parameter
|month=
ignored (help) - ↑ L. J. Egan, A. Orren, J. Doherty, R. Wurzner & C. F. McCarthy (1994). "Hereditary deficiency of the seventh component of complement and recurrent meningococcal infection: investigations of an Irish family using a novel haemolytic screening assay for complement activity and C7 M/N allotyping". Epidemiology and infection. 113 (2): 275–281. PMID 7523157. Unknown parameter
|month=
ignored (help) - ↑ L. J. Egan, A. Orren, J. Doherty, R. Wurzner & C. F. McCarthy (1994). "Hereditary deficiency of the seventh component of complement and recurrent meningococcal infection: investigations of an Irish family using a novel haemolytic screening assay for complement activity and C7 M/N allotyping". Epidemiology and infection. 113 (2): 275–281. PMID 7523157. Unknown parameter
|month=
ignored (help) - ↑ A. Srotova, J. Litzman, S. Rumlarova, M. Drahosova, D. Bartonkova, I. Krcmova, A. Roberts, S. Jolles & P. Kralickova. "[Recurrent meningitis and inherited complement deficiency]". Epidemiologie, mikrobiologie, imunologie : casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti J.E. Purkyne. 65 (4): 238–242. PMID 28078901.
- ↑ L. Saucedo, L. Ackermann, A. E. Platonov, A. Gewurz, R. M. Rakita & P. Densen (1995). "Delineation of additional genetic bases for C8 beta deficiency. Prevalence of null alleles and predominance of C-->T transition in their genesis". Journal of immunology (Baltimore, Md. : 1950). 155 (10): 5022–5028. PMID 7594510. Unknown parameter
|month=
ignored (help) - ↑ S. C. Ross & P. Densen (1984). "Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency". Medicine. 63 (5): 243–273. PMID 6433145. Unknown parameter
|month=
ignored (help) - ↑ N. M. Wulffraat, E. A. Sanders, C. A. Fijen, A. Hannema, W. Kuis & B. J. Zegers (1994). "Deficiency of the beta subunit of the eighth component of complement presenting as arthritis and exanthem". Arthritis and rheumatism. 37 (11): 1704–1706. PMID 7980680. Unknown parameter
|month=
ignored (help) - ↑ A. Srotova, J. Litzman, S. Rumlarova, M. Drahosova, D. Bartonkova, I. Krcmova, A. Roberts, S. Jolles & P. Kralickova. "[Recurrent meningitis and inherited complement deficiency]". Epidemiologie, mikrobiologie, imunologie : casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti J.E. Purkyne. 65 (4): 238–242. PMID 28078901.
- ↑ M. Nagata, T. Hara, T. Aoki, Y. Mizuno, H. Akeda, S. Inaba, K. Tsumoto & K. Ueda (1989). "Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis". The Journal of pediatrics. 114 (2): 260–264. PMID 2915285. Unknown parameter
|month=
ignored (help) - ↑ M. Sugimoto, M. Nishikai, A. Sato, Y. Suzuki, M. Nihei, J. Uchida & N. Mimura (1987). "SLE-like and sicca symptoms in late component (C9) complement deficiency". Annals of the rheumatic diseases. 46 (2): 153–155. PMID 3827337. Unknown parameter
|month=
ignored (help) - ↑ Takayoshi Miura, Shin Goto, Seitaro Iguchi, Hisaki Shimada, Mitsuhiro Ueno, Shin-ichi Nishi & Ichiei Narita (2011). "Membranoproliferative pattern of glomerular injury associated with complement component 9 deficiency due to Arg95Stop mutation". Clinical and experimental nephrology. 15 (1): 86–91. doi:10.1007/s10157-010-0358-0. PMID 21057849. Unknown parameter
|month=
ignored (help) - ↑ Nobuyoshi Hanaoka, Yoshiko Murakami, Masahide Nagata, Shoichi Nagakura, Yuji Yonemura, Takashi Sonoki, Taroh Kinoshita & Hideki Nakakuma (2012). "Persistently high quality of life conferred by coexisting congenital deficiency of terminal complement C9 in a paroxysmal nocturnal hemoglobinuria patient". Blood. 119 (16): 3866–3868. doi:10.1182/blood-2012-02-408161. PMID 22517879. Unknown parameter
|month=
ignored (help) - ↑ S. M. Linton & B. P. Morgan (1999). "Properdin deficiency and meningococcal disease--identifying those most at risk". Clinical and experimental immunology. 118 (2): 189–191. PMID 10540177. Unknown parameter
|month=
ignored (help) - ↑ Janeway, Charles (2001). Immunobiology 5 : the immune system in health and disease. New York: Garland Pub. ISBN 081533642X.
- ↑ E. W. Gelfand, C. P. Rao, J. O. Minta, T. Ham, D. B. Purkall & S. Ruddy (1987). "Inherited deficiency of properdin and C2 in a patient with recurrent bacteremia". The American journal of medicine. 82 (3 Spec No): 671–675. PMID 3826129. Unknown parameter
|month=
ignored (help) - ↑ M. Schlesinger, U. Mashal, J. Levy & Z. Fishelson (1993). "Hereditary properdin deficiency in three families of Tunisian Jews". Acta paediatrica (Oslo, Norway : 1992). 82 (9): 744–747. PMID 8241670. Unknown parameter
|month=
ignored (help) - ↑ S. M. Linton & B. P. Morgan (1999). "Properdin deficiency and meningococcal disease--identifying those most at risk". Clinical and experimental immunology. 118 (2): 189–191. PMID 10540177. Unknown parameter
|month=
ignored (help) - ↑ A. G. Sjoholm (1990). "Inherited complement deficiency states: implications for immunity and immunological disease". APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 98 (10): 861–874. PMID 2147105. Unknown parameter
|month=
ignored (help) - ↑ R. T. White, D. Damm, N. Hancock, B. S. Rosen, B. B. Lowell, P. Usher, J. S. Flier & B. M. Spiegelman (1992). "Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue". The Journal of biological chemistry. 267 (13): 9210–9213. PMID 1374388. Unknown parameter
|month=
ignored (help) - ↑ D. H. Biesma, A. J. Hannema, H. van Velzen-Blad, L. Mulder, R. van Zwieten, I. Kluijt & D. Roos (2001). "A family with complement factor D deficiency". The Journal of clinical investigation. 108 (2): 233–240. doi:10.1172/JCI12023. PMID 11457876. Unknown parameter
|month=
ignored (help) - ↑ S. J. Weiss, A. E. Ahmed & V. R. Bonagura (1998). "Complement factor D deficiency in an infant first seen with pneumococcal neonatal sepsis". The Journal of allergy and clinical immunology. 102 (6 Pt 1): 1043–1044. PMID 9847449. Unknown parameter
|month=
ignored (help) - ↑ Aziz Bousfiha, Leila Jeddane, Capucine Picard, Fatima Ailal, H. Bobby Gaspar, Waleed Al-Herz, Talal Chatila, Yanick J. Crow, Charlotte Cunningham-Rundles, Amos Etzioni, Jose Luis Franco, Steven M. Holland, Christoph Klein, Tomohiro Morio, Hans D. Ochs, Eric Oksenhendler, Jennifer Puck, Mimi L. K. Tang, Stuart G. Tangye, Troy R. Torgerson, Jean-Laurent Casanova & Kathleen E. Sullivan (2018). "The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies". Journal of clinical immunology. 38 (1): 129–143. doi:10.1007/s10875-017-0465-8. PMID 29226301. Unknown parameter
|month=
ignored (help) - ↑ Georgia Sfyroera, Daniel Ricklin, Edimara S. Reis, Hui Chen, Emilia L. Wu, Yiannis N. Kaznessis, Kristina N. Ekdahl, Bo Nilsson & John D. Lambris (2015). "Rare loss-of-function mutation in complement component C3 provides insight into molecular and pathophysiological determinants of complement activity". Journal of immunology (Baltimore, Md. : 1950). 194 (7): 3305–3316. doi:10.4049/jimmunol.1402781. PMID 25712219. Unknown parameter
|month=
ignored (help) - ↑ Aziz Bousfiha, Leila Jeddane, Capucine Picard, Fatima Ailal, H. Bobby Gaspar, Waleed Al-Herz, Talal Chatila, Yanick J. Crow, Charlotte Cunningham-Rundles, Amos Etzioni, Jose Luis Franco, Steven M. Holland, Christoph Klein, Tomohiro Morio, Hans D. Ochs, Eric Oksenhendler, Jennifer Puck, Mimi L. K. Tang, Stuart G. Tangye, Troy R. Torgerson, Jean-Laurent Casanova & Kathleen E. Sullivan (2018). "The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies". Journal of clinical immunology. 38 (1): 129–143. doi:10.1007/s10875-017-0465-8. PMID 29226301. Unknown parameter
|month=
ignored (help) - ↑ S. Thiel, R. Steffensen, I. J. Christensen, W. K. Ip, Y. L. Lau, I. J. M. Reason, H. Eiberg, M. Gadjeva, M. Ruseva & J. C. Jensenius (2007). "Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms". Genes and immunity. 8 (2): 154–163. doi:10.1038/sj.gene.6364373. PMID 17252003. Unknown parameter
|month=
ignored (help) - ↑ Anna Sokolowska, Agnieszka Szala, Anna St Swierzko, Monika Kozinska, Tomasz Niemiec, Maria Blachnio, Ewa Augustynowicz-Kopec, Jaroslaw Dziadek & Maciej Cedzynski (2015). "Mannan-binding lectin-associated serine protease-2 (MASP-2) deficiency in two patients with pulmonary tuberculosis and one healthy control". Cellular & molecular immunology. 12 (1): 119–121. doi:10.1038/cmi.2014.19. PMID 24658431. Unknown parameter
|month=
ignored (help) - ↑ Kristian Stengaard-Pedersen, Steffen Thiel, Mihaela Gadjeva, Mette Moller-Kristensen, Rikke Sorensen, Lise T. Jensen, Anders G. Sjoholm, Lars Fugger & Jens C. Jensenius (2003). "Inherited deficiency of mannan-binding lectin-associated serine protease 2". The New England journal of medicine. 349 (6): 554–560. doi:10.1056/NEJMoa022836. PMID 12904520. Unknown parameter
|month=
ignored (help) - ↑ Aziz Bousfiha, Leila Jeddane, Capucine Picard, Fatima Ailal, H. Bobby Gaspar, Waleed Al-Herz, Talal Chatila, Yanick J. Crow, Charlotte Cunningham-Rundles, Amos Etzioni, Jose Luis Franco, Steven M. Holland, Christoph Klein, Tomohiro Morio, Hans D. Ochs, Eric Oksenhendler, Jennifer Puck, Mimi L. K. Tang, Stuart G. Tangye, Troy R. Torgerson, Jean-Laurent Casanova & Kathleen E. Sullivan (2018). "The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies". Journal of clinical immunology. 38 (1): 129–143. doi:10.1007/s10875-017-0465-8. PMID 29226301. Unknown parameter
|month=
ignored (help) - ↑ Luregn J. Schlapbach, Steffen Thiel, Ulf Kessler, Roland A. Ammann, Christoph Aebi & Jens C. Jensenius (2011). "Congenital H-ficolin deficiency in premature infants with severe necrotising enterocolitis". Gut. 60 (10): 1438–1439. doi:10.1136/gut.2010.226027. PMID 20971976. Unknown parameter
|month=
ignored (help) - ↑ Lea Munthe-Fog, Tina Hummelshoj, Christian Honore, Hans O. Madsen, Henrik Permin & Peter Garred (2009). "Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency". The New England journal of medicine. 360 (25): 2637–2644. doi:10.1056/NEJMoa0900381. PMID 19535802. Unknown parameter
|month=
ignored (help) - ↑ Mateusz Michalski, Anna St Swierzko, Izabela Pagowska-Klimek, Zofia I. Niemir, Karolina Mazerant, Iwona Domzalska-Popadiuk, Maciej Moll & Maciej Cedzynski (2015). "Primary Ficolin-3 deficiency--Is it associated with increased susceptibility to infections?". Immunobiology. 220 (6): 711–713. doi:10.1016/j.imbio.2015.01.003. PMID 25662573. Unknown parameter
|month=
ignored (help) - ↑ Mateusz Michalski, Anna St Swierzko, Izabela Pagowska-Klimek, Zofia I. Niemir, Karolina Mazerant, Iwona Domzalska-Popadiuk, Maciej Moll & Maciej Cedzynski (2015). "Primary Ficolin-3 deficiency--Is it associated with increased susceptibility to infections?". Immunobiology. 220 (6): 711–713. doi:10.1016/j.imbio.2015.01.003. PMID 25662573. Unknown parameter
|month=
ignored (help) - ↑ Lea Munthe-Fog, Tina Hummelshoj, Christian Honore, Hans O. Madsen, Henrik Permin & Peter Garred (2009). "Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency". The New England journal of medicine. 360 (25): 2637–2644. doi:10.1056/NEJMoa0900381. PMID 19535802. Unknown parameter
|month=
ignored (help) - ↑ Mateusz Michalski, Anna St Swierzko, Izabela Pagowska-Klimek, Zofia I. Niemir, Karolina Mazerant, Iwona Domzalska-Popadiuk, Maciej Moll & Maciej Cedzynski (2015). "Primary Ficolin-3 deficiency--Is it associated with increased susceptibility to infections?". Immunobiology. 220 (6): 711–713. doi:10.1016/j.imbio.2015.01.003. PMID 25662573. Unknown parameter
|month=
ignored (help) - ↑ Luregn J. Schlapbach, Steffen Thiel, Ulf Kessler, Roland A. Ammann, Christoph Aebi & Jens C. Jensenius (2011). "Congenital H-ficolin deficiency in premature infants with severe necrotising enterocolitis". Gut. 60 (10): 1438–1439. doi:10.1136/gut.2010.226027. PMID 20971976. Unknown parameter
|month=
ignored (help) - ↑ Mateusz Michalski, Anna St Swierzko, Izabela Pagowska-Klimek, Zofia I. Niemir, Karolina Mazerant, Iwona Domzalska-Popadiuk, Maciej Moll & Maciej Cedzynski (2015). "Primary Ficolin-3 deficiency--Is it associated with increased susceptibility to infections?". Immunobiology. 220 (6): 711–713. doi:10.1016/j.imbio.2015.01.003. PMID 25662573. Unknown parameter
|month=
ignored (help) - ↑ Aziz Bousfiha, Leila Jeddane, Capucine Picard, Fatima Ailal, H. Bobby Gaspar, Waleed Al-Herz, Talal Chatila, Yanick J. Crow, Charlotte Cunningham-Rundles, Amos Etzioni, Jose Luis Franco, Steven M. Holland, Christoph Klein, Tomohiro Morio, Hans D. Ochs, Eric Oksenhendler, Jennifer Puck, Mimi L. K. Tang, Stuart G. Tangye, Troy R. Torgerson, Jean-Laurent Casanova & Kathleen E. Sullivan (2018). "The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies". Journal of clinical immunology. 38 (1): 129–143. doi:10.1007/s10875-017-0465-8. PMID 29226301. Unknown parameter
|month=
ignored (help) - ↑ R. Topaloglu, A. Bakkaloglu, J. H. Slingsby, M. J. Mihatsch, M. Pascual, P. Norsworthy, B. J. Morley, U. Saatci, J. A. Schifferli & M. J. Walport (1996). "Molecular basis of hereditary C1q deficiency associated with SLE and IgA nephropathy in a Turkish family". Kidney international. 50 (2): 635–642. PMID 8840296. Unknown parameter
|month=
ignored (help) - ↑ F. Petry, A. I. Berkel & M. Loos (1997). "Multiple identification of a particular type of hereditary C1q deficiency in the Turkish population: review of the cases and additional genetic and functional analysis". Human genetics. 100 (1): 51–56. PMID 9225968. Unknown parameter
|month=
ignored (help) - ↑ J. H. Slingsby, P. Norsworthy, G. Pearce, A. K. Vaishnaw, H. Issler, B. J. Morley & M. J. Walport (1996). "Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families". Arthritis and rheumatism. 39 (4): 663–670. PMID 8630118. Unknown parameter
|month=
ignored (help) - ↑ Yousuke Higuchi, Junya Shimizu, Michiyo Hatanaka, Etsuko Kitano, Hajime Kitamura, Hidetoshi Takada, Masataka Ishimura, Toshiro Hara, Osamu Ohara, Kenji Asagoe & Toshihide Kubo (2013). "The identification of a novel splicing mutation in C1qB in a Japanese family with C1q deficiency: a case report". Pediatric rheumatology online journal. 11 (1): 41. doi:10.1186/1546-0096-11-41. PMID 24160257. Unknown parameter
|month=
ignored (help) - ↑ R. Topaloglu, A. Bakkaloglu, J. H. Slingsby, M. J. Mihatsch, M. Pascual, P. Norsworthy, B. J. Morley, U. Saatci, J. A. Schifferli & M. J. Walport (1996). "Molecular basis of hereditary C1q deficiency associated with SLE and IgA nephropathy in a Turkish family". Kidney international. 50 (2): 635–642. PMID 8840296. Unknown parameter
|month=
ignored (help) - ↑ G. Vassallo, R. W. Newton, S. E. Chieng, M. R. Haeney, A. Shabani & P. D. Arkwright (2007). "Clinical variability and characteristic autoantibody profile in primary C1q complement deficiency". Rheumatology (Oxford, England). 46 (10): 1612–1614. doi:10.1093/rheumatology/kem207. PMID 17890276. Unknown parameter
|month=
ignored (help) - ↑ Yousuke Higuchi, Junya Shimizu, Michiyo Hatanaka, Etsuko Kitano, Hajime Kitamura, Hidetoshi Takada, Masataka Ishimura, Toshiro Hara, Osamu Ohara, Kenji Asagoe & Toshihide Kubo (2013). "The identification of a novel splicing mutation in C1qB in a Japanese family with C1q deficiency: a case report". Pediatric rheumatology online journal. 11 (1): 41. doi:10.1186/1546-0096-11-41. PMID 24160257. Unknown parameter
|month=
ignored (help) - ↑ F. Mampaso, J. Ecija, L. Fogue, I. Moneo, N. Gallego & F. Leyva-Cobian (1981). "Familial C1q deficiency in 3 siblings with glomerulonephritis and Rothmund-Thomson syndrome". Nephron. 28 (4): 179–185. doi:10.1159/000182170. PMID 7029321.
- ↑ Hanne Vibeke Marquart, Lone Schejbel, Anders Sjoholm, Ulla Martensson, Susan Nielsen, Anders Koch, Arne Svejgaard & Peter Garred (2007). "C1q deficiency in an Inuit family: identification of a new class of C1q disease-causing mutations". Clinical immunology (Orlando, Fla.). 124 (1): 33–40. doi:10.1016/j.clim.2007.03.547. PMID 17513176. Unknown parameter
|month=
ignored (help) - ↑ L. Schejbel, L. Skattum, S. Hagelberg, A. Ahlin, B. Schiller, S. Berg, F. Genel, L. Truedsson & P. Garred (2011m). "Molecular basis of hereditary C1q deficiency--revisited: identification of several novel disease-causing mutations". Genes and immunity. 12 (8): 626–634. doi:10.1038/gene.2011.39. PMID 21654842. Unknown parameter
|month=
ignored (help) - ↑ F. Mampaso, J. Ecija, L. Fogue, I. Moneo, N. Gallego & F. Leyva-Cobian (1981). "Familial C1q deficiency in 3 siblings with glomerulonephritis and Rothmund-Thomson syndrome". Nephron. 28 (4): 179–185. doi:10.1159/000182170. PMID 7029321.
- ↑ A. J. Hannema, J. C. Kluin-Nelemans, C. E. Hack, A. J. Eerenberg-Belmer, C. Mallee & H. P. van Helden (1984). "SLE like syndrome and functional deficiency of C1q in members of a large family". Clinical and experimental immunology. 55 (1): 106–114. PMID 6319055. Unknown parameter
|month=
ignored (help) - ↑ R. Topaloglu, A. Bakkaloglu, J. H. Slingsby, M. J. Mihatsch, M. Pascual, P. Norsworthy, B. J. Morley, U. Saatci, J. A. Schifferli & M. J. Walport (1996). "Molecular basis of hereditary C1q deficiency associated with SLE and IgA nephropathy in a Turkish family". Kidney international. 50 (2): 635–642. PMID 8840296. Unknown parameter
|month=
ignored (help) - ↑ 59.0 59.1 59.2 Journet A, Tosi M (December 1986). "Cloning and sequencing of full-length cDNA encoding the precursor of human complement component C1r". Biochem. J. 240 (3): 783–7. PMC 1147487. PMID 3030286.
- ↑ Lee SL, Wallace SL, Barone R, Blum L, Chase PH (1978). "Familial deficiency of two subunits of the first component of complement. C1r and C1s associated with a lupus erythematosus-like disease". Arthritis Rheum. 21 (8): 958–67. PMID 737019.
- ↑ 61.0 61.1 Kapferer-Seebacher I, Pepin M, Werner R, Aitman TJ, Nordgren A, Stoiber H, Thielens N, Gaboriaud C, Amberger A, Schossig A, Gruber R, Giunta C, Bamshad M, Björck E, Chen C, Chitayat D, Dorschner M, Schmitt-Egenolf M, Hale CJ, Hanna D, Hennies HC, Heiss-Kisielewsky I, Lindstrand A, Lundberg P, Mitchell AL, Nickerson DA, Reinstein E, Rohrbach M, Romani N, Schmuth M, Silver R, Taylan F, Vandersteen A, Vandrovcova J, Weerakkody R, Yang M, Pope FM, Byers PH, Zschocke J (November 2016). "Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement". Am. J. Hum. Genet. 99 (5): 1005–1014. doi:10.1016/j.ajhg.2016.08.019. PMC 5097948. PMID 27745832.
- ↑ Loos M, Heinz HP (1986). "Component deficiencies. 1. The first component: C1q, C1r, C1s". Prog Allergy. 39: 212–31. PMID 3031693.
- ↑ Inoue N, Saito T, Masuda R, Suzuki Y, Ohtomi M, Sakiyama H (October 1998). "Selective complement C1s deficiency caused by homozygous four-base deletion in the C1s gene". Hum. Genet. 103 (4): 415–8. PMID 9856483.
- ↑ Dragon-Durey MA, Quartier P, Frémeaux-Bacchi V, Blouin J, de Barace C, Prieur AM, Weiss L, Fridman WH (June 2001). "Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases". J. Immunol. 166 (12): 7612–6. PMID 11390518.
- ↑ Cole FS, Whitehead AS, Auerbach HS, Lint T, Zeitz HJ, Kilbridge P, Colten HR (July 1985). "The molecular basis for genetic deficiency of the second component of human complement". N. Engl. J. Med. 313 (1): 11–6. doi:10.1056/NEJM198507043130103. PMID 2582254.
- ↑ Einstein LP, Alper CA, Bloch KJ, Herrin JT, Rosen FS, David JR, Colten HR (May 1975). "Biosynthetic defect in monocytes from human beings with genetic deficiency of the second component of complement". N. Engl. J. Med. 292 (22): 1169–71. doi:10.1056/NEJM197505292922207. PMID 1124106.
- ↑ Provost TT, Arnett FC, Reichlin M (October 1983). "Homozygous C2 deficiency, lupus erythematosus, and anti-Ro (SSA) antibodies". Arthritis Rheum. 26 (10): 1279–82. PMID 6605148.
- ↑ Friend, Peter S.; Handwerger, Barry S.; Kim, Youngki; Michael, Alfred F.; Yunis, Edmond J. (1975). "C2 deficiency in man. genetic relationship to a mixed lymphocyte reaction determinant (7a*)". Immunogenetics. 2 (1): 569–576. doi:10.1007/BF01572325. ISSN 0093-7711.
- ↑ D'Cruz D, Taylor J, Ahmed T, Asherson R, Khamashta M, Hughes GR (November 1992). "Complement factor 2 deficiency: a clinical and serological family study". Ann. Rheum. Dis. 51 (11): 1254–6. PMC 1012468. PMID 1361318.
- ↑ Awdeh ZL, Alper CA (June 1980). "Inherited structural polymorphism of the fourth component of human complement". Proc. Natl. Acad. Sci. U.S.A. 77 (6): 3576–80. PMC 349660. PMID 6932037.
- ↑ 71.00 71.01 71.02 71.03 71.04 71.05 71.06 71.07 71.08 71.09 71.10 71.11 71.12 71.13 Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, Chatila T, Crow YJ, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Tang M, Tangye SG, Torgerson TR, Casanova JL, Sullivan KE (January 2018). "The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies". J. Clin. Immunol. 38 (1): 129–143. doi:10.1007/s10875-017-0465-8. PMC 5742599. PMID 29226301. Vancouver style error: initials (help)
- ↑ Lhotta K, König P, Hintner H, Spielberger M, Dittrich P (1990). "Renal disease in a patient with hereditary complete deficiency of the fourth component of complement". Nephron. 56 (2): 206–11. doi:10.1159/000186134. PMID 2243578.
- ↑ Huang DF, Siminovitch KA, Liu XY, Olee T, Olsen NJ, Berry C, Carson DA, Chen PP (April 1995). "Population and family studies of three disease-related polymorphic genes in systemic lupus erythematosus". J. Clin. Invest. 95 (4): 1766–72. doi:10.1172/JCI117854. PMC 295700. PMID 7706484.
- ↑ McKusick, Victor (1998). Mendelian inheritance in man : a catalog of human genes and genetic disorders. Baltimore: Johns Hopkins University Press. ISBN 9780801857423.
- ↑ Yammani RD, Leyva MA, Jennings RN, Haas KM (December 2014). "C4 Deficiency is a predisposing factor for Streptococcus pneumoniae-induced autoantibody production". J. Immunol. 193 (11): 5434–43. doi:10.4049/jimmunol.1401462. PMC 4373073. PMID 25339671.
- ↑ S Reis E, Falcão DA, Isaac L (March 2006). "Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H". Scand. J. Immunol. 63 (3): 155–68. doi:10.1111/j.1365-3083.2006.01729.x. PMID 16499568.
- ↑ Lhotta K, Janecke AR, Scheiring J, Petzlberger B, Giner T, Fally V, Würzner R, Zimmerhackl LB, Mayer G, Fremeaux-Bacchi V (August 2009). "A large family with a gain-of-function mutation of complement C3 predisposing to atypical hemolytic uremic syndrome, microhematuria, hypertension and chronic renal failure". Clin J Am Soc Nephrol. 4 (8): 1356–62. doi:10.2215/CJN.06281208. PMC 2723975. PMID 19590060.
- ↑ Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, López-Trascasa M, Sánchez-Corral P, Morgan BP, Rodríguez de Córdoba S (January 2007). "Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome". Proc. Natl. Acad. Sci. U.S.A. 104 (1): 240–5. doi:10.1073/pnas.0603420103. PMC 1765442. PMID 17182750.
- ↑ 79.0 79.1 Ault BH (September 2000). "Factor H and the pathogenesis of renal diseases". Pediatr. Nephrol. 14 (10–11): 1045–53. PMID 10975323.
- ↑ Wyatt RJ, Julian BA, Weinstein A, Rothfield NF, McLean RH (April 1982). "Partial H (beta 1H) deficiency and glomerulonephritis in two families". J. Clin. Immunol. 2 (2): 110–7. PMID 6461667.
- ↑ Levy M, Halbwachs-Mecarelli L, Gubler MC, Kohout G, Bensenouci A, Niaudet P, Hauptmann G, Lesavre P (December 1986). "H deficiency in two brothers with atypical dense intramembranous deposit disease". Kidney Int. 30 (6): 949–56. PMID 2950269.
- ↑ Richards A, Buddles MR, Donne RL, Kaplan BS, Kirk E, Venning MC, Tielemans CL, Goodship JA, Goodship TH (February 2001). "Factor H mutations in hemolytic uremic syndrome cluster in exons 18-20, a domain important for host cell recognition". Am. J. Hum. Genet. 68 (2): 485–90. doi:10.1086/318203. PMC 1235281. PMID 11170896.
- ↑ Vogt BA, Wyatt RJ, Burke BA, Simonton SC, Kashtan CE (February 1995). "Inherited factor H deficiency and collagen type III glomerulopathy". Pediatr. Nephrol. 9 (1): 11–5. PMID 7742208.
- ↑ Licht C, Heinen S, Józsi M, Löschmann I, Saunders RE, Perkins SJ, Waldherr R, Skerka C, Kirschfink M, Hoppe B, Zipfel PF (July 2006). "Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II)". Kidney Int. 70 (1): 42–50. doi:10.1038/sj.ki.5000269. PMID 16612335.
- ↑ Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, Grünfeld JP, Lesavre P, Noël LH, Fakhouri F (March 2007). "Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome". J. Med. Genet. 44 (3): 193–9. doi:10.1136/jmg.2006.045328. PMC 2598029. PMID 17018561.
- ↑ Brai M, Misiano G, Maringhini S, Cutaja I, Hauptmann G (January 1988). "Combined homozygous factor H and heterozygous C2 deficiency in an Italian family". J. Clin. Immunol. 8 (1): 50–6. PMID 2966809.
- ↑ Nielsen HE, Christensen KC, Koch C, Thomsen BS, Heegaard NH, Tranum-Jensen J (December 1989). "Hereditary, complete deficiency of complement factor H associated with recurrent meningococcal disease". Scand. J. Immunol. 30 (6): 711–8. PMID 2532396.
- ↑ Fijen CA, Kuijper EJ, Te Bulte M, van de Heuvel MM, Holdrinet AC, Sim RB, Daha MR, Dankert J (September 1996). "Heterozygous and homozygous factor H deficiency states in a Dutch family". Clin. Exp. Immunol. 105 (3): 511–6. PMC 2200526. PMID 8809142.
- ↑ Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT (December 2013). "Complement factor H related proteins (CFHRs)". Mol. Immunol. 56 (3): 170–80. doi:10.1016/j.molimm.2013.06.001. PMID 23830046.
- ↑ Vyse TJ, Morley BJ, Bartok I, Theodoridis EL, Davies KA, Webster AD, Walport MJ (February 1996). "The molecular basis of hereditary complement factor I deficiency". J. Clin. Invest. 97 (4): 925–33. doi:10.1172/JCI118515. PMC 507137. PMID 8613545.
- ↑ Thompson RA, Lachmann PJ (January 1977). "A second case of human C3b inhibitor (KAF) deficiency". Clin. Exp. Immunol. 27 (1): 23–9. PMC 1540911. PMID 849647.
- ↑ Vyse TJ, Späth PJ, Davies KA, Morley BJ, Philippe P, Athanassiou P, Giles CM, Walport MJ (July 1994). "Hereditary complement factor I deficiency". QJM. 87 (7): 385–401. PMID 7922290.
- ↑ 93.0 93.1 Sadallah S, Gudat F, Laissue JA, Spath PJ, Schifferli JA (June 1999). "Glomerulonephritis in a patient with complement factor I deficiency". Am. J. Kidney Dis. 33 (6): 1153–7. doi:10.1016/S0272-6386(99)70155-1. PMID 10352206.
- ↑ 94.0 94.1 Peterson JJ, Rayburn HB, Lager DJ, Raife TJ, Kealey GP, Rosenberg RD, Lentz SR (November 1999). "Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds". Am. J. Pathol. 155 (5): 1569–75. doi:10.1016/S0002-9440(10)65473-9. PMC 1866991. PMID 10550314.
- ↑ Dörffler-Melly J, de Kruif M, Schwarte LA, Franco RF, Florquin S, Spek CA, Ince C, Reitsma PH, ten Cate H (November 2003). "Functional thrombomodulin deficiency causes enhanced thrombus growth in a murine model of carotid artery thrombosis". Basic Res. Cardiol. 98 (6): 347–52. doi:10.1007/s00395-003-0416-9. PMID 14556079.
- ↑ Hafer-Macko CE, Ivey FM, Gyure KA, Sorkin JD, Macko RF (June 2002). "Thrombomodulin deficiency in human diabetic nerve microvasculature". Diabetes. 51 (6): 1957–63. PMID 12031986.
- ↑ Lublin DM, Liszewski MK, Post TW, Arce MA, Le Beau MM, Rebentisch MB, Lemons LS, Seya T, Atkinson JP (July 1988). "Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins". J. Exp. Med. 168 (1): 181–94. PMC 2188957. PMID 3260937.
- ↑ Kalmanovich E, Kriger-Sharabi O, Shiloah E, Donin N, Fishelson Z, Rapoport MJ (September 2012). "Clostridium difficile infection and partial membrane cofactor protein (CD46) deficiency". Isr. Med. Assoc. J. 14 (9): 586–7. PMID 23101426.
- ↑ Fremeaux-Bacchi V, Moulton EA, Kavanagh D, Dragon-Durey MA, Blouin J, Caudy A, Arzouk N, Cleper R, Francois M, Guest G, Pourrat J, Seligman R, Fridman WH, Loirat C, Atkinson JP (July 2006). "Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome". J. Am. Soc. Nephrol. 17 (7): 2017–25. doi:10.1681/ASN.2005101051. PMID 16762990.
- ↑ Davis AE, Aulak K, Parad RB, Stecklein HP, Eldering E, Hack CE, Kramer J, Strunk RC, Bissler J, Rosen FS (August 1992). "C1 inhibitor hinge region mutations produce dysfunction by different mechanisms". Nat. Genet. 1 (5): 354–8. doi:10.1038/ng0892-354. PMID 1363816.
- ↑ Cicardi M, Agostoni A (June 1996). "Hereditary angioedema". N. Engl. J. Med. 334 (25): 1666–7. doi:10.1056/NEJM199606203342510. PMID 8628365.
- ↑ Yakushiji Y, Mizuta H, Kurohara K, Onoue H, Okada R, Yoshimura T, Kuroda Y (May 2007). "Vasculitic neuropathy in a patient with hereditary C1 inhibitor deficiency". Arch. Neurol. 64 (5): 731–3. doi:10.1001/archneur.64.5.731. PMID 17502473.
- ↑ Gelfand JA, Boss GR, Conley CL, Reinhart R, Frank MM (July 1979). "Acquired C1 esterase inhibitor deficiency and angioedema: a review". Medicine (Baltimore). 58 (4): 321–8. PMID 449665.
- ↑ Heckl-Ostreicher B, Ragg S, Drechsler M, Scherthan H, Royer-Pokora B (1993). "Localization of the human CD59 gene by fluorescence in situ hybridization and pulsed-field gel electrophoresis". Cytogenet. Cell Genet. 63 (3): 144–6. doi:10.1159/000133522. PMID 7683594.
- ↑ Nevo Y, Ben-Zeev B, Tabib A, Straussberg R, Anikster Y, Shorer Z, Fattal-Valevski A, Ta-Shma A, Aharoni S, Rabie M, Zenvirt S, Goldshmidt H, Fellig Y, Shaag A, Mevorach D, Elpeleg O (January 2013). "CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy". Blood. 121 (1): 129–35. doi:10.1182/blood-2012-07-441857. PMID 23149847.
- ↑ 106.0 106.1 106.2 Ozen A, Comrie WA, Ardy RC, Domínguez Conde C, Dalgic B, Beser ÖF, Morawski AR, Karakoc-Aydiner E, Tutar E, Baris S, Ozcay F, Serwas NK, Zhang Y, Matthews HF, Pittaluga S, Folio LR, Unlusoy Aksu A, McElwee JJ, Krolo A, Kiykim A, Baris Z, Gulsan M, Ogulur I, Snapper SB, Houwen R, Leavis HL, Ertem D, Kain R, Sari S, Erkan T, Su HC, Boztug K, Lenardo MJ (July 2017). "CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis". N. Engl. J. Med. 377 (1): 52–61. doi:10.1056/NEJMoa1615887. PMID 28657829. Vancouver style error: initials (help)
- ↑ 107.0 107.1 Shani M, Theodor E, Frand M, Goldman B (March 1974). "A family with protein-losing enteropathy". Gastroenterology. 66 (3): 433–45. PMID 4813510.
- ↑ McKusick, Victor (1998). Mendelian inheritance in man : a catalog of human genes and genetic disorders. Baltimore: Johns Hopkins University Press. ISBN 0801857422.
- ↑ Kurolap A, Eshach-Adiv O, Hershkovitz T, Paperna T, Mory A, Oz-Levi D, Zohar Y, Mandel H, Chezar J, Azoulay D, Peleg S, Half EE, Yahalom V, Finkel L, Weissbrod O, Geiger D, Tabib A, Shaoul R, Magen D, Bonstein L, Mevorach D, Baris HN (July 2017). "Loss of CD55 in Eculizumab-Responsive Protein-Losing Enteropathy". N. Engl. J. Med. 377 (1): 87–89. doi:10.1056/NEJMc1707173. PMID 28657861.
- ↑ McKusick, Victor (1998). Mendelian inheritance in man : a catalog of human genes and genetic disorders. Baltimore: Johns Hopkins University Press. ISBN 0801857422.