Norovirus: Difference between revisions
(3 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
==Causes== | ==Causes== | ||
===Common Causes=== | ===Common Causes=== | ||
Norovirus is transmitted through person-to-person contact, food and water. [[Genotype]] GII.4 is mostly contact transmitted. Non-GII.4 genotypes such as GI.3, GI.6, GI.7, GII.3, GII.6 and GII.12 are mostly [[Food-borne illness|food-borne]]. Genogroup GI strains are more often transmitted through water. This is due to their higher stability in water compared to other [[strains]] of the virus.<ref name="pmid27211790">{{cite journal| author=de Graaf M, van Beek J, Koopmans MP| title=Human norovirus transmission and evolution in a changing world. | journal=Nat Rev Microbiol | year= 2016 | volume= 14 | issue= 7 | pages= 421-33 | pmid=27211790 | doi=10.1038/nrmicro.2016.48 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27211790 }} </ref><ref name="pmid19494060">{{cite journal| author=Lysén M, Thorhagen M, Brytting M, Hjertqvist M, Andersson Y, Hedlund KO| title=Genetic diversity among food-borne and waterborne norovirus strains causing outbreaks in Sweden. | journal=J Clin Microbiol | year= 2009 | volume= 47 | issue= 8 | pages= 2411-8 | pmid=19494060 | doi=10.1128/JCM.02168-08 | pmc=2725682 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19494060 }} </ref> | |||
Norovirus is among top ranks of [[Food-borne illness|food-borne]] viruses, globally<ref name="pmid26633896">{{cite journal| author=Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ | display-authors=etal| title=World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. | journal=PLoS Med | year= 2015 | volume= 12 | issue= 12 | pages= e1001923 | pmid=26633896 | doi=10.1371/journal.pmed.1001923 | pmc=4668832 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26633896 }} </ref>. Transmission could occur in different stages of pre- and post-production of the food products. For instance, [[shellfish]] can be contaminated with fecal discharge in the water<ref name="pmid22440973">{{cite journal| author=Le Guyader FS, Atmar RL, Le Pendu J| title=Transmission of viruses through shellfish: when specific ligands come into play. | journal=Curr Opin Virol | year= 2012 | volume= 2 | issue= 1 | pages= 103-10 | pmid=22440973 | doi=10.1016/j.coviro.2011.10.029 | pmc=3839110 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22440973 }} </ref>, fresh and frozen berries could be contaminated through water contaminated by [[sewage]] or contact during harvesting. Viral [[outbreaks]] through food-borne [[transmission]] can lead to a mixture of the viral strain and increased risk of [[genetic recombination]]. Studies show that about 7% of the foodborne outbreaks have a common source<ref name="pmid21392431">{{cite journal| author=Verhoef L, Kouyos RD, Vennema H, Kroneman A, Siebenga J, van Pelt W | display-authors=etal| title=An integrated approach to identifying international foodborne norovirus outbreaks. | journal=Emerg Infect Dis | year= 2011 | volume= 17 | issue= 3 | pages= 412-8 | pmid=21392431 | doi=10.3201/eid1703.100979 | pmc=3166008 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21392431 }} </ref>. | |||
===Less Common Causes=== | ===Less Common Causes=== | ||
Norovirus also has a [[nosocomial]] transition, causing a major burden for health care services<ref name="pmid24981041">{{cite journal| author=Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD | display-authors=etal| title=Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. | journal=Lancet Infect Dis | year= 2014 | volume= 14 | issue= 8 | pages= 725-730 | pmid=24981041 | doi=10.1016/S1473-3099(14)70767-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24981041 }} </ref>. [[Immunocompromised]] patients may develop numerous norovirus variations due to the [[chronic]] infection. This intra-host viral variation may lead to the appearance of variants not similar to any of the ones of previous outbreaks, thus can escape the herd immunity.<ref name="pmid24648459">{{cite journal| author=Debbink K, Lindesmith LC, Ferris MT, Swanstrom J, Beltramello M, Corti D | display-authors=etal| title=Within-host evolution results in antigenically distinct GII.4 noroviruses. | journal=J Virol | year= 2014 | volume= 88 | issue= 13 | pages= 7244-55 | pmid=24648459 | doi=10.1128/JVI.00203-14 | pmc=4054459 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24648459 }} </ref><ref name="pmid27211790">{{cite journal| author=de Graaf M, van Beek J, Koopmans MP| title=Human norovirus transmission and evolution in a changing world. | journal=Nat Rev Microbiol | year= 2016 | volume= 14 | issue= 7 | pages= 421-33 | pmid=27211790 | doi=10.1038/nrmicro.2016.48 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27211790 }} </ref> | |||
To date, animal norovirus strains have not been reported to infect human population, but there has been evidence of intra-species transmission. Human norovirus has been detected in the [[stools]] of pigs, cattle and dogs.<ref name="pmid27211790">{{cite journal| author=de Graaf M, van Beek J, Koopmans MP| title=Human norovirus transmission and evolution in a changing world. | journal=Nat Rev Microbiol | year= 2016 | volume= 14 | issue= 7 | pages= 421-33 | pmid=27211790 | doi=10.1038/nrmicro.2016.48 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27211790 }} </ref> | |||
==References== | ==References== |
Latest revision as of 17:29, 8 March 2021
Norovirus infection Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Norovirus On the Web |
American Roentgen Ray Society Images of Norovirus |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Norovirus is the cause of norovirus infection. Noroviruses (genus Norovirus) are a group of related, single-stranded RNA, nonenveloped viruses that cause acute gastroenteritis in humans. Noroviruses belong to the family Caliciviridae.
Causes
Common Causes
Norovirus is transmitted through person-to-person contact, food and water. Genotype GII.4 is mostly contact transmitted. Non-GII.4 genotypes such as GI.3, GI.6, GI.7, GII.3, GII.6 and GII.12 are mostly food-borne. Genogroup GI strains are more often transmitted through water. This is due to their higher stability in water compared to other strains of the virus.[1][2]
Norovirus is among top ranks of food-borne viruses, globally[3]. Transmission could occur in different stages of pre- and post-production of the food products. For instance, shellfish can be contaminated with fecal discharge in the water[4], fresh and frozen berries could be contaminated through water contaminated by sewage or contact during harvesting. Viral outbreaks through food-borne transmission can lead to a mixture of the viral strain and increased risk of genetic recombination. Studies show that about 7% of the foodborne outbreaks have a common source[5].
Less Common Causes
Norovirus also has a nosocomial transition, causing a major burden for health care services[6]. Immunocompromised patients may develop numerous norovirus variations due to the chronic infection. This intra-host viral variation may lead to the appearance of variants not similar to any of the ones of previous outbreaks, thus can escape the herd immunity.[7][1]
To date, animal norovirus strains have not been reported to infect human population, but there has been evidence of intra-species transmission. Human norovirus has been detected in the stools of pigs, cattle and dogs.[1]
References
- ↑ 1.0 1.1 1.2 de Graaf M, van Beek J, Koopmans MP (2016). "Human norovirus transmission and evolution in a changing world". Nat Rev Microbiol. 14 (7): 421–33. doi:10.1038/nrmicro.2016.48. PMID 27211790.
- ↑ Lysén M, Thorhagen M, Brytting M, Hjertqvist M, Andersson Y, Hedlund KO (2009). "Genetic diversity among food-borne and waterborne norovirus strains causing outbreaks in Sweden". J Clin Microbiol. 47 (8): 2411–8. doi:10.1128/JCM.02168-08. PMC 2725682. PMID 19494060.
- ↑ Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ; et al. (2015). "World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010". PLoS Med. 12 (12): e1001923. doi:10.1371/journal.pmed.1001923. PMC 4668832. PMID 26633896.
- ↑ Le Guyader FS, Atmar RL, Le Pendu J (2012). "Transmission of viruses through shellfish: when specific ligands come into play". Curr Opin Virol. 2 (1): 103–10. doi:10.1016/j.coviro.2011.10.029. PMC 3839110. PMID 22440973.
- ↑ Verhoef L, Kouyos RD, Vennema H, Kroneman A, Siebenga J, van Pelt W; et al. (2011). "An integrated approach to identifying international foodborne norovirus outbreaks". Emerg Infect Dis. 17 (3): 412–8. doi:10.3201/eid1703.100979. PMC 3166008. PMID 21392431.
- ↑ Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD; et al. (2014). "Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis". Lancet Infect Dis. 14 (8): 725–730. doi:10.1016/S1473-3099(14)70767-4. PMID 24981041.
- ↑ Debbink K, Lindesmith LC, Ferris MT, Swanstrom J, Beltramello M, Corti D; et al. (2014). "Within-host evolution results in antigenically distinct GII.4 noroviruses". J Virol. 88 (13): 7244–55. doi:10.1128/JVI.00203-14. PMC 4054459. PMID 24648459.