Intraprocedural stent thrombosis: Difference between revisions
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{SI}} | {{SI}} | ||
{{CMG}} {{AE}} [[User:Mohammed Salih|Mohammed Salih]] | {{CMG}} {{AE}} [[User:Mohammed Salih|Mohammed Salih, M.D.]] | ||
Line 7: | Line 7: | ||
==Overview== | ==Overview== | ||
Intraprocedural stent [[thrombosis]] ([[IPST]]) is the formation of a new, increasing, or reappearing occlusive or non-occlusive [[thrombus]] of grade ≤2 that occurs before the completion of the [[Percutaneous Coronary Intervention]] ([[PCI|PCI)]] procedure, and is specifically located within the recently deployed [[stent]] or immediately adjacent to it. | Intraprocedural stent [[thrombosis]] ([[IPST]]) is the formation of a new, increasing, or reappearing occlusive or non-occlusive [[thrombus]] of grade ≤2 that occurs before the completion of the [[Percutaneous Coronary Intervention|percutaneous coronary intervention]] ([[PCI|PCI)]] procedure, and is specifically located within the recently deployed [[stent]] or immediately adjacent to it. It is considered a rare subset of Intraprocedural thrombotic events ([[IPTE]]). Although it rarely happens, it has been strongly associated with unfavorable periprocedural outcomes. It is defined as an angiographically confirmed intraluminal filling defect within the stent that results in occlusive or non-occlusive thrombolysis in [[myocardial infarction]] (TIMI) grade-0 or 1 anterograde flow, secondary to the development of new or increasing thrombus within or adjacent to a recently implanted stent, occurring during the index procedure or before the [[percutaneous coronary intervention]] (PCI) is completed. It is also present when the baseline level of thrombus was decreasing or has resolved after [[balloon angioplasty]] or [[thrombus]] aspiration, but increased again any time after stent implantation, including stent postdilatation. In the large-scale CHAMPION PHOENIX trial, IPST was a relatively infrequent event, occurring in <1% of patients undergoing [[PCI]], but was strongly associated with subsequent ischemic events, including out-of-laboratory ST, [[MI]], and [[death]]. The reduction in [[IPST]] with [[cangrelor]] in CHAMPION PHOENIX contributed to this agent's effectiveness in reducing the rates of ARC-defined stent [[thrombosis]] and [[MI]]. These data provide strong evidence for a significant association between [[IPST]] and adverse short-term clinical outcomes after PCI and support the inclusion of [[IPST]] as an important endpoint in future pharmacological and device trials. | ||
==Pathophysiology== | ==Pathophysiology== | ||
* IPST can occur with [[bare metal stent]]s and [[DES]]. Several theories suggest possible explanation to IPST in [[DES]]. DES characteristics, such as drug-induced thrombogenicity, whether using [[sirolimus]] or [[paclitaxe]]l, and its in-vitro [[platelet]] aggregation effects<ref name="pmid9870481">{{cite journal| author=Babinska A, Markell MS, Salifu MO, Akoad M, Ehrlich YH, Kornecki E| title=Enhancement of human platelet aggregation and secretion induced by rapamycin. | journal=Nephrol Dial Transplant | year= 1998 | volume= 13 | issue= 12 | pages= 3153-9 | pmid=9870481 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9870481 }} </ref> along with its remarkable lipophilic bioavailability within the coronary milieu,<ref name="pmid14727933">{{cite journal| author=McKeage K, Murdoch D, Goa KL| title=The sirolimus-eluting stent: a review of its use in the treatment of coronary artery disease. | journal=Am J Cardiovasc Drugs | year= 2003 | volume= 3 | issue= 3 | pages= 211-30 | pmid=14727933 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14727933 }} </ref> stent platform effect,<ref name="pmid15029110">{{cite journal| author=Kereiakes DJ, Choo JK, Young JJ, Broderick TM| title=Thrombosis and drug-eluting stents: a critical appraisal. | journal=Rev Cardiovasc Med | year= 2004 | volume= 5 | issue= 1 | pages= 9-15 | pmid=15029110 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15029110 }} </ref> polymer coating material,<ref name="pmid15029110">{{cite journal| author=Kereiakes DJ, Choo JK, Young JJ, Broderick TM| title=Thrombosis and drug-eluting stents: a critical appraisal. | journal=Rev Cardiovasc Med | year= 2004 | volume= 5 | issue= 1 | pages= 9-15 | pmid=15029110 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15029110 }} </ref> and open-cell stent design all seem plausible hypotheses that nonetheless require further validation. Operator-dependent factors, such as adequate stent placement have also been postulated.<ref name="pmid15148281">{{cite journal| author=Chieffo A, Bonizzoni E, Orlic D, Stankovic G, Rogacka R, Airoldi F et al.| title=Intraprocedural stent thrombosis during implantation of sirolimus-eluting stents. | journal=Circulation | year= 2004 | volume= 109 | issue= 22 | pages= 2732-6 | pmid=15148281 | doi=10.1161/01.CIR.0000131890.83839.5B | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15148281 }} </ref> | * IPST can occur with [[bare metal stent]]s and [[DES]].<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing [[percutaneous coronary intervention]] for [[acute coronary syndromes]]. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> Several theories suggest possible explanation to IPST in [[DES]]. DES characteristics, such as drug-induced thrombogenicity, whether using [[sirolimus]] or [[paclitaxe]]l, and its in-vitro [[platelet]] aggregation effects<ref name="pmid9870481">{{cite journal| author=Babinska A, Markell MS, Salifu MO, Akoad M, Ehrlich YH, Kornecki E| title=Enhancement of human platelet aggregation and secretion induced by rapamycin. | journal=Nephrol Dial Transplant | year= 1998 | volume= 13 | issue= 12 | pages= 3153-9 | pmid=9870481 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9870481 }} </ref> along with its remarkable lipophilic bioavailability within the coronary milieu,<ref name="pmid14727933">{{cite journal| author=McKeage K, Murdoch D, Goa KL| title=The sirolimus-eluting stent: a review of its use in the treatment of coronary artery disease. | journal=Am J Cardiovasc Drugs | year= 2003 | volume= 3 | issue= 3 | pages= 211-30 | pmid=14727933 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14727933 }} </ref> stent platform effect,<ref name="pmid15029110">{{cite journal| author=Kereiakes DJ, Choo JK, Young JJ, Broderick TM| title=Thrombosis and drug-eluting stents: a critical appraisal. | journal=Rev Cardiovasc Med | year= 2004 | volume= 5 | issue= 1 | pages= 9-15 | pmid=15029110 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15029110 }} </ref> polymer coating material,<ref name="pmid15029110">{{cite journal| author=Kereiakes DJ, Choo JK, Young JJ, Broderick TM| title=Thrombosis and drug-eluting stents: a critical appraisal. | journal=Rev Cardiovasc Med | year= 2004 | volume= 5 | issue= 1 | pages= 9-15 | pmid=15029110 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15029110 }} </ref> and open-cell stent design all seem plausible hypotheses that nonetheless require further validation. Operator-dependent factors, such as adequate stent placement have also been postulated.<ref name="pmid15148281">{{cite journal| author=Chieffo A, Bonizzoni E, Orlic D, Stankovic G, Rogacka R, Airoldi F et al.| title=Intraprocedural stent thrombosis during implantation of sirolimus-eluting stents. | journal=Circulation | year= 2004 | volume= 109 | issue= 22 | pages= 2732-6 | pmid=15148281 | doi=10.1161/01.CIR.0000131890.83839.5B | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15148281 }} </ref><ref name="pmid23551235">{{cite journal| author=Xu Y, Qu X, Fang W, Chen H| title=Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome. | journal=J Interv Cardiol | year= 2013 | volume= 26 | issue= 3 | pages= 215-20 | pmid=23551235 | doi=10.1111/joic.12029 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23551235 }} </ref> | ||
* [[AT-III]] is a naturally occurring [[thrombin inhibitor]] that suppresses tissue factor–factor VIIa complex, factor IXa, Xa and [[thrombin]]. Its irreversible combination with [[thrombin]] inhibits the effect of [[thrombin]] on [[fibrinogen]] and [[clot]] formation<ref name="pmid26188821">{{cite journal |vauthors=Jao YT, Fang CC |title=Intraprocedural stent thrombosis, antithrombin-III dependent heparin resistance and crush technique for bifurcation lesions: the "Devil's Triangle" |journal=Int. J. Cardiol. |volume=199 |issue= |pages=71–4 |date=November 2015 |pmid=26188821 |doi=10.1016/j.ijcard.2015.07.008 |url=}}</ref>. | * [[AT-III]] is a naturally occurring [[thrombin inhibitor]] that suppresses tissue factor–factor VIIa complex, factor IXa, Xa and [[thrombin]]. Its irreversible combination with [[thrombin]] inhibits the effect of [[thrombin]] on [[fibrinogen]] and [[clot]] formation<ref name="pmid26188821">{{cite journal |vauthors=Jao YT, Fang CC |title=Intraprocedural stent thrombosis, antithrombin-III dependent heparin resistance and crush technique for bifurcation lesions: the "Devil's Triangle" |journal=Int. J. Cardiol. |volume=199 |issue= |pages=71–4 |date=November 2015 |pmid=26188821 |doi=10.1016/j.ijcard.2015.07.008 |url=}}</ref>. | ||
* AT-III deficiency or decreased activity increase thrombin and [[fibrinogen]] activities, and thus [[clot]] formation. [[AT-III deficiency]] can be [[congenital]] or acquired. * The [[congenital]] form occurs in 1/3000 people, while the acquired form is seen in [[disseminated intravascular coagulation]] and [[nephrotic syndrome]] as a result of increased loss, or in [[malnutrition]], [[liver cirrhosis]] or failure, as a result of decreased synthesis. | * AT-III deficiency or decreased activity increase thrombin and [[fibrinogen]] activities, and thus [[clot]] formation. [[AT-III deficiency]] can be [[congenital]] or acquired. * The [[congenital]] form occurs in 1/3000 people, while the acquired form is seen in [[disseminated intravascular coagulation]] and [[nephrotic syndrome]] as a result of increased loss, or in [[malnutrition]], [[liver cirrhosis]] or failure, as a result of decreased synthesis. | ||
Line 16: | Line 16: | ||
* [[Heparin]] binds to AT-III and enhances the rate of AT-III and [[thrombin]] reaction. This interaction activates AT-III to start an [[anticoagulation]] cascade that inactivates thrombin, [[factor Xa]] and other [[clotting factors]]. | * [[Heparin]] binds to AT-III and enhances the rate of AT-III and [[thrombin]] reaction. This interaction activates AT-III to start an [[anticoagulation]] cascade that inactivates thrombin, [[factor Xa]] and other [[clotting factors]]. | ||
* [[Heparin]] has no anticoagulant effect in AT-III depleted [[plasma]]. | * [[Heparin]] has no anticoagulant effect in AT-III depleted [[plasma]]. | ||
* [[Heparin]] resistance is defined as the | * [[Heparin]] resistance is defined as the unexpected steady levels of activating clotting time while the patient is receiving adequate dose of heparin and having an adequate plasma concentration. | ||
* In cardiothoracic surgery, | * In cardiothoracic surgery, heparin resistance is ACT of b400–600 s after 300–600 U/kg of UFH has been given. | ||
* In patients with [[venous thromboembolism]], HR is defined as needing N35,000 U of UFH in 24 h to achieve therapeutic levels. | * In patients with [[venous thromboembolism]], HR is defined as needing N35,000 U of [[UFH]] in 24 h to achieve therapeutic levels. | ||
* In [[interventional cardiology]], an ACT of N250 s is needed to allow for a safe procedure. | * In [[interventional cardiology]], an ACT of N250 s is needed to allow for a safe procedure. | ||
* Heparin resistance can be AT-dependent or independent. In AT-dependent HR, the anticoagulant effect of heparin decreases when AT-III activity is b80%, and is completely ineffective at b70%. | * Heparin resistance can be AT-dependent or independent. In AT-dependent HR, the anticoagulant effect of heparin decreases when AT-III activity is b80%, and is completely ineffective at b70%. | ||
* AT independent mechanisms include heparin induced thrombocytopenia due to neutralization of heparin effect from binding to platelet factor 4; and increased levels and enhanced activity of factor VIII and fibrinogen<ref name="pmid24184169">{{cite journal |vauthors=Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec S, Hamm CW, Mahaffey KW, White HD, Bhatt DL |title=Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention) |journal=J. Am. Coll. Cardiol. |volume=63 |issue=7 |pages=619–629 |date=February 2014 |pmid=24184169 |doi=10.1016/j.jacc.2013.10.022 |url=}}</ref>. | * AT independent mechanisms include heparin induced thrombocytopenia due to neutralization of heparin effect from binding to platelet factor 4; and increased levels and enhanced activity of factor VIII and fibrinogen<ref name="pmid24184169">{{cite journal |vauthors=Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec S, Hamm CW, Mahaffey KW, White HD, Bhatt DL |title=Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention) |journal=J. Am. Coll. Cardiol. |volume=63 |issue=7 |pages=619–629 |date=February 2014 |pmid=24184169 |doi=10.1016/j.jacc.2013.10.022 |url=}}</ref>. | ||
* In critically ill patients with coexisting severe inflammatory illnesses, where circulating acute phase reactants like platelet-derived factors, plasma proteins, and factor VIII levels are elevated, anti-Xa activity would be a more accurate measure of heparin activity. The reason is that these positively charged proteins readily bind to negatively charged heparin, thereby inhibiting and neutralizing its effect resulting in HR<ref name="pmid26188821">{{cite journal |vauthors=Jao YT, Fang CC |title=Intraprocedural stent thrombosis, antithrombin-III dependent heparin resistance and crush technique for bifurcation lesions: the "Devil's Triangle" |journal=Int. J. Cardiol. |volume=199 |issue= |pages=71–4 |date=November 2015 |pmid=26188821 |doi=10.1016/j.ijcard.2015.07.008 |url=}}</ref>. | * In critically ill patients with coexisting severe inflammatory illnesses, where circulating acute phase reactants like platelet-derived factors, plasma proteins, and factor VIII levels are elevated, anti-Xa activity would be a more accurate measure of heparin activity. The reason is that these positively charged proteins readily bind to negatively charged heparin, thereby inhibiting and neutralizing its effect resulting in HR<ref name="pmid26188821">{{cite journal |vauthors=Jao YT, Fang CC |title=Intraprocedural stent thrombosis, antithrombin-III dependent heparin resistance and crush technique for bifurcation lesions: the "Devil's Triangle" |journal=Int. J. Cardiol. |volume=199 |issue= |pages=71–4 |date=November 2015 |pmid=26188821 |doi=10.1016/j.ijcard.2015.07.008 |url=}}</ref>. | ||
* Patients undergoing elective [[angiography]] and/or [[PCI]] are not usually screened for possible [[congenital]] or acquired deficiencies via natural anticoagulants prior to the procedure. | * Patients undergoing elective [[angiography]] and/or [[PCI]] are not usually screened for possible [[congenital]] or acquired deficiencies via natural anticoagulants prior to the procedure. | ||
* Measuring anti-Xa activity instead of [[APTT]] or ACT is time consuming and not readily available in other facilities, especially in patients presenting with AMI, where door-to-balloon time is golden. | * Measuring anti-Xa activity instead of [[APTT]] or ACT is time consuming and not readily available in other facilities, especially in patients presenting with AMI, where door-to-balloon time is golden. | ||
* Adventitial tissues and medial [[smooth muscle]] cells (SMC) are important sources of tissue factors that are responsible primarily for triggering the extrinsic clotting pathway. | * Adventitial tissues and medial [[smooth muscle]] cells (SMC) are important sources of tissue factors that are responsible primarily for triggering the extrinsic clotting pathway. | ||
* [[Thrombosis]] may occur when a large amount of [[tissue factor]] is released into the blood from the medial SMCs following medial tear secondary to excessive injury during stenting<ref name="pmid15950573">{{cite journal |vauthors=Biondi-Zoccai GG, Sangiorgi GM, Chieffo A, Vittori G, Falchetti E, Margheri M, Barbagallo R, Tamburino C, Remigi E, Briguori C, Iakovou I, Agostoni P, Tsagalou E, Melzi G, Michev I, Airoldi F, Montorfano M, Carlino M, Colombo A |title=Validation of predictors of intraprocedural stent thrombosis in the drug-eluting stent era |journal=Am. J. Cardiol. |volume=95 |issue=12 |pages=1466–8 |date=June 2005 |pmid=15950573 |doi=10.1016/j.amjcard.2005.01.099 |url=}}</ref>. | * [[Thrombosis]] may occur when a large amount of [[tissue factor]] is released into the blood from the medial SMCs following medial tear secondary to excessive injury during stenting<ref name="pmid15950573">{{cite journal |vauthors=Biondi-Zoccai GG, Sangiorgi GM, Chieffo A, Vittori G, Falchetti E, Margheri M, Barbagallo R, Tamburino C, Remigi E, Briguori C, Iakovou I, Agostoni P, Tsagalou E, Melzi G, Michev I, Airoldi F, Montorfano M, Carlino M, Colombo A |title=Validation of predictors of intraprocedural stent thrombosis in the drug-eluting stent era |journal=Am. J. Cardiol. |volume=95 |issue=12 |pages=1466–8 |date=June 2005 |pmid=15950573 |doi=10.1016/j.amjcard.2005.01.099 |url=}}</ref>. | ||
* Factors related to the procedures, including dissection of stent edge, remaining lesion [[stenosis]], incomplete stent coverage, incomplete apposition, and incomplete expansion,can cause stent [[thrombosis]]<ref name="pmid31141303">{{cite journal |vauthors=Inoguchi Y, Kaku B, Kitagawa N, Katsuda S |title=Novel use of a stent graft for uncontrollable intraprocedural stent thrombosis in a patient with acute myocardial infarction |journal=Catheter Cardiovasc Interv |volume= |issue= |pages= |date=May 2019 |pmid=31141303 |doi=10.1002/ccd.28346 |url=}}</ref>. | * Factors related to the procedures, including dissection of stent edge, remaining lesion [[stenosis]], incomplete stent coverage, incomplete apposition, and incomplete expansion,can cause stent [[thrombosis]]<ref name="pmid31141303">{{cite journal |vauthors=Inoguchi Y, Kaku B, Kitagawa N, Katsuda S |title=Novel use of a stent graft for uncontrollable intraprocedural stent thrombosis in a patient with acute myocardial infarction |journal=Catheter Cardiovasc Interv |volume= |issue= |pages= |date=May 2019 |pmid=31141303 |doi=10.1002/ccd.28346 |url=}}</ref>. | ||
Line 33: | Line 33: | ||
* IPST occurred in 0.7% of PCI when frame-by-frame analysis was done for 6591 patients enrolled in the ACUITY and HORIZONS-AMI (Harmonizing Outcomes With Revascularization And Stents In Acute Myocardial Infarction) trials.<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | * IPST occurred in 0.7% of PCI when frame-by-frame analysis was done for 6591 patients enrolled in the ACUITY and HORIZONS-AMI (Harmonizing Outcomes With Revascularization And Stents In Acute Myocardial Infarction) trials.<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | ||
* Similarly, an IPST rate of 1.2% was document in another study in 2013 following enrollment of 1901 patients.<ref name="Xu-2013">{{Cite journal | last1 = Xu | first1 = Y. | last2 = Qu | first2 = X. | last3 = Fang | first3 = W. | last4 = Chen | first4 = H. | title = Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome. | journal = J Interv Cardiol | volume = 26 | issue = 3 | pages = 215-20 | month = Jun | year = 2013 | doi = 10.1111/joic.12029 | PMID = 23551235 }}</ref> | * Similarly, an [[IPST]] rate of 1.2% was document in another study in 2013 following enrollment of 1901 patients.<ref name="Xu-2013">{{Cite journal | last1 = Xu | first1 = Y. | last2 = Qu | first2 = X. | last3 = Fang | first3 = W. | last4 = Chen | first4 = H. | title = Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome. | journal = J Interv Cardiol | volume = 26 | issue = 3 | pages = 215-20 | month = Jun | year = 2013 | doi = 10.1111/joic.12029 | PMID = 23551235 }}</ref> | ||
* The incidence of IPST was 0.7% in two other studies, the first of which reviewed the frequency of IPST in 1320 patients less than 75 years old undergoing [[PCI]] with first generation [[DES]] and whereas the second study enrolled 670 patients undergoing elective DES.<ref name="pmid15148281">{{cite journal| author=Chieffo A, Bonizzoni E, Orlic D, Stankovic G, Rogacka R, Airoldi F et al.| title=Intraprocedural stent thrombosis during implantation of sirolimus-eluting stents. | journal=Circulation | year= 2004 | volume= 109 | issue= 22 | pages= 2732-6 | pmid=15148281 | doi=10.1161/01.CIR.0000131890.83839.5B | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15148281 }} </ref><ref name="pmid15950573">{{cite journal| author=Biondi-Zoccai GG, Sangiorgi GM, Chieffo A, Vittori G, Falchetti E, Margheri M et al.| title=Validation of predictors of intraprocedural stent thrombosis in the drug-eluting stent era. | journal=Am J Cardiol | year= 2005 | volume= 95 | issue= 12 | pages= 1466-8 | pmid=15950573 | doi=10.1016/j.amjcard.2005.01.099 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15950573 }} </ref> | * The [[incidence]] of [[IPST]] was 0.7% in two other studies, the first of which reviewed the frequency of [[IPST]] in 1320 patients less than 75 years old undergoing [[PCI]] with first generation [[DES]] and whereas the second study enrolled 670 patients undergoing elective [[DES]].<ref name="pmid15148281">{{cite journal| author=Chieffo A, Bonizzoni E, Orlic D, Stankovic G, Rogacka R, Airoldi F et al.| title=Intraprocedural stent thrombosis during implantation of sirolimus-eluting stents. | journal=Circulation | year= 2004 | volume= 109 | issue= 22 | pages= 2732-6 | pmid=15148281 | doi=10.1161/01.CIR.0000131890.83839.5B | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15148281 }} </ref><ref name="pmid15950573">{{cite journal| author=Biondi-Zoccai GG, Sangiorgi GM, Chieffo A, Vittori G, Falchetti E, Margheri M et al.| title=Validation of predictors of intraprocedural stent thrombosis in the drug-eluting stent era. | journal=Am J Cardiol | year= 2005 | volume= 95 | issue= 12 | pages= 1466-8 | pmid=15950573 | doi=10.1016/j.amjcard.2005.01.099 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15950573 }} </ref> | ||
* Finally, 1.7% of 181 patients had IPST when evaluating DES implantation in bifurcation lesions using [[Coronary artery bifurcation#crush Technique|“crush technique”]] in 2005.<ref name="pmid16098424">{{cite journal| author=Ge L, Airoldi F, Iakovou I, Cosgrave J, Michev I, Sangiorgi GM et al.| title=Clinical and angiographic outcome after implantation of drug-eluting stents in bifurcation lesions with the crush stent technique: importance of final kissing balloon post-dilation. | journal=J Am Coll Cardiol | year= 2005 | volume= 46 | issue= 4 | pages= 613-20 | pmid=16098424 | doi=10.1016/j.jacc.2005.05.032 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16098424 }} </ref> | * Finally, 1.7% of 181 patients had [[IPST]] when evaluating [[DES]] [[implantation]] in [[bifurcation]] lesions using [[Coronary artery bifurcation#crush Technique|“crush technique”]] in 2005.<ref name="pmid16098424">{{cite journal| author=Ge L, Airoldi F, Iakovou I, Cosgrave J, Michev I, Sangiorgi GM et al.| title=Clinical and angiographic outcome after implantation of drug-eluting stents in bifurcation lesions with the crush stent technique: importance of final kissing balloon post-dilation. | journal=J Am Coll Cardiol | year= 2005 | volume= 46 | issue= 4 | pages= 613-20 | pmid=16098424 | doi=10.1016/j.jacc.2005.05.032 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16098424 }} </ref> | ||
==Risk Factors== | ==Risk Factors== | ||
Interestingly, conventional risk factors and correlates of early and late postprocedural stent thrombosis do not seem to be the same as those for IPST. | Interestingly, conventional risk factors and correlates of early and late postprocedural stent [[thrombosis]] do not seem to be the same as those for [[IPST]]. | ||
Each risk factor is likely to predispose the patient to stent thrombosis, which is characterized by platelet activation and aggregation, by one or more of the following mechanisms<ref name="pmid17325255">{{cite journal |vauthors=Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R |title=Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications |journal=Circulation |volume=115 |issue=8 |pages=1051–8 |date=February 2007 |pmid=17325255 |doi=10.1161/CIRCULATIONAHA.106.675934 |url=}}</ref><ref name="pmid15870416">{{cite journal |vauthors=Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A |title=Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents |journal=JAMA |volume=293 |issue=17 |pages=2126–30 |date=May 2005 |pmid=15870416 |doi=10.1001/jama.293.17.2126 |url=}}</ref><ref name="pmid19371823">{{cite journal |vauthors=van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, Koolen JJ, Brueren BR, Dambrink JH, Hautvast RW, Verheugt FW, ten Berg JM |title=Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry |journal=J. Am. Coll. Cardiol. |volume=53 |issue=16 |pages=1399–409 |date=April 2009 |pmid=19371823 |doi=10.1016/j.jacc.2008.12.055 |url=}}</ref><ref name="pmid11306525">{{cite journal |vauthors=Cutlip DE, Baim DS, Ho KK, Popma JJ, Lansky AJ, Cohen DJ, Carrozza JP, Chauhan MS, Rodriguez O, Kuntz RE |title=Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials |journal=Circulation |volume=103 |issue=15 |pages=1967–71 |date=April 2001 |pmid=11306525 |doi=10.1161/01.cir.103.15.1967 |url=}}</ref><ref name="pmid8041414">{{cite journal |vauthors=Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M |title=A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators |journal=N. Engl. J. Med. |volume=331 |issue=8 |pages=496–501 |date=August 1994 |pmid=8041414 |doi=10.1056/NEJM199408253310802 |url=}}</ref><ref name="pmid8124824">{{cite journal |vauthors=Leon MB, Wong SC |title=Intracoronary stents. A breakthrough technology or just another small step? |journal=Circulation |volume=89 |issue=3 |pages=1323–7 |date=March 1994 |pmid=8124824 |doi=10.1161/01.cir.89.3.1323 |url=}}</ref><ref name="pmid8041413">{{cite journal |vauthors=Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P |title=A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group |journal=N. Engl. J. Med. |volume=331 |issue=8 |pages=489–95 |date=August 1994 |pmid=8041413 |doi=10.1056/NEJM199408253310801 |url=}}</ref><ref name="pmid8996288">{{cite journal |vauthors=Moussa I, Di Mario C, Reimers B, Akiyama T, Tobis J, Colombo A |title=Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome |journal=J. Am. Coll. Cardiol. |volume=29 |issue=1 |pages=6–12 |date=January 1997 |pmid=8996288 |doi=10.1016/s0735-1097(96)00452-4 |url=}}</ref><ref name="pmid12821553">{{cite journal |vauthors=Cheneau E, Leborgne L, Mintz GS, Kotani J, Pichard AD, Satler LF, Canos D, Castagna M, Weissman NJ, Waksman R |title=Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study |journal=Circulation |volume=108 |issue=1 |pages=43–7 |date=July 2003 |pmid=12821553 |doi=10.1161/01.CIR.0000078636.71728.40 |url=}}</ref><ref name="pmid11207080">{{cite journal |vauthors=Scheller B, Hennen B, Pohl A, Schieffer H, Markwirth T |title=Acute and subacute stent occlusion; risk-reduction by ionic contrast media |journal=Eur. Heart J. |volume=22 |issue=5 |pages=385–91 |date=March 2001 |pmid=11207080 |doi=10.1053/euhj.2000.2319 |url=}}</ref><ref name="pmid16216853">{{cite journal |vauthors=Roiron C, Sanchez P, Bouzamondo A, Lechat P, Montalescot G |title=Drug eluting stents: an updated meta-analysis of randomised controlled trials |journal=Heart |volume=92 |issue=5 |pages=641–9 |date=May 2006 |pmid=16216853 |pmc=1860942 |doi=10.1136/hrt.2005.061622 |url=}}</ref><ref name="pmid18804739">{{cite journal |vauthors=Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Jüni P, Vaina S, Hellige G, Tsuchida K, Morger C, Boersma E, Kukreja N, Meier B, Serruys PW, Windecker S |title=Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study |journal=J. Am. Coll. Cardiol. |volume=52 |issue=14 |pages=1134–40 |date=September 2008 |pmid=18804739 |doi=10.1016/j.jacc.2008.07.006 |url=}}</ref><ref name="pmid19204315">{{cite journal |vauthors=Cook S, Windecker S |title=Early stent thrombosis: past, present, and future |journal=Circulation |volume=119 |issue=5 |pages=657–9 |date=February 2009 |pmid=19204315 |doi=10.1161/CIRCULATIONAHA.108.842757 |url=}}</ref><ref name="pmid16534015">{{cite journal |vauthors=Urban P, Gershlick AH, Guagliumi G, Guyon P, Lotan C, Schofer J, Seth A, Sousa JE, Wijns W, Berge C, Deme M, Stoll HP |title=Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry |journal=Circulation |volume=113 |issue=11 |pages=1434–41 |date=March 2006 |pmid=16534015 |doi=10.1161/CIRCULATIONAHA.104.532242 |url=}}</ref>: | Each risk factor is likely to predispose the patient to stent [[thrombosis]], which is characterized by [[platelet]] activation and aggregation, by one or more of the following mechanisms:<ref name="pmid17325255">{{cite journal |vauthors=Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R |title=Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications |journal=Circulation |volume=115 |issue=8 |pages=1051–8 |date=February 2007 |pmid=17325255 |doi=10.1161/CIRCULATIONAHA.106.675934 |url=}}</ref><ref name="pmid15870416">{{cite journal |vauthors=Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A |title=Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents |journal=JAMA |volume=293 |issue=17 |pages=2126–30 |date=May 2005 |pmid=15870416 |doi=10.1001/jama.293.17.2126 |url=}}</ref><ref name="pmid19371823">{{cite journal |vauthors=van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, Koolen JJ, Brueren BR, Dambrink JH, Hautvast RW, Verheugt FW, ten Berg JM |title=Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry |journal=J. Am. Coll. Cardiol. |volume=53 |issue=16 |pages=1399–409 |date=April 2009 |pmid=19371823 |doi=10.1016/j.jacc.2008.12.055 |url=}}</ref><ref name="pmid11306525">{{cite journal |vauthors=Cutlip DE, Baim DS, Ho KK, Popma JJ, Lansky AJ, Cohen DJ, Carrozza JP, Chauhan MS, Rodriguez O, Kuntz RE |title=Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials |journal=Circulation |volume=103 |issue=15 |pages=1967–71 |date=April 2001 |pmid=11306525 |doi=10.1161/01.cir.103.15.1967 |url=}}</ref><ref name="pmid8041414">{{cite journal |vauthors=Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M |title=A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators |journal=N. Engl. J. Med. |volume=331 |issue=8 |pages=496–501 |date=August 1994 |pmid=8041414 |doi=10.1056/NEJM199408253310802 |url=}}</ref><ref name="pmid8124824">{{cite journal |vauthors=Leon MB, Wong SC |title=Intracoronary stents. A breakthrough technology or just another small step? |journal=Circulation |volume=89 |issue=3 |pages=1323–7 |date=March 1994 |pmid=8124824 |doi=10.1161/01.cir.89.3.1323 |url=}}</ref><ref name="pmid8041413">{{cite journal |vauthors=Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P |title=A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group |journal=N. Engl. J. Med. |volume=331 |issue=8 |pages=489–95 |date=August 1994 |pmid=8041413 |doi=10.1056/NEJM199408253310801 |url=}}</ref><ref name="pmid8996288">{{cite journal |vauthors=Moussa I, Di Mario C, Reimers B, Akiyama T, Tobis J, Colombo A |title=Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome |journal=J. Am. Coll. Cardiol. |volume=29 |issue=1 |pages=6–12 |date=January 1997 |pmid=8996288 |doi=10.1016/s0735-1097(96)00452-4 |url=}}</ref><ref name="pmid12821553">{{cite journal |vauthors=Cheneau E, Leborgne L, Mintz GS, Kotani J, Pichard AD, Satler LF, Canos D, Castagna M, Weissman NJ, Waksman R |title=Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study |journal=Circulation |volume=108 |issue=1 |pages=43–7 |date=July 2003 |pmid=12821553 |doi=10.1161/01.CIR.0000078636.71728.40 |url=}}</ref><ref name="pmid11207080">{{cite journal |vauthors=Scheller B, Hennen B, Pohl A, Schieffer H, Markwirth T |title=Acute and subacute stent occlusion; risk-reduction by ionic contrast media |journal=Eur. Heart J. |volume=22 |issue=5 |pages=385–91 |date=March 2001 |pmid=11207080 |doi=10.1053/euhj.2000.2319 |url=}}</ref><ref name="pmid16216853">{{cite journal |vauthors=Roiron C, Sanchez P, Bouzamondo A, Lechat P, Montalescot G |title=Drug eluting stents: an updated meta-analysis of randomised controlled trials |journal=Heart |volume=92 |issue=5 |pages=641–9 |date=May 2006 |pmid=16216853 |pmc=1860942 |doi=10.1136/hrt.2005.061622 |url=}}</ref><ref name="pmid18804739">{{cite journal |vauthors=Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Jüni P, Vaina S, Hellige G, Tsuchida K, Morger C, Boersma E, Kukreja N, Meier B, Serruys PW, Windecker S |title=Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study |journal=J. Am. Coll. Cardiol. |volume=52 |issue=14 |pages=1134–40 |date=September 2008 |pmid=18804739 |doi=10.1016/j.jacc.2008.07.006 |url=}}</ref><ref name="pmid19204315">{{cite journal |vauthors=Cook S, Windecker S |title=Early stent thrombosis: past, present, and future |journal=Circulation |volume=119 |issue=5 |pages=657–9 |date=February 2009 |pmid=19204315 |doi=10.1161/CIRCULATIONAHA.108.842757 |url=}}</ref><ref name="pmid16534015">{{cite journal |vauthors=Urban P, Gershlick AH, Guagliumi G, Guyon P, Lotan C, Schofer J, Seth A, Sousa JE, Wijns W, Berge C, Deme M, Stoll HP |title=Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry |journal=Circulation |volume=113 |issue=11 |pages=1434–41 |date=March 2006 |pmid=16534015 |doi=10.1161/CIRCULATIONAHA.104.532242 |url=}}</ref><ref name="pmid16769908">{{cite journal |vauthors=Spertus JA, Kettelkamp R, Vance C, Decker C, Jones PG, Rumsfeld JS, Messenger JC, Khanal S, Peterson ED, Bach RG, Krumholz HM, Cohen DJ |title=Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: results from the PREMIER registry |journal=Circulation |volume=113 |issue=24 |pages=2803–9 |date=June 2006 |pmid=16769908 |doi=10.1161/CIRCULATIONAHA.106.618066 |url=}}</ref><ref name="pmid17438147">{{cite journal |vauthors=Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, Gold HK, Virmani R |title=Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization |journal=Circulation |volume=115 |issue=18 |pages=2435–41 |date=May 2007 |pmid=17438147 |doi=10.1161/CIRCULATIONAHA.107.693739 |url=}}</ref><ref name="pmid8181126">{{cite journal |vauthors=Nakamura S, Colombo A, Gaglione A, Almagor Y, Goldberg SL, Maiello L, Finci L, Tobis JM |title=Intracoronary ultrasound observations during stent implantation |journal=Circulation |volume=89 |issue=5 |pages=2026–34 |date=May 1994 |pmid=8181126 |doi=10.1161/01.cir.89.5.2026 |url=}}</ref><ref name="pmid7930236">{{cite journal |vauthors=Goldberg SL, Colombo A, Nakamura S, Almagor Y, Maiello L, Tobis JM |title=Benefit of intracoronary ultrasound in the deployment of Palmaz-Schatz stents |journal=J. Am. Coll. Cardiol. |volume=24 |issue=4 |pages=996–1003 |date=October 1994 |pmid=7930236 |doi=10.1016/0735-1097(94)90861-3 |url=}}</ref><ref name="pmid7882474">{{cite journal |vauthors=Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis JM |title=Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance |journal=Circulation |volume=91 |issue=6 |pages=1676–88 |date=March 1995 |pmid=7882474 |doi=10.1161/01.cir.91.6.1676 |url=}}</ref><ref name="pmid17224480">{{cite journal |vauthors=Grines CL, Bonow RO, Casey DE, Gardner TJ, Lockhart PB, Moliterno DJ, O'Gara P, Whitlow P |title=Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents: a science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians |journal=Circulation |volume=115 |issue=6 |pages=813–8 |date=February 2007 |pmid=17224480 |doi=10.1161/CIRCULATIONAHA.106.180944 |url=}}</ref><ref name="pmid19228612">{{cite journal |vauthors=Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Ståhle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW |title=Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease |journal=N. Engl. J. Med. |volume=360 |issue=10 |pages=961–72 |date=March 2009 |pmid=19228612 |doi=10.1056/NEJMoa0804626 |url=}}</ref> | ||
* Persistent slow coronary blood flow (local or arterial) as occurs with dissection or hypoperfusion. | * Persistent slow [[coronary]] blood flow (local or arterial) as occurs with [[dissection]] or [[hypoperfusion]]. | ||
* Prior to | * Prior to re-endothelialization, exposure of the [[blood]] to [[prothrombotic]] [[subendothelial]] constituents, such as [[tissue factor]], or to the [[stent]] itself. | ||
* Failure to suppress platelet adhesion/aggregation at a time of prothrombotic risk, as occurs with premature cessation of antiplatelet therapy or drug resistance. | * Failure to suppress [[platelet]] adhesion/aggregation at a time of prothrombotic risk, as occurs with [[premature]] cessation of [[antiplatelet]] therapy or drug [[resistance]]. | ||
* Acute coronary syndrome (ACS) and proximal left anterior descending coronary artery lesion<ref name="pmid22203694">{{cite journal |vauthors=Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, Shiode N, Namura M, Sone T, Oshima S, Nishikawa H, Hiasa Y, Hayashi Y, Nobuyoshi M, Mitudo K |title=Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-Cypher Registry |journal=Circulation |volume=125 |issue=4 |pages=584–91 |date=January 2012 |pmid=22203694 |doi=10.1161/CIRCULATIONAHA.111.046599 |url=}}</ref>. | * [[Acute coronary syndrome]] ([[ACS]]) and proximal [[left anterior descending coronary artery]] lesion<ref name="pmid22203694">{{cite journal |vauthors=Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, Shiode N, Namura M, Sone T, Oshima S, Nishikawa H, Hiasa Y, Hayashi Y, Nobuyoshi M, Mitudo K |title=Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-Cypher Registry |journal=Circulation |volume=125 |issue=4 |pages=584–91 |date=January 2012 |pmid=22203694 |doi=10.1161/CIRCULATIONAHA.111.046599 |url=}}</ref>. | ||
* Side-branch stenting, diabetes mellitus, and end-stage renal disease. | * Side-branch [[stenting]], [[diabetes mellitus]], and [[end-stage renal disease]]. | ||
* Incomplete stent expansion. | * Incomplete [[stent]] expansion. | ||
* Greater stent length. | * Greater stent length. | ||
* Residual plaque burden and small stent area on intracoronary ultrasound. | * Residual plaque burden and small stent area on [[intracoronary]] [[ultrasound]]. | ||
* Small vessel caliber. | * Small vessel caliber. | ||
* Residual thrombus or persistent dissection after stent placement. | * Residual [[thrombus]] or persistent [[dissection]] after [[stent]] placement. | ||
* Inflow or outflow obstruction. | * Inflow or outflow obstruction. | ||
* Subtherapeutic periprocedural anticoagulation. | * [[Subtherapeutic]] periprocedural [[anticoagulation]]. | ||
* Left ventricular dysfunction<ref name="pmid19371823">{{cite journal |vauthors=van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, Koolen JJ, Brueren BR, Dambrink JH, Hautvast RW, Verheugt FW, ten Berg JM |title=Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry |journal=J. Am. Coll. Cardiol. |volume=53 |issue=16 |pages=1399–409 |date=April 2009 |pmid=19371823 |doi=10.1016/j.jacc.2008.12.055 |url=}}</ref>. | * [[Left ventricular dysfunction]]<ref name="pmid19371823">{{cite journal |vauthors=van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, Koolen JJ, Brueren BR, Dambrink JH, Hautvast RW, Verheugt FW, ten Berg JM |title=Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry |journal=J. Am. Coll. Cardiol. |volume=53 |issue=16 |pages=1399–409 |date=April 2009 |pmid=19371823 |doi=10.1016/j.jacc.2008.12.055 |url=}}</ref>. | ||
* Nonionic contrast media. | * Nonionic contrast media. | ||
* Cocaine use. | * [[Cocaine]] use. | ||
* Emergent stent placement. | * Emergent stent placement. | ||
* Prior brachytherapy. | * Prior [[brachytherapy]]. | ||
* Post-procedure TIMI flow grade <3. | * Post-procedure [[TIMI]] flow grade <3. | ||
* No aspirin at the time of the procedure. | * No aspirin at the time of the procedure. | ||
* Malignancy. | * [[Malignancy]]. | ||
* CAD ≥50 percent proximal of culprit lesion. | * [[CAD]] ≥50 percent proximal of culprit lesion. | ||
* Treatment of bifurcation lesions. | * Treatment of bifurcation lesions. | ||
* Multivessel disease, as shown in the SYNTAX trial<ref name="pmid19228612">{{cite journal |vauthors=Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Ståhle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW |title=Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease |journal=N. Engl. J. Med. |volume=360 |issue=10 |pages=961–72 |date=March 2009 |pmid=19228612 |doi=10.1056/NEJMoa0804626 |url=}}</ref>. | * Multivessel disease, as shown in the [[SYNTAX trial]]<ref name="pmid19228612">{{cite journal |vauthors=Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Ståhle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW |title=Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease |journal=N. Engl. J. Med. |volume=360 |issue=10 |pages=961–72 |date=March 2009 |pmid=19228612 |doi=10.1056/NEJMoa0804626 |url=}}</ref>. | ||
* High on treatment (oral antiplatelet therapy) platelet reactivity<ref name="pmid21382172">{{cite journal |vauthors=Bouman HJ, van Werkum JW, Breet NJ, ten Cate H, Hackeng CM, ten Berg JM |title=A case-control study on platelet reactivity in patients with coronary stent thrombosis |journal=J. Thromb. Haemost. |volume=9 |issue=5 |pages=909–16 |date=May 2011 |pmid=21382172 |doi=10.1111/j.1538-7836.2011.04255.x |url=}}</ref>, including polymorphisms in the genes controlling hepatic enzymes involved in the metabolism of clopidogrel. | * High on treatment (oral [[antiplatelet]] therapy) platelet reactivity<ref name="pmid21382172">{{cite journal |vauthors=Bouman HJ, van Werkum JW, Breet NJ, ten Cate H, Hackeng CM, ten Berg JM |title=A case-control study on platelet reactivity in patients with coronary stent thrombosis |journal=J. Thromb. Haemost. |volume=9 |issue=5 |pages=909–16 |date=May 2011 |pmid=21382172 |doi=10.1111/j.1538-7836.2011.04255.x |url=}}</ref>, including polymorphisms in the genes controlling hepatic enzymes involved in the metabolism of clopidogrel. | ||
* The use of clopidogrel rather than prasugrel or ticagrelor in patients with ACS<ref name="pmid18377975">{{cite journal |vauthors=Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM |title=Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial |journal=Lancet |volume=371 |issue=9621 |pages=1353–63 |date=April 2008 |pmid=18377975 |doi=10.1016/S0140-6736(08)60422-5 |url=}}</ref><ref name="pmid23900047">{{cite journal |vauthors=Steg PG, Harrington RA, Emanuelsson H, Katus HA, Mahaffey KW, Meier B, Storey RF, Wojdyla DM, Lewis BS, Maurer G, Wallentin L, James SK |title=Stent thrombosis with ticagrelor versus clopidogrel in patients with acute coronary syndromes: an analysis from the prospective, randomized PLATO trial |journal=Circulation |volume=128 |issue=10 |pages=1055–65 |date=September 2013 |pmid=23900047 |doi=10.1161/CIRCULATIONAHA.113.002589 |url=}}</ref>. | * The use of [[clopidogrel]] rather than [[prasugrel]] or [[ticagrelor]] in patients with [[ACS]]<ref name="pmid18377975">{{cite journal |vauthors=Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM |title=Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial |journal=Lancet |volume=371 |issue=9621 |pages=1353–63 |date=April 2008 |pmid=18377975 |doi=10.1016/S0140-6736(08)60422-5 |url=}}</ref><ref name="pmid23900047">{{cite journal |vauthors=Steg PG, Harrington RA, Emanuelsson H, Katus HA, Mahaffey KW, Meier B, Storey RF, Wojdyla DM, Lewis BS, Maurer G, Wallentin L, James SK |title=Stent thrombosis with ticagrelor versus clopidogrel in patients with acute coronary syndromes: an analysis from the prospective, randomized PLATO trial |journal=Circulation |volume=128 |issue=10 |pages=1055–65 |date=September 2013 |pmid=23900047 |doi=10.1161/CIRCULATIONAHA.113.002589 |url=}}</ref>. | ||
* The presence of uncovered stent struts<ref name="pmid22230145">{{cite journal |vauthors=Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, Ladich E, Lortkipanidze N, Matiashvili A, Valsecchi O, Virmani R, Stone GW |title=Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging |journal=JACC Cardiovasc Interv |volume=5 |issue=1 |pages=12–20 |date=January 2012 |pmid=22230145 |doi=10.1016/j.jcin.2011.09.018 |url=}}</ref>. | * The presence of uncovered [[stent]] struts<ref name="pmid22230145">{{cite journal |vauthors=Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, Ladich E, Lortkipanidze N, Matiashvili A, Valsecchi O, Virmani R, Stone GW |title=Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging |journal=JACC Cardiovasc Interv |volume=5 |issue=1 |pages=12–20 |date=January 2012 |pmid=22230145 |doi=10.1016/j.jcin.2011.09.018 |url=}}</ref>. | ||
* Chronic kidney disease. | * [[Chronic kidney disease]]. | ||
* Stent location does not increase the risk of stent thrombosis occurrence but the stent location in the left main or proximal left anterior descending artery poses increased risk of an adverse outcome if stent thrombosis occurs and may be regarded as an indication for more aggressive prevention strategies. | * Stent location does not increase the risk of stent [[thrombosis]] occurrence but the stent location in the left main or proximal [[left anterior descending]] artery poses increased risk of an adverse outcome if [[stent]] [[thrombosis]] occurs and may be regarded as an indication for more aggressive prevention strategies. | ||
==Associated Factors== | ==Associated Factors== | ||
Line 113: | Line 113: | ||
==Natural History, Complications and Prognosis== | ==Natural History, Complications and Prognosis== | ||
* IPST significantly reduces the overall success rate of [[PCI]], as measured by frequency of achieving [[TIMI flow grade 3]] at the end of index [[PCI]]. | * IPST significantly reduces the overall success rate of [[PCI]], as measured by frequency of achieving [[TIMI flow grade 3]] at the end of index [[PCI]]. | ||
* [[TIMI flow grade 3]] is achieved in 90.9% of patients without IPST vs. 44.7% in patients with IPST. | * [[TIMI flow grade 3]] is achieved in 90.9% of patients without IPST vs. 44.7% in patients with [[IPST]]. | ||
* Given its significant and unique role in outcome, there is currently increasing advocacy to routinely report IPST in PCI and to add it as a distinctive entity in the Academic Research Consortium (ARC) definition of stent thrombosis.<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | * Given its significant and unique role in outcome, there is currently increasing [[advocacy]] to routinely report IPST in [[PCI]] and to add it as a distinctive entity in the [[Academic Research Consortium]] (ARC) definition of [[stent]] [[thrombosis]].<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | ||
* Intraprocedural and follow-up data on patients who experience IPST reveal the most common significant complications. | * [[Intraprocedural]] and follow-up data on patients who experience [[IPST]] reveal the most common significant complications. | ||
* The occurrence of IPST remarkably increases the risk of occurrence of IPTE-related complications. | * The occurrence of IPST remarkably increases the risk of occurrence of IPTE-related complications. | ||
* The following table summarizes intra-procedural complications of IPST.<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | * The following table summarizes intra-procedural complications of [[IPST]].<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | ||
{| class="wikitable" border="1" style="White" | {| class="wikitable" border="1" style="White" | ||
!'''Intraprocedural Complications'''!!'''Patients with IPST'''!!'''Patients without IPST''' | |||
|- | |- | ||
!'''Slow or no reflow''' | |||
| 75.5% || 3.2% | |||
|- | |- | ||
!'''Distal Embolization''' | |||
| 49% ||1.9% | |||
|- | |- | ||
!'''Side branch closure''' | |||
| 14.3% ||0.6% | |||
|} | |} | ||
* Similar to [[IPTE]] in general, IPST is an important independent predictor of mortality and morbidity one year post-PCI. | * Similar to [[IPTE]] in general, IPST is an important independent predictor of mortality and morbidity one year post-PCI. | ||
* One year follow-up data shows a 41.1% rate of [[death]], [[MI]], or TVR in patients who had experienced IPST vs. only 14.5% in patients with no IPST.<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> Other adverse events were also increased in patients with IPST after one year post-PCI, such as postprocedural stent thrombosis, TVR, and non-CABG major bleeding.<ref name="Xu-2013">{{Cite journal | last1 = Xu | first1 = Y. | last2 = Qu | first2 = X. | last3 = Fang | first3 = W. | last4 = Chen | first4 = H. | title = Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome. | journal = J Interv Cardiol | volume = 26 | issue = 3 | pages = 215-20 | month = Jun | year = 2013 | doi = 10.1111/joic.12029 | PMID = 23551235 }}</ref><ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | * One year follow-up data shows a 41.1% rate of [[death]], [[MI]], or TVR in patients who had experienced [[IPST]] vs. only 14.5% in patients with no [[IPST]].<ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> Other adverse events were also increased in patients with IPST after one year post-PCI, such as postprocedural stent thrombosis, TVR, and non-CABG major bleeding.<ref name="Xu-2013">{{Cite journal | last1 = Xu | first1 = Y. | last2 = Qu | first2 = X. | last3 = Fang | first3 = W. | last4 = Chen | first4 = H. | title = Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome. | journal = J Interv Cardiol | volume = 26 | issue = 3 | pages = 215-20 | month = Jun | year = 2013 | doi = 10.1111/joic.12029 | PMID = 23551235 }}</ref><ref name="Brener-2013">{{Cite journal | last1 = Brener | first1 = SJ. | last2 = Cristea | first2 = E. | last3 = Kirtane | first3 = AJ. | last4 = McEntegart | first4 = MB. | last5 = Xu | first5 = K. | last6 = Mehran | first6 = R. | last7 = Stone | first7 = GW. | title = Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes. | journal = JACC Cardiovasc Interv | volume = 6 | issue = 1 | pages = 36-43 | month = Jan | year = 2013 | doi = 10.1016/j.jcin.2012.08.018 | PMID = 23266233 }}</ref> | ||
* The reduction in [[IPST]] with cangrelor in CHAMPION PHOENIX contributed to this agent's effectiveness in reducing the rates of ARC-defined stent [[thrombosis]] and [[MI]]. | * The reduction in [[IPST]] with [[cangrelor]] in [[CHAMPION PHOENIX]] contributed to this agent's effectiveness in reducing the rates of ARC-defined stent [[thrombosis]] and [[MI]]. | ||
* These data provide strong evidence for a significant association between [[IPST]] and adverse short-term clinical outcomes after [[PCI]] and support the inclusion of [[IPST]] as an important endpoint in future [[pharmacological]] and device trials<ref name="pmid24184169">{{cite journal |vauthors=Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec S, Hamm CW, Mahaffey KW, White HD, Bhatt DL |title=Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention) |journal=J. Am. Coll. Cardiol. |volume=63 |issue=7 |pages=619–629 |date=February 2014 |pmid=24184169 |doi=10.1016/j.jacc.2013.10.022 |url=}}</ref>. | * These data provide strong evidence for a significant association between [[IPST]] and adverse short-term clinical outcomes after [[PCI]] and support the inclusion of [[IPST]] as an important endpoint in future [[pharmacological]] and device trials<ref name="pmid24184169">{{cite journal |vauthors=Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec S, Hamm CW, Mahaffey KW, White HD, Bhatt DL |title=Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention) |journal=J. Am. Coll. Cardiol. |volume=63 |issue=7 |pages=619–629 |date=February 2014 |pmid=24184169 |doi=10.1016/j.jacc.2013.10.022 |url=}}</ref>. | ||
Latest revision as of 00:34, 28 January 2020
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Mohammed Salih, M.D.
Synonyms and keywords: IPST
Overview
Intraprocedural stent thrombosis (IPST) is the formation of a new, increasing, or reappearing occlusive or non-occlusive thrombus of grade ≤2 that occurs before the completion of the percutaneous coronary intervention (PCI) procedure, and is specifically located within the recently deployed stent or immediately adjacent to it. It is considered a rare subset of Intraprocedural thrombotic events (IPTE). Although it rarely happens, it has been strongly associated with unfavorable periprocedural outcomes. It is defined as an angiographically confirmed intraluminal filling defect within the stent that results in occlusive or non-occlusive thrombolysis in myocardial infarction (TIMI) grade-0 or 1 anterograde flow, secondary to the development of new or increasing thrombus within or adjacent to a recently implanted stent, occurring during the index procedure or before the percutaneous coronary intervention (PCI) is completed. It is also present when the baseline level of thrombus was decreasing or has resolved after balloon angioplasty or thrombus aspiration, but increased again any time after stent implantation, including stent postdilatation. In the large-scale CHAMPION PHOENIX trial, IPST was a relatively infrequent event, occurring in <1% of patients undergoing PCI, but was strongly associated with subsequent ischemic events, including out-of-laboratory ST, MI, and death. The reduction in IPST with cangrelor in CHAMPION PHOENIX contributed to this agent's effectiveness in reducing the rates of ARC-defined stent thrombosis and MI. These data provide strong evidence for a significant association between IPST and adverse short-term clinical outcomes after PCI and support the inclusion of IPST as an important endpoint in future pharmacological and device trials.
Pathophysiology
- IPST can occur with bare metal stents and DES.[1] Several theories suggest possible explanation to IPST in DES. DES characteristics, such as drug-induced thrombogenicity, whether using sirolimus or paclitaxel, and its in-vitro platelet aggregation effects[2] along with its remarkable lipophilic bioavailability within the coronary milieu,[3] stent platform effect,[4] polymer coating material,[4] and open-cell stent design all seem plausible hypotheses that nonetheless require further validation. Operator-dependent factors, such as adequate stent placement have also been postulated.[5][6]
- AT-III is a naturally occurring thrombin inhibitor that suppresses tissue factor–factor VIIa complex, factor IXa, Xa and thrombin. Its irreversible combination with thrombin inhibits the effect of thrombin on fibrinogen and clot formation[7].
- AT-III deficiency or decreased activity increase thrombin and fibrinogen activities, and thus clot formation. AT-III deficiency can be congenital or acquired. * The congenital form occurs in 1/3000 people, while the acquired form is seen in disseminated intravascular coagulation and nephrotic syndrome as a result of increased loss, or in malnutrition, liver cirrhosis or failure, as a result of decreased synthesis.
- Heparin therapy is the most commoniatrogenic cause as it decreases AT-III half-life, while other causes include nitroglycerin and oral estrogen.
- Heparin binds to AT-III and enhances the rate of AT-III and thrombin reaction. This interaction activates AT-III to start an anticoagulation cascade that inactivates thrombin, factor Xa and other clotting factors.
- Heparin has no anticoagulant effect in AT-III depleted plasma.
- Heparin resistance is defined as the unexpected steady levels of activating clotting time while the patient is receiving adequate dose of heparin and having an adequate plasma concentration.
- In cardiothoracic surgery, heparin resistance is ACT of b400–600 s after 300–600 U/kg of UFH has been given.
- In patients with venous thromboembolism, HR is defined as needing N35,000 U of UFH in 24 h to achieve therapeutic levels.
- In interventional cardiology, an ACT of N250 s is needed to allow for a safe procedure.
- Heparin resistance can be AT-dependent or independent. In AT-dependent HR, the anticoagulant effect of heparin decreases when AT-III activity is b80%, and is completely ineffective at b70%.
- AT independent mechanisms include heparin induced thrombocytopenia due to neutralization of heparin effect from binding to platelet factor 4; and increased levels and enhanced activity of factor VIII and fibrinogen[8].
- In critically ill patients with coexisting severe inflammatory illnesses, where circulating acute phase reactants like platelet-derived factors, plasma proteins, and factor VIII levels are elevated, anti-Xa activity would be a more accurate measure of heparin activity. The reason is that these positively charged proteins readily bind to negatively charged heparin, thereby inhibiting and neutralizing its effect resulting in HR[7].
- Patients undergoing elective angiography and/or PCI are not usually screened for possible congenital or acquired deficiencies via natural anticoagulants prior to the procedure.
- Measuring anti-Xa activity instead of APTT or ACT is time consuming and not readily available in other facilities, especially in patients presenting with AMI, where door-to-balloon time is golden.
- Adventitial tissues and medial smooth muscle cells (SMC) are important sources of tissue factors that are responsible primarily for triggering the extrinsic clotting pathway.
- Thrombosis may occur when a large amount of tissue factor is released into the blood from the medial SMCs following medial tear secondary to excessive injury during stenting[9].
- Factors related to the procedures, including dissection of stent edge, remaining lesion stenosis, incomplete stent coverage, incomplete apposition, and incomplete expansion,can cause stent thrombosis[10].
Epidemiology and Demographics
- The frequency of occurrence currently ranges between 0.5 – 1.7% of all PCI procedures.
- IPST occurred in 0.7% of PCI when frame-by-frame analysis was done for 6591 patients enrolled in the ACUITY and HORIZONS-AMI (Harmonizing Outcomes With Revascularization And Stents In Acute Myocardial Infarction) trials.[1]
- Similarly, an IPST rate of 1.2% was document in another study in 2013 following enrollment of 1901 patients.[11]
- The incidence of IPST was 0.7% in two other studies, the first of which reviewed the frequency of IPST in 1320 patients less than 75 years old undergoing PCI with first generation DES and whereas the second study enrolled 670 patients undergoing elective DES.[5][9]
- Finally, 1.7% of 181 patients had IPST when evaluating DES implantation in bifurcation lesions using “crush technique” in 2005.[12]
Risk Factors
Interestingly, conventional risk factors and correlates of early and late postprocedural stent thrombosis do not seem to be the same as those for IPST. Each risk factor is likely to predispose the patient to stent thrombosis, which is characterized by platelet activation and aggregation, by one or more of the following mechanisms:[13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33]
- Persistent slow coronary blood flow (local or arterial) as occurs with dissection or hypoperfusion.
- Prior to re-endothelialization, exposure of the blood to prothrombotic subendothelial constituents, such as tissue factor, or to the stent itself.
- Failure to suppress platelet adhesion/aggregation at a time of prothrombotic risk, as occurs with premature cessation of antiplatelet therapy or drug resistance.
- Acute coronary syndrome (ACS) and proximal left anterior descending coronary artery lesion[34].
- Side-branch stenting, diabetes mellitus, and end-stage renal disease.
- Incomplete stent expansion.
- Greater stent length.
- Residual plaque burden and small stent area on intracoronary ultrasound.
- Small vessel caliber.
- Residual thrombus or persistent dissection after stent placement.
- Inflow or outflow obstruction.
- Subtherapeutic periprocedural anticoagulation.
- Nonionic contrast media.
- Cocaine use.
- Emergent stent placement.
- Prior brachytherapy.
- Post-procedure TIMI flow grade <3.
- No aspirin at the time of the procedure.
- CAD ≥50 percent proximal of culprit lesion.
- Treatment of bifurcation lesions.
- Multivessel disease, as shown in the SYNTAX trial[33].
- High on treatment (oral antiplatelet therapy) platelet reactivity[35], including polymorphisms in the genes controlling hepatic enzymes involved in the metabolism of clopidogrel.
- The use of clopidogrel rather than prasugrel or ticagrelor in patients with ACS[36][37].
- Stent location does not increase the risk of stent thrombosis occurrence but the stent location in the left main or proximal left anterior descending artery poses increased risk of an adverse outcome if stent thrombosis occurs and may be regarded as an indication for more aggressive prevention strategies.
Associated Factors
Although data in the literature is still conflicting, IPST has been variably correlated to several parameters:
- ST-segment elevation MI (STEMI) at presentation[39]
- High white blood cell count[39]
- Implantation of bare metal stents rather than drug-eluting stents (DES)[39]
- Increased total stent length: stent sizes are commonly lengthier in DES[5]
- Increased thrombus size: baseline thrombus was visible in 56.5% of cases with IPST vs. only 12.3% of cases with no IPST[6]
- Thrombotic lesions[39]
- Lesion location at bifurcations: increase of IPST risk from 0.5% to 1.3%[9]
- Increased diameter of stenosis: average degree of stenosis was 81.58% in patients with IPST vs. 70.23% in patients without IPST[6]
- “Crush” bifurcation stenting[40]
- Worse minimum pre-PCI TIMI flow: TIMI flow grade 0 or TIMI flow grade 1[6]
- Bivalirudin monotherapy: patients who receive treatment with elective glycoprotein IIb/IIIa inhibitors rather than bail-out use seem to be much less likely to experience IPST[5][39]
Natural History, Complications and Prognosis
- IPST significantly reduces the overall success rate of PCI, as measured by frequency of achieving TIMI flow grade 3 at the end of index PCI.
- TIMI flow grade 3 is achieved in 90.9% of patients without IPST vs. 44.7% in patients with IPST.
- Given its significant and unique role in outcome, there is currently increasing advocacy to routinely report IPST in PCI and to add it as a distinctive entity in the Academic Research Consortium (ARC) definition of stent thrombosis.[1]
- Intraprocedural and follow-up data on patients who experience IPST reveal the most common significant complications.
- The occurrence of IPST remarkably increases the risk of occurrence of IPTE-related complications.
- The following table summarizes intra-procedural complications of IPST.[1]
Intraprocedural Complications | Patients with IPST | Patients without IPST |
---|---|---|
Slow or no reflow | 75.5% | 3.2% |
Distal Embolization | 49% | 1.9% |
Side branch closure | 14.3% | 0.6% |
- Similar to IPTE in general, IPST is an important independent predictor of mortality and morbidity one year post-PCI.
- One year follow-up data shows a 41.1% rate of death, MI, or TVR in patients who had experienced IPST vs. only 14.5% in patients with no IPST.[1] Other adverse events were also increased in patients with IPST after one year post-PCI, such as postprocedural stent thrombosis, TVR, and non-CABG major bleeding.[11][1]
- The reduction in IPST with cangrelor in CHAMPION PHOENIX contributed to this agent's effectiveness in reducing the rates of ARC-defined stent thrombosis and MI.
- These data provide strong evidence for a significant association between IPST and adverse short-term clinical outcomes after PCI and support the inclusion of IPST as an important endpoint in future pharmacological and device trials[8].
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Brener, SJ.; Cristea, E.; Kirtane, AJ.; McEntegart, MB.; Xu, K.; Mehran, R.; Stone, GW. (2013). "Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes". JACC Cardiovasc Interv. 6 (1): 36–43. doi:10.1016/j.jcin.2012.08.018. PMID 23266233. Unknown parameter
|month=
ignored (help) - ↑ Babinska A, Markell MS, Salifu MO, Akoad M, Ehrlich YH, Kornecki E (1998). "Enhancement of human platelet aggregation and secretion induced by rapamycin". Nephrol Dial Transplant. 13 (12): 3153–9. PMID 9870481.
- ↑ McKeage K, Murdoch D, Goa KL (2003). "The sirolimus-eluting stent: a review of its use in the treatment of coronary artery disease". Am J Cardiovasc Drugs. 3 (3): 211–30. PMID 14727933.
- ↑ 4.0 4.1 Kereiakes DJ, Choo JK, Young JJ, Broderick TM (2004). "Thrombosis and drug-eluting stents: a critical appraisal". Rev Cardiovasc Med. 5 (1): 9–15. PMID 15029110.
- ↑ 5.0 5.1 5.2 5.3 Chieffo A, Bonizzoni E, Orlic D, Stankovic G, Rogacka R, Airoldi F; et al. (2004). "Intraprocedural stent thrombosis during implantation of sirolimus-eluting stents". Circulation. 109 (22): 2732–6. doi:10.1161/01.CIR.0000131890.83839.5B. PMID 15148281.
- ↑ 6.0 6.1 6.2 6.3 Xu Y, Qu X, Fang W, Chen H (2013). "Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome". J Interv Cardiol. 26 (3): 215–20. doi:10.1111/joic.12029. PMID 23551235.
- ↑ 7.0 7.1 Jao YT, Fang CC (November 2015). "Intraprocedural stent thrombosis, antithrombin-III dependent heparin resistance and crush technique for bifurcation lesions: the "Devil's Triangle"". Int. J. Cardiol. 199: 71–4. doi:10.1016/j.ijcard.2015.07.008. PMID 26188821.
- ↑ 8.0 8.1 Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec S, Hamm CW, Mahaffey KW, White HD, Bhatt DL (February 2014). "Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention)". J. Am. Coll. Cardiol. 63 (7): 619–629. doi:10.1016/j.jacc.2013.10.022. PMID 24184169.
- ↑ 9.0 9.1 9.2 Biondi-Zoccai GG, Sangiorgi GM, Chieffo A, Vittori G, Falchetti E, Margheri M, Barbagallo R, Tamburino C, Remigi E, Briguori C, Iakovou I, Agostoni P, Tsagalou E, Melzi G, Michev I, Airoldi F, Montorfano M, Carlino M, Colombo A (June 2005). "Validation of predictors of intraprocedural stent thrombosis in the drug-eluting stent era". Am. J. Cardiol. 95 (12): 1466–8. doi:10.1016/j.amjcard.2005.01.099. PMID 15950573.
- ↑ Inoguchi Y, Kaku B, Kitagawa N, Katsuda S (May 2019). "Novel use of a stent graft for uncontrollable intraprocedural stent thrombosis in a patient with acute myocardial infarction". Catheter Cardiovasc Interv. doi:10.1002/ccd.28346. PMID 31141303.
- ↑ 11.0 11.1 Xu, Y.; Qu, X.; Fang, W.; Chen, H. (2013). "Prevalence, correlation and clinical outcome of intra-procedural stent thrombosis in patients undergoing primary percutaneous coronary intervention for acute coronary syndrome". J Interv Cardiol. 26 (3): 215–20. doi:10.1111/joic.12029. PMID 23551235. Unknown parameter
|month=
ignored (help) - ↑ Ge L, Airoldi F, Iakovou I, Cosgrave J, Michev I, Sangiorgi GM; et al. (2005). "Clinical and angiographic outcome after implantation of drug-eluting stents in bifurcation lesions with the crush stent technique: importance of final kissing balloon post-dilation". J Am Coll Cardiol. 46 (4): 613–20. doi:10.1016/j.jacc.2005.05.032. PMID 16098424.
- ↑ Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R (February 2007). "Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications". Circulation. 115 (8): 1051–8. doi:10.1161/CIRCULATIONAHA.106.675934. PMID 17325255.
- ↑ Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A (May 2005). "Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents". JAMA. 293 (17): 2126–30. doi:10.1001/jama.293.17.2126. PMID 15870416.
- ↑ 15.0 15.1 van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, Koolen JJ, Brueren BR, Dambrink JH, Hautvast RW, Verheugt FW, ten Berg JM (April 2009). "Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry". J. Am. Coll. Cardiol. 53 (16): 1399–409. doi:10.1016/j.jacc.2008.12.055. PMID 19371823.
- ↑ Cutlip DE, Baim DS, Ho KK, Popma JJ, Lansky AJ, Cohen DJ, Carrozza JP, Chauhan MS, Rodriguez O, Kuntz RE (April 2001). "Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials". Circulation. 103 (15): 1967–71. doi:10.1161/01.cir.103.15.1967. PMID 11306525.
- ↑ Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M (August 1994). "A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators". N. Engl. J. Med. 331 (8): 496–501. doi:10.1056/NEJM199408253310802. PMID 8041414.
- ↑ Leon MB, Wong SC (March 1994). "Intracoronary stents. A breakthrough technology or just another small step?". Circulation. 89 (3): 1323–7. doi:10.1161/01.cir.89.3.1323. PMID 8124824.
- ↑ Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P (August 1994). "A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group". N. Engl. J. Med. 331 (8): 489–95. doi:10.1056/NEJM199408253310801. PMID 8041413.
- ↑ Moussa I, Di Mario C, Reimers B, Akiyama T, Tobis J, Colombo A (January 1997). "Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome". J. Am. Coll. Cardiol. 29 (1): 6–12. doi:10.1016/s0735-1097(96)00452-4. PMID 8996288.
- ↑ Cheneau E, Leborgne L, Mintz GS, Kotani J, Pichard AD, Satler LF, Canos D, Castagna M, Weissman NJ, Waksman R (July 2003). "Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study". Circulation. 108 (1): 43–7. doi:10.1161/01.CIR.0000078636.71728.40. PMID 12821553.
- ↑ Scheller B, Hennen B, Pohl A, Schieffer H, Markwirth T (March 2001). "Acute and subacute stent occlusion; risk-reduction by ionic contrast media". Eur. Heart J. 22 (5): 385–91. doi:10.1053/euhj.2000.2319. PMID 11207080.
- ↑ Roiron C, Sanchez P, Bouzamondo A, Lechat P, Montalescot G (May 2006). "Drug eluting stents: an updated meta-analysis of randomised controlled trials". Heart. 92 (5): 641–9. doi:10.1136/hrt.2005.061622. PMC 1860942. PMID 16216853.
- ↑ Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Jüni P, Vaina S, Hellige G, Tsuchida K, Morger C, Boersma E, Kukreja N, Meier B, Serruys PW, Windecker S (September 2008). "Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study". J. Am. Coll. Cardiol. 52 (14): 1134–40. doi:10.1016/j.jacc.2008.07.006. PMID 18804739.
- ↑ Cook S, Windecker S (February 2009). "Early stent thrombosis: past, present, and future". Circulation. 119 (5): 657–9. doi:10.1161/CIRCULATIONAHA.108.842757. PMID 19204315.
- ↑ Urban P, Gershlick AH, Guagliumi G, Guyon P, Lotan C, Schofer J, Seth A, Sousa JE, Wijns W, Berge C, Deme M, Stoll HP (March 2006). "Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry". Circulation. 113 (11): 1434–41. doi:10.1161/CIRCULATIONAHA.104.532242. PMID 16534015.
- ↑ Spertus JA, Kettelkamp R, Vance C, Decker C, Jones PG, Rumsfeld JS, Messenger JC, Khanal S, Peterson ED, Bach RG, Krumholz HM, Cohen DJ (June 2006). "Prevalence, predictors, and outcomes of premature discontinuation of thienopyridine therapy after drug-eluting stent placement: results from the PREMIER registry". Circulation. 113 (24): 2803–9. doi:10.1161/CIRCULATIONAHA.106.618066. PMID 16769908.
- ↑ Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, Gold HK, Virmani R (May 2007). "Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization". Circulation. 115 (18): 2435–41. doi:10.1161/CIRCULATIONAHA.107.693739. PMID 17438147.
- ↑ Nakamura S, Colombo A, Gaglione A, Almagor Y, Goldberg SL, Maiello L, Finci L, Tobis JM (May 1994). "Intracoronary ultrasound observations during stent implantation". Circulation. 89 (5): 2026–34. doi:10.1161/01.cir.89.5.2026. PMID 8181126.
- ↑ Goldberg SL, Colombo A, Nakamura S, Almagor Y, Maiello L, Tobis JM (October 1994). "Benefit of intracoronary ultrasound in the deployment of Palmaz-Schatz stents". J. Am. Coll. Cardiol. 24 (4): 996–1003. doi:10.1016/0735-1097(94)90861-3. PMID 7930236.
- ↑ Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis JM (March 1995). "Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance". Circulation. 91 (6): 1676–88. doi:10.1161/01.cir.91.6.1676. PMID 7882474.
- ↑ Grines CL, Bonow RO, Casey DE, Gardner TJ, Lockhart PB, Moliterno DJ, O'Gara P, Whitlow P (February 2007). "Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents: a science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians". Circulation. 115 (6): 813–8. doi:10.1161/CIRCULATIONAHA.106.180944. PMID 17224480.
- ↑ 33.0 33.1 Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Ståhle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW (March 2009). "Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease". N. Engl. J. Med. 360 (10): 961–72. doi:10.1056/NEJMoa0804626. PMID 19228612.
- ↑ Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, Shiode N, Namura M, Sone T, Oshima S, Nishikawa H, Hiasa Y, Hayashi Y, Nobuyoshi M, Mitudo K (January 2012). "Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-Cypher Registry". Circulation. 125 (4): 584–91. doi:10.1161/CIRCULATIONAHA.111.046599. PMID 22203694.
- ↑ Bouman HJ, van Werkum JW, Breet NJ, ten Cate H, Hackeng CM, ten Berg JM (May 2011). "A case-control study on platelet reactivity in patients with coronary stent thrombosis". J. Thromb. Haemost. 9 (5): 909–16. doi:10.1111/j.1538-7836.2011.04255.x. PMID 21382172.
- ↑ Wiviott SD, Braunwald E, McCabe CH, Horvath I, Keltai M, Herrman JP, Van de Werf F, Downey WE, Scirica BM, Murphy SA, Antman EM (April 2008). "Intensive oral antiplatelet therapy for reduction of ischaemic events including stent thrombosis in patients with acute coronary syndromes treated with percutaneous coronary intervention and stenting in the TRITON-TIMI 38 trial: a subanalysis of a randomised trial". Lancet. 371 (9621): 1353–63. doi:10.1016/S0140-6736(08)60422-5. PMID 18377975.
- ↑ Steg PG, Harrington RA, Emanuelsson H, Katus HA, Mahaffey KW, Meier B, Storey RF, Wojdyla DM, Lewis BS, Maurer G, Wallentin L, James SK (September 2013). "Stent thrombosis with ticagrelor versus clopidogrel in patients with acute coronary syndromes: an analysis from the prospective, randomized PLATO trial". Circulation. 128 (10): 1055–65. doi:10.1161/CIRCULATIONAHA.113.002589. PMID 23900047.
- ↑ Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, Ladich E, Lortkipanidze N, Matiashvili A, Valsecchi O, Virmani R, Stone GW (January 2012). "Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging". JACC Cardiovasc Interv. 5 (1): 12–20. doi:10.1016/j.jcin.2011.09.018. PMID 22230145.
- ↑ 39.0 39.1 39.2 39.3 39.4 Brener SJ, Cristea E, Kirtane AJ, McEntegart MB, Xu K, Mehran R; et al. (2013). "Intra-procedural stent thrombosis: a new risk factor for adverse outcomes in patients undergoing percutaneous coronary intervention for acute coronary syndromes". JACC Cardiovasc Interv. 6 (1): 36–43. doi:10.1016/j.jcin.2012.08.018. PMID 23266233.
- ↑ Hoye A, Iakovou I, Ge L, van Mieghem CA, Ong AT, Cosgrave J; et al. (2006). "Long-term outcomes after stenting of bifurcation lesions with the "crush" technique: predictors of an adverse outcome". J Am Coll Cardiol. 47 (10): 1949–58. doi:10.1016/j.jacc.2005.11.083. PMID 16697310.