SRPK1: Difference between revisions

Jump to navigation Jump to search
imported>Citation bot
m (Alter: journal. Add: pmc, pmid, issue, url, bibcode. Removed parameters. | You can use this bot yourself. Report bugs here. | Headbomb)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''Serine/threonine-protein kinase SRPK1''' is an [[enzyme]] that in humans is encoded by the ''SRPK1'' [[gene]].<ref name="pmid8208298">{{cite journal | vauthors = Gui JF, Lane WS, Fu XD | title = A serine kinase regulates intracellular localization of splicing factors in the cell cycle | journal = Nature | volume = 369 | issue = 6482 | pages = 678–82 | date = Jul 1994 | pmid = 8208298 | pmc =  | doi = 10.1038/369678a0 }}</ref><ref name="pmid10198174">{{cite journal | vauthors = Wang HY, Arden KC, Bermingham JR, Viars CS, Lin W, Boyer AD, Fu XD | title = Localization of serine kinases, SRPK1 (SFRSK1) and SRPK2 (SFRSK2), specific for the SR family of splicing factors in mouse and human chromosomes | journal = Genomics | volume = 57 | issue = 2 | pages = 310–5 | date = May 1999 | pmid = 10198174 | pmc =  | doi = 10.1006/geno.1999.5770 }}</ref><ref name="entrez"/>
'''Serine/threonine-protein kinase SRPK1''' is an [[enzyme]] that in humans is encoded by the ''SRPK1'' [[gene]].<ref name="pmid8208298">{{cite journal | vauthors = Gui JF, Lane WS, Fu XD | title = A serine kinase regulates intracellular localization of splicing factors in the cell cycle | journal = Nature | volume = 369 | issue = 6482 | pages = 678–82 | date = Jul 1994 | pmid = 8208298 | pmc =  | doi = 10.1038/369678a0 | bibcode = 1994Natur.369..678G | url = http://ir.ihb.ac.cn/handle/152342/10318 }}</ref><ref name="pmid10198174">{{cite journal | vauthors = Wang HY, Arden KC, Bermingham JR, Viars CS, Lin W, Boyer AD, Fu XD | title = Localization of serine kinases, SRPK1 (SFRSK1) and SRPK2 (SFRSK2), specific for the SR family of splicing factors in mouse and human chromosomes | journal = Genomics | volume = 57 | issue = 2 | pages = 310–5 | date = May 1999 | pmid = 10198174 | pmc =  | doi = 10.1006/geno.1999.5770 }}</ref><ref name="entrez"/>


== Function ==
== Function ==
Line 6: Line 6:
This gene encodes a serine/arginine protein kinase specific for the [[SR protein|SR]] (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and [[alternative splicing]] by regulating intracellular localization of splicing factors. A second alternatively spliced transcript variant for this gene has been described, but its full length nature has not been determined.<ref name="entrez">{{cite web | title = Entrez Gene: SRPK1 SFRS protein kinase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6732| accessdate = }}</ref>
This gene encodes a serine/arginine protein kinase specific for the [[SR protein|SR]] (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and [[alternative splicing]] by regulating intracellular localization of splicing factors. A second alternatively spliced transcript variant for this gene has been described, but its full length nature has not been determined.<ref name="entrez">{{cite web | title = Entrez Gene: SRPK1 SFRS protein kinase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6732| accessdate = }}</ref>


== Possible anti-cancer target ==
SRPK1 enables [[angiogenesis]], which is regulated by VEGF, which either initiates or inhibits vessel formation depending on alternative splicing.


Some cancers are vascular endothelial growth factor (VEGF) dependant (for [[angiogenesis]]). SRPK1 activates (phosphorylates) [[VEGF splicing factor]].
== Medical applications ==
[[SRPK1 inhibitor]]s (e.g. 'SPHINX compounds' <ref>[http://exonate.com/wp-content/uploads/2014/07/Poster-BMS-April-2014.pdf Development of novel anti-angiogenic SRPK1 inhibitors]</ref>) are being investigated as treatments for prostate cancer.<ref>[http://www.sciencedaily.com/releases/2014/11/141110083723.htm Molecular breakthrough could halt spread of prostate cancer]</ref><ref name=Mavrou2014>{{cite journal |title=Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. |year=2014 | pmid=25381816 | doi=10.1038/onc.2014.360 |journal=Oncogene |pmc=4351909 |volume=34 |pages=4311–9 |vauthors=Mavrou A, Brakspear K, Hamdollah-Zadeh M, Damodaran G, Babaei-Jadidi R, Oxley J, Gillatt DA, Ladomery MR, Harper SJ, Bates DO, Oltean S}}</ref>


SRPK1 enables angiogenesis, which is regulated by VEGF, which either initiates or inhibits vessel formation depending on alternative splicing. In human [[prostate cancer]], levels of SRPK1 rose as a cancer becomes more aggressive. In a mouse model three doses per week of drugs designed to inhibit SRPK1 activity inhibited tumor vasculature and growth.<ref>{{Cite web|url=http://www.gizmag.com/single-molecule-prostate-cancer/34686|title=Targeting a single molecule may stop prostate cancer in its tracks|last=Lavars|first=Nick|date=November 11, 2014|website=www.gizmag.com|access-date=2016-04-10}}</ref>
Some cancers are [[vascular endothelial growth factor]] (VEGF) dependant (for [[angiogenesis]]). SRPK1 activates (phosphorylates) VEGF splicing factor. SRPK1 inhibitors (e.g. 'SPHINX compounds' <ref>{{cite web|url=http://exonate.com/wp-content/uploads/2014/07/Poster-BMS-April-2014.pdf|title=Development of novel anti-angiogenic SRPK1 inhibitors|publisher=}}</ref>) are under investigation as treatments for prostate cancer, [[acute myeloid leukemia]] and neovascular eye disease.<ref>{{cite web|url=https://www.sciencedaily.com/releases/2014/11/141110083723.htm|title=Molecular breakthrough could halt spread of prostate cancer|website=ScienceDaily}}</ref><ref name="Mavrou2014">{{cite journal |title=Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. |year=2014 | pmid=25381816 | doi=10.1038/onc.2014.360 |journal=Oncogene |pmc=4351909 |volume=34 |issue=33 |pages=4311–9 |vauthors=Mavrou A, Brakspear K, Hamdollah-Zadeh M, Damodaran G, Babaei-Jadidi R, Oxley J, Gillatt DA, Ladomery MR, Harper SJ, Bates DO, Oltean S}}</ref><ref>{{Cite journal|last=Batson|first=Jennifer|last2=Toop|first2=Hamish D.|last3=Redondo|first3=Clara|last4=Babaei-Jadidi|first4=Roya|last5=Chaikuad|first5=Apirat|last6=Wearmouth|first6=Stephen F.|last7=Gibbons|first7=Brian|last8=Allen|first8=Claire|last9=Tallant|first9=Cynthia|date=March 17, 2017|title=Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease|journal=ACS Chemical Biology|volume=12|issue=3|pages=825–832|doi=10.1021/acschembio.6b01048|issn=1554-8937|pmid=28135068}}</ref><ref>{{Cite journal|last=Vassiliou|first=George S.|last2=Kouzarides|first2=Tony|last3=Yusa|first3=Kosuke|last4=Bates|first4=David O.|last5=Jeremias|first5=Irmela|last6=Bradley|first6=Allan|last7=Pina|first7=Cristina|last8=Morris|first8=Jonathan C.|last9=Batson|first9=Jennifer|date=2018-12-19|title=SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4|url=https://www.nature.com/articles/s41467-018-07620-0|journal=Nature Communications|language=en|volume=9|issue=1|pages=5378|doi=10.1038/s41467-018-07620-0|pmid=30568163|pmc=6300607|issn=2041-1723}}</ref>


== Interactions ==
== Interactions ==
Line 35: Line 34:
* {{cite journal | vauthors = Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ | title = Human Autoimmune Sera as Molecular Probes for the Identification of an Autoantigen Kinase Signaling Pathway | journal = J. Exp. Med. | volume = 196 | issue = 9 | pages = 1213–25 | year = 2003 | pmid = 12417631 | pmc = 2194102 | doi = 10.1084/jem.20021167 }}
* {{cite journal | vauthors = Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ | title = Human Autoimmune Sera as Molecular Probes for the Identification of an Autoantigen Kinase Signaling Pathway | journal = J. Exp. Med. | volume = 196 | issue = 9 | pages = 1213–25 | year = 2003 | pmid = 12417631 | pmc = 2194102 | doi = 10.1084/jem.20021167 }}
* {{cite journal | vauthors = Mylonis I, Giannakouros T | title = Protein kinase CK2 phosphorylates and activates the SR protein-specific kinase 1 | journal = Biochem. Biophys. Res. Commun. | volume = 301 | issue = 3 | pages = 650–6 | year = 2003 | pmid = 12565829 | doi = 10.1016/S0006-291X(02)03055-3 }}
* {{cite journal | vauthors = Mylonis I, Giannakouros T | title = Protein kinase CK2 phosphorylates and activates the SR protein-specific kinase 1 | journal = Biochem. Biophys. Res. Commun. | volume = 301 | issue = 3 | pages = 650–6 | year = 2003 | pmid = 12565829 | doi = 10.1016/S0006-291X(02)03055-3 }}
* {{cite journal | vauthors = Aubol BE, Chakrabarti S, Ngo J, Shaffer J, Nolen B, Fu XD, Ghosh G, Adams JA | title = Processive phosphorylation of alternative splicing factor/splicing factor 2 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 100 | issue = 22 | pages = 12601–6 | year = 2004 | pmid = 14555757 | pmc = 240664 | doi = 10.1073/pnas.1635129100 }}
* {{cite journal | vauthors = Aubol BE, Chakrabarti S, Ngo J, Shaffer J, Nolen B, Fu XD, Ghosh G, Adams JA | title = Processive phosphorylation of alternative splicing factor/splicing factor 2 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 100 | issue = 22 | pages = 12601–6 | year = 2004 | pmid = 14555757 | pmc = 240664 | doi = 10.1073/pnas.1635129100 | bibcode = 2003PNAS..10012601A }}
* {{cite journal | vauthors = Li J, Hawkins IC, Harvey CD, Jennings JL, Link AJ, Patton JG | title = Regulation of Alternative Splicing by SRrp86 and Its Interacting Proteins | journal = Mol. Cell. Biol. | volume = 23 | issue = 21 | pages = 7437–47 | year = 2003 | pmid = 14559993 | pmc = 207616 | doi = 10.1128/MCB.23.21.7437-7447.2003 }}
* {{cite journal | vauthors = Li J, Hawkins IC, Harvey CD, Jennings JL, Link AJ, Patton JG | title = Regulation of Alternative Splicing by SRrp86 and Its Interacting Proteins | journal = Mol. Cell. Biol. | volume = 23 | issue = 21 | pages = 7437–47 | year = 2003 | pmid = 14559993 | pmc = 207616 | doi = 10.1128/MCB.23.21.7437-7447.2003 }}
* {{cite journal | vauthors = Mylonis I, Drosou V, Brancorsini S, Nikolakaki E, Sassone-Corsi P, Giannakouros T | title = Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis | journal = J. Biol. Chem. | volume = 279 | issue = 12 | pages = 11626–31 | year = 2004 | pmid = 14701833 | doi = 10.1074/jbc.M311949200 }}
* {{cite journal | vauthors = Mylonis I, Drosou V, Brancorsini S, Nikolakaki E, Sassone-Corsi P, Giannakouros T | title = Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis | journal = J. Biol. Chem. | volume = 279 | issue = 12 | pages = 11626–31 | year = 2004 | pmid = 14701833 | doi = 10.1074/jbc.M311949200 }}

Latest revision as of 18:27, 7 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Serine/threonine-protein kinase SRPK1 is an enzyme that in humans is encoded by the SRPK1 gene.[1][2][3]

Function

This gene encodes a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and alternative splicing by regulating intracellular localization of splicing factors. A second alternatively spliced transcript variant for this gene has been described, but its full length nature has not been determined.[3]

SRPK1 enables angiogenesis, which is regulated by VEGF, which either initiates or inhibits vessel formation depending on alternative splicing.

Medical applications

Some cancers are vascular endothelial growth factor (VEGF) dependant (for angiogenesis). SRPK1 activates (phosphorylates) VEGF splicing factor. SRPK1 inhibitors (e.g. 'SPHINX compounds' [4]) are under investigation as treatments for prostate cancer, acute myeloid leukemia and neovascular eye disease.[5][6][7][8]

Interactions

SRPK1 has been shown to interact with:

References

  1. Gui JF, Lane WS, Fu XD (Jul 1994). "A serine kinase regulates intracellular localization of splicing factors in the cell cycle". Nature. 369 (6482): 678–82. Bibcode:1994Natur.369..678G. doi:10.1038/369678a0. PMID 8208298.
  2. Wang HY, Arden KC, Bermingham JR, Viars CS, Lin W, Boyer AD, Fu XD (May 1999). "Localization of serine kinases, SRPK1 (SFRSK1) and SRPK2 (SFRSK2), specific for the SR family of splicing factors in mouse and human chromosomes". Genomics. 57 (2): 310–5. doi:10.1006/geno.1999.5770. PMID 10198174.
  3. 3.0 3.1 "Entrez Gene: SRPK1 SFRS protein kinase 1".
  4. "Development of novel anti-angiogenic SRPK1 inhibitors" (PDF).
  5. "Molecular breakthrough could halt spread of prostate cancer". ScienceDaily.
  6. Mavrou A, Brakspear K, Hamdollah-Zadeh M, Damodaran G, Babaei-Jadidi R, Oxley J, Gillatt DA, Ladomery MR, Harper SJ, Bates DO, Oltean S (2014). "Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer". Oncogene. 34 (33): 4311–9. doi:10.1038/onc.2014.360. PMC 4351909. PMID 25381816.
  7. Batson, Jennifer; Toop, Hamish D.; Redondo, Clara; Babaei-Jadidi, Roya; Chaikuad, Apirat; Wearmouth, Stephen F.; Gibbons, Brian; Allen, Claire; Tallant, Cynthia (March 17, 2017). "Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease". ACS Chemical Biology. 12 (3): 825–832. doi:10.1021/acschembio.6b01048. ISSN 1554-8937. PMID 28135068.
  8. Vassiliou, George S.; Kouzarides, Tony; Yusa, Kosuke; Bates, David O.; Jeremias, Irmela; Bradley, Allan; Pina, Cristina; Morris, Jonathan C.; Batson, Jennifer (2018-12-19). "SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4". Nature Communications. 9 (1): 5378. doi:10.1038/s41467-018-07620-0. ISSN 2041-1723. PMC 6300607. PMID 30568163.
  9. 9.0 9.1 Wang HY, Lin W, Dyck JA, Yeakley JM, Songyang Z, Cantley LC, Fu XD (Feb 1998). "SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells". J. Cell Biol. 140 (4): 737–50. doi:10.1083/jcb.140.4.737. PMC 2141757. PMID 9472028.
  10. Lukasiewicz R, Velazquez-Dones A, Huynh N, Hagopian J, Fu XD, Adams J, Ghosh G (Aug 2007). "Structurally unique yeast and mammalian serine-arginine protein kinases catalyze evolutionarily conserved phosphorylation reactions". J. Biol. Chem. 282 (32): 23036–43. doi:10.1074/jbc.M611305200. PMID 17517895.
  11. Umehara H, Nishii Y, Morishima M, Kakehi Y, Kioka N, Amachi T, Koizumi J, Hagiwara M, Ueda K (Feb 2003). "Effect of cisplatin treatment on speckled distribution of a serine/arginine-rich nuclear protein CROP/Luc7A". Biochem. Biophys. Res. Commun. 301 (2): 324–9. doi:10.1016/s0006-291x(02)03017-6. PMID 12565863.
  12. Koizumi J, Okamoto Y, Onogi H, Mayeda A, Krainer AR, Hagiwara M (Apr 1999). "The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs)". J. Biol. Chem. 274 (16): 11125–31. doi:10.1074/jbc.274.16.11125. PMID 10196197.
  13. Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ (Nov 2002). "Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway". J. Exp. Med. 196 (9): 1213–25. doi:10.1084/jem.20021167. PMC 2194102. PMID 12417631.
  14. Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias (April 2013). "The Protein Interaction Landscape of the Human CMGC Kinase Group". Cell Reports. 3 (4): 1306–1320. doi:10.1016/j.celrep.2013.03.027. PMID 23602568.

Further reading