Catecholaminergic polymorphic ventricular tachycardia exercise stress testing: Difference between revisions

Jump to navigation Jump to search
Mounika (talk | contribs)
Created page with "==Overview== ==Exercise Stress Testing=="
 
Mounika (talk | contribs)
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
__NOTOC__
{{Catecholaminergic polymorphic ventricular tachycardia}}
{{CMG}}; {{AE}}{{MRV}}
==Overview==
==Overview==
[[Exercise Stress Testing]] is the primary [[diagnostic]] test and the most helpful clinical tool in diagnosing [[CPVT]] as it can reproducibly evoke the typical [[ventricular tachycardia]] during acute [[adrenergic]] activation (exercise). During [[exercise stress testing]], [[sinus rhythm]] accelerates and beyond a [[heart rate]] of 120-130 [[beats per minute]], isolated and often monomorphic [[Premature ventricular contraction|ventricular premature beats]] ([[Premature ventricular contraction|VPBs]]) typically occur first and then increase with [[heart rate]] to [[Bigeminal rhythm|bigeminy]]. Subsequently, the [[Premature ventricular contraction|VPBs]] become polymorphic or bidircetional, and as the exercise increase, they form bursts of non-sustained [[polymorphic ventricular tachycardia]] or bidirectional [[ventricular tachycardia]] ([[VT]]). With continuous activity, the [[arrhythmia]] persists and becomes more rapid, eventually assuming the appearance of [[polymorphic ventricular tachycardia]] ([[VT]]), which is very fast, [[fibrillation]]-like and leads to [[syncope]]. The [[arrhythmias]] disappear on stopping the exercise. Bidirectional [[ventricular tachycardia]] ([[VT]]) is the hallmark finding of catecholaminergic polymorphic ventricular tachycardia.


==Exercise Stress Testing==
==Exercise Stress Testing==
*[[CPVT]] is a diagnosis based on reproducing [[ventricular arrhythmias]] during [[exercise stress testing]], [[syncope]] occurring during physical activity and acute emotion, and a history of exercise or emotion-related [[palpitations]] and [[dizziness]] with an absence of structural [[cardiac]] abnormalities.
*It has been observed that [[arrhythmias]] in [[CPVT]] often appear in a uniform and reproducible pattern that facilitates the recognition of affected patients.<ref name="LeenhardtLucet1995">{{cite journal|last1=Leenhardt|first1=Antoine|last2=Lucet|first2=Vincent|last3=Denjoy|first3=Isabelle|last4=Grau|first4=Francis|last5=Ngoc|first5=Dien Do|last6=Coumel|first6=Philippe|title=Catecholaminergic Polymorphic Ventricular Tachycardia in Children|journal=Circulation|volume=91|issue=5|year=1995|pages=1512–1519|issn=0009-7322|doi=10.1161/01.CIR.91.5.1512}}</ref>
*[[Exercise Stress Testing]] is the primary [[diagnostic]] test and the most helpful clinical tool in diagnosing [[CPVT]].
*[[Exercise Stress Testing]] helps in the following:
*# Diagnosing [[CPVT]] as it can reproducibly evoke the typical [[ventricular tachycardia]] during acute [[adrenergic]] activation;
*# Defines limit for any allowed physical activity in the hospital setting;
*# Useful in monitoring the response to [[beta-blocker]] therapy of affected individuals in reproducible conditions.
*Changes in the [[ECG]] recorder during [[exercise stress testing]] are as follows:
**During [[Exercise Stress Testing|exercise testing]], [[sinus rhythm]] accelerates and beyond a [[heart rate]] of 120-130 [[beats per minute]], isolated and often monomorphic [[Premature ventricular contraction|ventricular premature beats]] ([[Premature ventricular contraction|VPBs]]) typically occur first and then increase with [[heart rate]] to [[quadrigeminy]], [[trigeminy]], and [[Bigeminal rhythm|bigeminy]].
**Subsequently, the [[Premature ventricular contraction|VPBs]] become polymorphic, and as the exercise increase, they form bursts of non-sustained [[polymorphic ventricular tachycardia]] ([[VT]]).
**If the activity is stopped, the [[arrhythmia]] disappears in the reverse order without clinical symptoms.
**However, when the activity is continued, the [[arrhythmia]] persists and becomes more rapid, eventually assuming the appearance of [[polymorphic ventricular tachycardia]] ([[VT]]), which is very fast, [[fibrillation]]-like and leads to [[syncope]].
**In a subset of patients the [[ventricular arrhythmias]] already disappear with ongoing exercise.<ref name="FaggioniHwang2013">{{cite journal|last1=Faggioni|first1=Michela|last2=Hwang|first2=Hyun Seok|last3=van der Werf|first3=Christian|last4=Nederend|first4=Ineke|last5=Kannankeril|first5=Prince J.|last6=Wilde|first6=Arthur A.M.|last7=Knollmann|first7=Björn C.|title=Accelerated Sinus Rhythm Prevents Catecholaminergic Polymorphic Ventricular Tachycardia in Mice and in Patients|journal=Circulation Research|volume=112|issue=4|year=2013|pages=689–697|issn=0009-7330|doi=10.1161/CIRCRESAHA.111.300076}}</ref>
**Another type of [[Polymorphic ventricular tachycardia|polymorphic VT]] observed in [[CPVT]] patients is the bidirectional [[VT]], which is a peculiar form of [[polymorphic ventricular tachycardia|polymorphic VT]] characterized by right bundle-branch block pattern and 180° rotation of the [[QRS]] complex from beat to beat (alternating right and left QRS axis deviation).<ref name="LeenhardtLucet1995">{{cite journal|last1=Leenhardt|first1=Antoine|last2=Lucet|first2=Vincent|last3=Denjoy|first3=Isabelle|last4=Grau|first4=Francis|last5=Ngoc|first5=Dien Do|last6=Coumel|first6=Philippe|title=Catecholaminergic Polymorphic Ventricular Tachycardia in Children|journal=Circulation|volume=91|issue=5|year=1995|pages=1512–1519|issn=0009-7322|doi=10.1161/01.CIR.91.5.1512}}</ref>
**The occurrence of a bidirectional [[ventricular tachycardia]] ([[VT]]), which is the hallmark sign of [[CPVT]] is highly [[specificty|specific]] but not present in all patients.
**The bidirectional [[VT]] seen in [[CPVT]] are thought to originate from the [[His-Purkinje system]] from the alternating activation of the [[purkinje fibers]] of the two [[ventricles]].<ref name="CerroneNoujaim2007">{{cite journal|last1=Cerrone|first1=Marina|last2=Noujaim|first2=Sami F.|last3=Tolkacheva|first3=Elena G.|last4=Talkachou|first4=Arkadzi|last5=O’Connell|first5=Ryan|last6=Berenfeld|first6=Omer|last7=Anumonwo|first7=Justus|last8=Pandit|first8=Sandeep V.|last9=Vikstrom|first9=Karen|last10=Napolitano|first10=Carlo|last11=Priori|first11=Silvia G.|last12=Jalife|first12=José|title=Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia|journal=Circulation Research|volume=101|issue=10|year=2007|pages=1039–1048|issn=0009-7330|doi=10.1161/CIRCRESAHA.107.148064}}</ref><ref name="HerronMilstein2010">{{cite journal|last1=Herron|first1=Todd J.|last2=Milstein|first2=Michelle L.|last3=Anumonwo|first3=Justus|last4=Priori|first4=Silvia G.|last5=Jalife|first5=José|title=Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia|journal=Heart Rhythm|volume=7|issue=8|year=2010|pages=1122–1128|issn=15475271|doi=10.1016/j.hrthm.2010.06.010}}</ref><ref name="CerroneColombi2005">{{cite journal|last1=Cerrone|first1=Marina|last2=Colombi|first2=Barbara|last3=Santoro|first3=Massimo|last4=di Barletta|first4=Marina Raffaele|last5=Scelsi|first5=Mario|last6=Villani|first6=Laura|last7=Napolitano|first7=Carlo|last8=Priori|first8=Silvia G|title=Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor|journal=Circulation Research|volume=96|issue=10|year=2005|issn=0009-7330|doi=10.1161/01.RES.0000169067.51055.72}}</ref>
<br>{{familytree/start}}
{{familytree | | | | | | | | | A01 | | | | | |A01=[[Exercise stress testing]]}}
{{familytree | | | | | | | | | |!| | | | | | | | }}
{{familytree | | | | | | | | | B01 | | | | | |B01=Increase in [[sinus rhythm]]}}
{{familytree | | | | | | | | | |!| | | | | | | | }}
{{familytree | | | | | | | | | C01 | | | | | |C01=Monomorphic [[premature ventricular contractions]] ([[PVC]]s)}}
{{familytree | | |,|-|-|-|-|-|-|^|-|-|-|-|-|-|.| }}
{{familytree | | D01 | | | | | | | | | | | |D02|D01=Polymorphic [[Premature ventricular contraction|PVC]] [[Bigeminy]]|D02=Bidirectional [[Premature ventricular contraction|PVC]] [[Bigeminy]]}}
{{familytree | | |!| | | | | | | | | | | | | |!| }}
{{familytree | | E01 | | | | | | | | | | | |E02|E01=Polymorphic [[VT]]|E02=Bidirectional [[VT]]}}
{{familytree/end}}<br />
<br />
[[File:ECG during exercise stress testing.jpg|center|thumb|374x374px|[[The electrocardiogram|ECG]] during [[exercise stress testing]] demonstrates increasing frequency of [[ventricular arrhythmias]], degrading from [[Bigeminal rhythm|bigeminy]] to a typical bidirectional [[ventricular tachycardia]].<ref name="BehereWeindling2016">{{cite journal|last1=Behere|first1=ShashankP|last2=Weindling|first2=StevenN|title=Catecholaminergic polymorphic ventricular tachycardia: An exciting new era|journal=Annals of Pediatric Cardiology|volume=9|issue=2|year=2016|pages=137|issn=0974-2069|doi=10.4103/0974-2069.180645}}</ref> Courtesy: Shashank P Behere.]]
<br />[[File:Bidirectional VT in CPVT.jpg|center|thumb|375x375px|ECG tracing during [[Exercise stress testing|exercise stress test]] shows the typical aspect of bidirectional [[ventricular tachycardia]] characterized by 180° alternating [[QRS]] axis on a beat-to-beat basis, with a [[right bundle branch block]] pattern suggesting a left [[Ventricle (heart)|ventricular]] origin.<ref name="LeenhardtDenjoy2012">{{cite journal|last1=Leenhardt|first1=Antoine|last2=Denjoy|first2=Isabelle|last3=Guicheney|first3=Pascale|title=Catecholaminergic Polymorphic Ventricular Tachycardia|journal=Circulation: Arrhythmia and Electrophysiology|volume=5|issue=5|year=2012|pages=1044–1052|issn=1941-3149|doi=10.1161/CIRCEP.111.962027}}</ref> Courtesy: Antoine Leenhardt]]
<br>
==References==
{{Reflist|2}}
{{WH}}
{{WS}}
[[Category: (name of the system)]]

Latest revision as of 05:56, 30 July 2020

Catecholaminergic polymorphic ventricular tachycardia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Catecholaminergic polymorphic ventricular tachycardia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Exercise Stress Testing

Genetic Testing

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Implantable Cardioverter-Defibrillator

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Catecholaminergic polymorphic ventricular tachycardia exercise stress testing On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

CDC on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Catecholaminergic polymorphic ventricular tachycardia exercise stress testing in the news

Blogs on Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Catecholaminergic polymorphic ventricular tachycardia exercise stress testing

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mounika Reddy Vadiyala, M.B.B.S.[2]

Overview

Exercise Stress Testing is the primary diagnostic test and the most helpful clinical tool in diagnosing CPVT as it can reproducibly evoke the typical ventricular tachycardia during acute adrenergic activation (exercise). During exercise stress testing, sinus rhythm accelerates and beyond a heart rate of 120-130 beats per minute, isolated and often monomorphic ventricular premature beats (VPBs) typically occur first and then increase with heart rate to bigeminy. Subsequently, the VPBs become polymorphic or bidircetional, and as the exercise increase, they form bursts of non-sustained polymorphic ventricular tachycardia or bidirectional ventricular tachycardia (VT). With continuous activity, the arrhythmia persists and becomes more rapid, eventually assuming the appearance of polymorphic ventricular tachycardia (VT), which is very fast, fibrillation-like and leads to syncope. The arrhythmias disappear on stopping the exercise. Bidirectional ventricular tachycardia (VT) is the hallmark finding of catecholaminergic polymorphic ventricular tachycardia.

Exercise Stress Testing


 
 
 
 
 
 
 
 
Exercise stress testing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Increase in sinus rhythm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Monomorphic premature ventricular contractions (PVCs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Polymorphic PVC Bigeminy
 
 
 
 
 
 
 
 
 
 
 
Bidirectional PVC Bigeminy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Polymorphic VT
 
 
 
 
 
 
 
 
 
 
 
Bidirectional VT



ECG during exercise stress testing demonstrates increasing frequency of ventricular arrhythmias, degrading from bigeminy to a typical bidirectional ventricular tachycardia.[6] Courtesy: Shashank P Behere.


ECG tracing during exercise stress test shows the typical aspect of bidirectional ventricular tachycardia characterized by 180° alternating QRS axis on a beat-to-beat basis, with a right bundle branch block pattern suggesting a left ventricular origin.[7] Courtesy: Antoine Leenhardt


References

  1. 1.0 1.1 Leenhardt, Antoine; Lucet, Vincent; Denjoy, Isabelle; Grau, Francis; Ngoc, Dien Do; Coumel, Philippe (1995). "Catecholaminergic Polymorphic Ventricular Tachycardia in Children". Circulation. 91 (5): 1512–1519. doi:10.1161/01.CIR.91.5.1512. ISSN 0009-7322.
  2. Faggioni, Michela; Hwang, Hyun Seok; van der Werf, Christian; Nederend, Ineke; Kannankeril, Prince J.; Wilde, Arthur A.M.; Knollmann, Björn C. (2013). "Accelerated Sinus Rhythm Prevents Catecholaminergic Polymorphic Ventricular Tachycardia in Mice and in Patients". Circulation Research. 112 (4): 689–697. doi:10.1161/CIRCRESAHA.111.300076. ISSN 0009-7330.
  3. Cerrone, Marina; Noujaim, Sami F.; Tolkacheva, Elena G.; Talkachou, Arkadzi; O’Connell, Ryan; Berenfeld, Omer; Anumonwo, Justus; Pandit, Sandeep V.; Vikstrom, Karen; Napolitano, Carlo; Priori, Silvia G.; Jalife, José (2007). "Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia". Circulation Research. 101 (10): 1039–1048. doi:10.1161/CIRCRESAHA.107.148064. ISSN 0009-7330.
  4. Herron, Todd J.; Milstein, Michelle L.; Anumonwo, Justus; Priori, Silvia G.; Jalife, José (2010). "Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia". Heart Rhythm. 7 (8): 1122–1128. doi:10.1016/j.hrthm.2010.06.010. ISSN 1547-5271.
  5. Cerrone, Marina; Colombi, Barbara; Santoro, Massimo; di Barletta, Marina Raffaele; Scelsi, Mario; Villani, Laura; Napolitano, Carlo; Priori, Silvia G (2005). "Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor". Circulation Research. 96 (10). doi:10.1161/01.RES.0000169067.51055.72. ISSN 0009-7330.
  6. Behere, ShashankP; Weindling, StevenN (2016). "Catecholaminergic polymorphic ventricular tachycardia: An exciting new era". Annals of Pediatric Cardiology. 9 (2): 137. doi:10.4103/0974-2069.180645. ISSN 0974-2069.
  7. Leenhardt, Antoine; Denjoy, Isabelle; Guicheney, Pascale (2012). "Catecholaminergic Polymorphic Ventricular Tachycardia". Circulation: Arrhythmia and Electrophysiology. 5 (5): 1044–1052. doi:10.1161/CIRCEP.111.962027. ISSN 1941-3149.

Template:WH Template:WS