Acute promyelocytic leukemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
Sogand (talk | contribs)
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Acute promyelocytic leukemia}}
{{Acute promyelocytic leukemia}}
{{CMG}} {{shyam}} {{AE}} {{S.G.}}
{{CMG}} {{shyam}} {{AE}} {{S.G.}}; {{GRR}} {{Nat}}


==Overview==
==Overview==
The [[pathophysiology]] of acute promyelocytic leukemia is most commonly due to a reciprocal [[Chromosomal translocation|translocation]] between [[chromosomes]] 15 and 17. The novel [[gene]] [[Product (biology)|product]] causes a [[differentiation]] block in [[myeloid]] [[Cell (biology)|cells]]. There are multiple different binding partners for the [[RARA gene|''RARA'' gene]], so multiple [[Chromosomal translocation|translocations]] can contribute to the pathogenesis of acute [[Promyelocytic leukemia protein|promyelocytic leukemia]].
The [[pathophysiology]] of acute promyelocytic leukemia is most commonly due to a reciprocal [[Chromosomal translocation|translocation]] between [[chromosomes]] 15 and 17. The novel gene product causes a [[differentiation]] block in [[myeloid]] [[Cell (biology)|cells]]. There are multiple different binding partners for the [[RARA gene|''RARA'' gene]], so multiple translocations can contribute to the pathogenesis of acute [[Promyelocytic leukemia protein|promyelocytic leukemia]].


==Pathophysiology==
==Pathophysiology==
* The [[pathophysiology]] of acute promyelocytic leukemia begins with a balanced [[Reciprocal translocation|reciprocal]] [[chromosomal translocation]] in [[hematopoietic stem cells]].<ref name="ZelentGuidez2001">{{cite journal|last1=Zelent|first1=Arthur|last2=Guidez|first2=Fabien|last3=Melnick|first3=Ari|last4=Waxman|first4=Samuel|last5=Licht|first5=Jonathan D|title=Translocations of the RARα gene in acute promyelocytic leukemia|journal=Oncogene|volume=20|issue=49|year=2001|pages=7186–7203|issn=0950-9232|doi=10.1038/sj.onc.1204766}}</ref>  
* The [[pathophysiology]] of acute promyelocytic leukemia begins with a balanced [[Reciprocal translocation|reciprocal]] [[chromosomal translocation]] in [[hematopoietic stem cells]].<ref name="ZelentGuidez2001">{{cite journal|last1=Zelent|first1=Arthur|last2=Guidez|first2=Fabien|last3=Melnick|first3=Ari|last4=Waxman|first4=Samuel|last5=Licht|first5=Jonathan D|title=Translocations of the RARα gene in acute promyelocytic leukemia|journal=Oncogene|volume=20|issue=49|year=2001|pages=7186–7203|issn=0950-9232|doi=10.1038/sj.onc.1204766}}</ref>  
* The [[chromosomal translocation]] involves the juxtaposition of the [[retinoic acid]] [[receptor]]- alpha [[gene]] (''[[RARA gene|RARA]]'') on the long arm of [[chromosome]] 17 with another [[gene]], most commonly the promyelocytic leukemia [[gene]] (''PML'') on the long arm of [[chromosome]] 15. The [[Chromosomal translocation|translocation]] is designated as t(15;17)(q22;q12).<ref name="pmid28529810">{{cite journal| author=Langabeer SE, Preston L, Kelly J, Goodyer M, Elhassadi E, Hayat A| title=Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. | journal=Case Rep Hematol | year= 2017 | volume= 2017 | issue=  | pages= 7657393 | pmid=28529810 | doi=10.1155/2017/7657393 | pmc=5424191 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28529810  }} </ref><ref>{{Cite journal
* The [[chromosomal translocation]] involves the juxtaposition of the [[retinoic acid]] [[receptor]]- alpha gene (''[[RARA gene|RARA]]'') on the long arm of chromosome 17 with another gene, most commonly the promyelocytic leukemia gene (''[[Progressive multifocal leukoencephalopathy|PML]]'') on the long arm of chromosome 15. The translocation is designated as t(15;17)(q22;q12).<ref name="pmid28529810">{{cite journal| author=Langabeer SE, Preston L, Kelly J, Goodyer M, Elhassadi E, Hayat A| title=Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. | journal=Case Rep Hematol | year= 2017 | volume= 2017 | issue=  | pages= 7657393 | pmid=28529810 | doi=10.1155/2017/7657393 | pmc=5424191 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28529810  }} </ref><ref>{{Cite journal
  | author = [[L. R. Hiorns]], [[T. Min]], [[G. J. Swansbury]], [[A. Zelent]], [[M. J. Dyer]] & [[D. Catovsky]]
  | author = [[L. R. Hiorns]], [[T. Min]], [[G. J. Swansbury]], [[A. Zelent]], [[M. J. Dyer]] & [[D. Catovsky]]
  | title = Interstitial insertion of retinoic acid receptor-alpha gene in acute promyelocytic leukemia with normal chromosomes 15 and 17
  | title = Interstitial insertion of retinoic acid receptor-alpha gene in acute promyelocytic leukemia with normal chromosomes 15 and 17
Line 20: Line 20:
}}</ref>
}}</ref>
*   
*   
* The ''PML-[[RARA gene|RARA]]'' [[Fusion gene|fusion]] [[Product (biology)|product]] is a [[Transcriptional regulation|transcriptional]] [[Regulator gene|regulator]] and [[Binding (molecular)|binds]] to [[retinoic acid]] response [[Chemical element|elements]] in the [[Promoter region|promoter regions]] of the [[genome]]. The PML-[[RARA gene|RARA]] [[Fusion gene|fusion]] [[Product (biology)|product]] serves to recruit co-repressors of [[gene]] [[Transcription (genetics)|transcription]], preventing [[myeloid]] [[differentiation]].<ref name="pmid26716387">{{cite journal| author=Falchi L, Verstovsek S, Ravandi-Kashani F, Kantarjian HM| title=The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy. | journal=Cancer | year= 2016 | volume= 122 | issue= 8 | pages= 1160-8 | pmid=26716387 | doi=10.1002/cncr.29852 | pmc=5042140 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26716387  }} </ref><ref name="urlRARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI">{{cite web |url=https://www.ncbi.nlm.nih.gov/gene/5914 |title=RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI |format= |work= |accessdate=}}</ref>
* The ''PML-[[RARA gene|RARA]]'' [[Fusion gene|fusion]] product is a [[Transcriptional regulation|transcriptional]] [[Regulator gene|regulator]] and [[Binding (molecular)|binds]] to [[retinoic acid]] response elements in the [[Promoter region|promoter regions]] of the [[genome]].  
* This is known as a differentiation block, since the [[Cells (biology)|cells]] are unable to [[differentiate]] into normal mature [[cells]]. The [[Cells (biology)|cells]] remain primitive and stem-like, which is the basis for the [[malignancy]]. The result of the [[Chromosome|chromosomal]] [[Chromosomal translocation|translocation]] is ineffective [[blood]] [[Cell (biology)|cell]] production and uncontrolled proliferation of [[malignant]] promyelocytes.<ref name="pmid28529810">{{cite journal| author=Langabeer SE, Preston L, Kelly J, Goodyer M, Elhassadi E, Hayat A| title=Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. | journal=Case Rep Hematol | year= 2017 | volume= 2017 | issue=  | pages= 7657393 | pmid=28529810 | doi=10.1155/2017/7657393 | pmc=5424191 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28529810  }} </ref>  
* The PML-RARA fusion product serves to recruit co-repressors of [[gene]] [[Transcription (genetics)|transcription]], preventing [[myeloid]] [[differentiation]].<ref name="pmid26716387">{{cite journal| author=Falchi L, Verstovsek S, Ravandi-Kashani F, Kantarjian HM| title=The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy. | journal=Cancer | year= 2016 | volume= 122 | issue= 8 | pages= 1160-8 | pmid=26716387 | doi=10.1002/cncr.29852 | pmc=5042140 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26716387  }} </ref><ref name="urlRARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI">{{cite web |url=https://www.ncbi.nlm.nih.gov/gene/5914 |title=RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI |format= |work= |accessdate=}}</ref>
* This is known as a differentiation block, since the cells are unable to [[differentiate]] into normal mature cells. The cells remain primitive and stem-like, which is the basis for the [[malignancy]]. The result of the chromosomal translocation is ineffective [[blood]] [[Cell (biology)|cell]] production and uncontrolled proliferation of [[malignant]] promyelocytes.<ref name="pmid28529810">{{cite journal| author=Langabeer SE, Preston L, Kelly J, Goodyer M, Elhassadi E, Hayat A| title=Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. | journal=Case Rep Hematol | year= 2017 | volume= 2017 | issue=  | pages= 7657393 | pmid=28529810 | doi=10.1155/2017/7657393 | pmc=5424191 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28529810  }} </ref>  
* In 95% of cases of acute promyelocytic leukemia, the translocation involved ''PML'' and ''[[RARA gene|RARA]]''. However, it is important to note that ''[[RARA gene|RARA]]'' has multiple other binding partners which can lead to the development or acute promyelocytic leukemia, as shown in the table below.<ref name="SaeedLogie2011">{{cite journal|last1=Saeed|first1=S|last2=Logie|first2=C|last3=Stunnenberg|first3=H G|last4=Martens|first4=J H A|title=Genome-wide functions of PML–RARα in acute promyelocytic leukaemia|journal=British Journal of Cancer|volume=104|issue=4|year=2011|pages=554–558|issn=0007-0920|doi=10.1038/sj.bjc.6606095}}</ref>
* In 95% of cases of acute promyelocytic leukemia, the translocation involved ''PML'' and ''[[RARA gene|RARA]]''. However, it is important to note that ''[[RARA gene|RARA]]'' has multiple other binding partners which can lead to the development or acute promyelocytic leukemia, as shown in the table below.<ref name="SaeedLogie2011">{{cite journal|last1=Saeed|first1=S|last2=Logie|first2=C|last3=Stunnenberg|first3=H G|last4=Martens|first4=J H A|title=Genome-wide functions of PML–RARα in acute promyelocytic leukaemia|journal=British Journal of Cancer|volume=104|issue=4|year=2011|pages=554–558|issn=0007-0920|doi=10.1038/sj.bjc.6606095}}</ref>
{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align="center"
{| style="border: 0px; font-size: 90%; margin: 3px; width: 600px" align="center"
Line 69: Line 70:
*Serves a [[protein]] [[chaperone]]
*Serves a [[protein]] [[chaperone]]
*Regulates the [[Cell (biology)|cell]] cycle
*Regulates the [[Cell (biology)|cell]] cycle
*Sequesters the tumor suppressor ''ARF'' in the nucleus and protects ''ARF'' from degradation
*Sequesters the tumor suppressor ''ARF'' in the [[nucleus]] and protects ''ARF'' from degradation
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Sensitive to all-''trans'' [[retinoic acid]]<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
*Sensitive to all-''trans'' [[retinoic acid]]<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
Line 81: Line 82:
11q13.4
11q13.4
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Contributes to a structural component of the nuclear matrix
*Contributes to a structural component of the [[nuclear]] [[matrix]]
*Interacts with microtubules
*Interacts with [[Microtubule|microtubules]]
*Contributes to mitotic spindle formation during cell division
*Contributes to [[mitotic]] [[spindle]] formation during [[cell division]]
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Sensitive to all-''trans'' retinoic acid<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
*Sensitive to all-''[[trans]]'' [[retinoic acid]]<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Rare translocation
*Rare [[Chromosomal translocation|translocation]]
|-
|-
| style="padding: 5px 5px; background: #DCDCDC;font-weight: bold" |
| style="padding: 5px 5px; background: #DCDCDC;font-weight: bold" |
Line 94: Line 95:
17q21.2
17q21.2
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Encodes a signal transducer and activator of transcription (STAT)
*Encodes a signal transducer and activator of [[Transcription (genetics)|transcription]] ([[STAT]])
*Serves an intracellular transduction molecule for cytokine signaling
*Serves an [[intracellular]] [[transduction]] [[molecule]] for [[cytokine]] signaling
*Translocates to the nucleus and functions as a transcription factor
*Translocates to the [[Cell nucleus|nucleus]] and functions as a [[Transcription (genetics)|transcription]] factor
*Involved in T cell receptor signaling  
*Involved in [[T cell]] [[Receptor (biochemistry)|receptor]] signaling  
*Involved in [[apoptosis]]
*Involved in [[apoptosis]]
*Sequesters the tumor suppressor ''ARF'' in the nucleus and protects ''ARF'' from degradation
*Sequesters the [[tumor]] suppressor ''ARF'' in the [[nucleus]] and protects ''[[ARF]]'' from [[degradation]]
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Resistant to all-''trans'' retinoic acid<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
*Resistant to all-''[[trans]]'' [[retinoic acid]]<ref name="pmid23556100">{{cite journal| author=Park J, Jurcic JG, Rosenblat T, Tallman MS| title=Emerging new approaches for the treatment of acute promyelocytic leukemia. | journal=Ther Adv Hematol | year= 2011 | volume= 2 | issue= 5 | pages= 335-52 | pmid=23556100 | doi=10.1177/2040620711410773 | pmc=3573416 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23556100  }} </ref>
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
*Rare translocation
*Rare [[Chromosomal translocation|translocation]]
|-
|-
|}
|}

Latest revision as of 16:14, 8 April 2019

Acute promyelocytic leukemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acute promyelocytic leukemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary PreventionSurgery

Secondary PreventionSurgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acute promyelocytic leukemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acute promyelocytic leukemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acute promyelocytic leukemia pathophysiology

CDC on Acute promyelocytic leukemia pathophysiology

Acute promyelocytic leukemia pathophysiology in the news

Blogs on Acute promyelocytic leukemia pathophysiology

Directions to Hospitals Treating Acute promyelocytic leukemia

Risk calculators and risk factors for Acute promyelocytic leukemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Shyam Patel [2] Associate Editor(s)-in-Chief: Sogand Goudarzi, MD [3]; Grammar Reviewer: Natalie Harpenau, B.S.[4]

Overview

The pathophysiology of acute promyelocytic leukemia is most commonly due to a reciprocal translocation between chromosomes 15 and 17. The novel gene product causes a differentiation block in myeloid cells. There are multiple different binding partners for the RARA gene, so multiple translocations can contribute to the pathogenesis of acute promyelocytic leukemia.

Pathophysiology

Translocation Partner Chromosomal Location Function Response to Therapy Other Features

PML

15q24.1

  • A member of the tripartite motif (TRIM) family
  • Localizes to nucleolar bodies and functions as a transcription factor and tumor suppressor
  • Regulate p53 response to oncogenic growth signals
  • Influenced by the cell cycle

PLZF (ZBTB16)[2][8]

11q23.2

NPM1

5q35.1

  • Encodes nucleophosmin 1 (a nucleolar shuttle protein)
  • Involved in centromere duplication
  • Serves a protein chaperone
  • Regulates the cell cycle
  • Sequesters the tumor suppressor ARF in the nucleus and protects ARF from degradation

NUMA[7]

11q13.4

STAT5B[8]

17q21.2

References

  1. Zelent, Arthur; Guidez, Fabien; Melnick, Ari; Waxman, Samuel; Licht, Jonathan D (2001). "Translocations of the RARα gene in acute promyelocytic leukemia". Oncogene. 20 (49): 7186–7203. doi:10.1038/sj.onc.1204766. ISSN 0950-9232.
  2. 2.0 2.1 2.2 Langabeer SE, Preston L, Kelly J, Goodyer M, Elhassadi E, Hayat A (2017). "Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia". Case Rep Hematol. 2017: 7657393. doi:10.1155/2017/7657393. PMC 5424191. PMID 28529810.
  3. L. R. Hiorns, T. Min, G. J. Swansbury, A. Zelent, M. J. Dyer & D. Catovsky (1994). "Interstitial insertion of retinoic acid receptor-alpha gene in acute promyelocytic leukemia with normal chromosomes 15 and 17". Blood. 83 (10): 2946–2951. PMID 8180390. Unknown parameter |month= ignored (help)
  4. Falchi L, Verstovsek S, Ravandi-Kashani F, Kantarjian HM (2016). "The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy". Cancer. 122 (8): 1160–8. doi:10.1002/cncr.29852. PMC 5042140. PMID 26716387.
  5. "RARA retinoic acid receptor alpha [Homo sapiens (human)] - Gene - NCBI".
  6. Saeed, S; Logie, C; Stunnenberg, H G; Martens, J H A (2011). "Genome-wide functions of PML–RARα in acute promyelocytic leukaemia". British Journal of Cancer. 104 (4): 554–558. doi:10.1038/sj.bjc.6606095. ISSN 0007-0920.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Park J, Jurcic JG, Rosenblat T, Tallman MS (2011). "Emerging new approaches for the treatment of acute promyelocytic leukemia". Ther Adv Hematol. 2 (5): 335–52. doi:10.1177/2040620711410773. PMC 3573416. PMID 23556100.
  8. 8.0 8.1 8.2 Chen C, Huang X, Wang K, Chen K, Gao D, Qian S (2018). "Early mortality in acute promyelocytic leukemia: Potential predictors". Oncol Lett. 15 (4): 4061–4069. doi:10.3892/ol.2018.7854. PMC 5835847. PMID 29541170.

Template:WH Template:WS