Hemorrhagic stroke surgery: Difference between revisions

Jump to navigation Jump to search
Sara Mehrsefat (talk | contribs)
Sara Mehrsefat (talk | contribs)
No edit summary
 
(24 intermediate revisions by the same user not shown)
Line 2: Line 2:
{{Hemorrhagic stroke}}
{{Hemorrhagic stroke}}


{{CMG}}
{{CMG}}}; {{AE}} {{SaraM}}


==Overview==
==Overview==
The role of surgery for most patients with spontaneous ICH remains controversial. The theoretical rationale for [[hematoma]] evacuation revolves around the concepts of preventing [[herniation]], reducing [[ICP]], and decreasing the pathophysiological impact of the [[hematoma]] on surrounding tissue by decreasing mass effect or the cellular toxicity of blood products.
The role of surgery for most patients with spontaneous ICH remains controversial. The theoretical rationale for [[hematoma]] evacuation revolves around the concepts of preventing [[herniation]], reducing [[ICP]], and decreasing the pathophysiological impact of the [[hematoma]] on surrounding tissue by decreasing mass effect or the cellular toxicity of blood products.
Additionally, the current recommendations do not apply to [[intracranial hemorrhage]] caused by [[trauma]] or underlying structural lesions such as [[aneurysms]] and arteriovenous malformations, because these patients were not included in the described ICH surgery trials.
Additionally, the current recommendations do not apply to [[intracranial hemorrhage]] caused by [[trauma]] or underlying structural lesions such as [[aneurysms]] and arteriovenous malformations, because these patients were not included in the described ICH surgery trials.<ref name=Zhou>Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, Dong Q, Guo J, Li L, Guo J, Xie P. Minimally invasive surgery for spontaneous supratentorial intra- cerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke. 2012;43:2923–2930. doi: 10.1161/STROKEAHA.112.667535.</ref><ref name=Mendelow>Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.</ref>
 
The indications for surgery in patients with ICH vary with the site of the bleed


==Surgery==
==Surgery==
===Craniotomy for supratentorial hemorrhage===
*The indications for surgery in patients with ICH vary with the site of the bleed
Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, but high crossover rates of patients to surgical intervention, and narrow patient-based inclusion criteria on early surgery leave unclarified whether surgery may benefit specific groups of patients with supratentorial ICH.
===Timing of surgery===
===Craniotomy for posterior fossa hemorrhage===
*Timing of surgery for ICH remains controversial. Randomized prospective trials to date have reported on a wide time frame for surgery that ranges from 4 to 96 hours after symptom onset. Ultra-early [[craniotomy]] (within 4 hours from ictus) was associated with an increased risk of rebleeding in a study that involved 24 patients.<ref name=Mendelow>Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.</ref><ref name=Gregson-x>Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH; STICH investigators. Early surgery versus initial conservative treatment in patients with spontane- ous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–397. doi: 10.1016/S0140-6736(05)17826-X.</ref><ref name=Pantazis>Pantazis G, Tsitsopoulos P, Mihas C, Katsiva V, Stavrianos V, Zymaris S. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: a prospective randomized study. Surg Neurol. 2006;66:492–501.</ref><ref name=Delcourt>Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, Wang J, Parsons MW, Liu G, Anderson CS; INTERACT1 Investigators. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–319. doi: 10.1212/ WNL.0b013e318260cbba.</ref>
 
===Surgical techniques===
====Open craniotomy====
Open [[craniotomy]] is the most widely studied surgical techniques in patients with supratentorial ICH [1]. Other methods include endoscopic hemorrhage aspiration, use of fibrinolytic therapy to dissolve the clot followed by aspiration, and CT-guided stereotactic aspiration. Studies of these less invasive techniques are in progress.<ref name=Wang>Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.</ref><ref name=Mould>Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intrace- rebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–634. doi: 10.1161/STROKEAHA.111.000411.</ref>
====Minimally invasive surgical evacuation of ICH====
Several recent randomized studies have shown minimally invasive aspiration associated with better outcomes with less invasive approaches compared to standard craniotomies.<ref name=Wang>Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.</ref><ref name=Fung>Fung C, Murek M, Z’Graggen WJ, Krähenbühl AK, Gautschi OP, Schucht P, Gralla J, Schaller K, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Decompressive hemicraniectomy in patients with supratento- rial intracerebral hemorrhage. Stroke. 2012;43:3207–3211. doi: 10.1161/ STROKEAHA.112.666537.</ref>
===Site of the bleed===
====Supratentorial hemorrhage====
Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, and it is still unclarified whether surgery may benefit specific groups of patients with supratentorial ICH. Therefore, the routine evacuation of supratentorial ICH in the first 96 hours is not recommended.<ref name=Mendelow>Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.</ref><ref name=Gregson-AD>Mendelow AD, Gregson BA, Mitchell PM, Murray GD, Rowan EN, Gholkar AR; STICH II Investigators. Surgical Trial in Lobar Intracerebral Haemorrhage (STICH II) protocol. Trials. 2011;12:124. doi: 10.1186/1745-6215-12-124.</ref>
 
Standard craniotomy should be considered in following conditions:
*Hematoma near the cortical surface (lobar clots >30 mL within 1 cm of the surface)
*Recent onset of hemorrhage
*Ongoing clinical deterioration
*Involvement of the nondominant hemisphere
Craniotomy should not be considered in following conditions:
*Patients who are either fully alert or deeply comatose.
 
====Posterior fossa hemorrhage====
Because of the narrow confines of the [[posterior fossa]], [[hydrocephalus|obstructive hydrocephalus]] and local mass effect on the [[brainstem]] can result in rapid deterioration of the patient with cerebellar hemorrhage.
Because of the narrow confines of the [[posterior fossa]], [[hydrocephalus|obstructive hydrocephalus]] and local mass effect on the [[brainstem]] can result in rapid deterioration of the patient with cerebellar hemorrhage.
*Surgical decompression in patients whom cerebellar hemorrhage is associated with [[brainstem]] compression or [[hydrocephalus]] or patients with cerebellar hemorrhages >3 cm in diameteris are associated with good outcomes.<ref name=Da-Pian>Da Pian R, Bazzan A, Pasqualin A. Surgical versus medical treatment of spontaneous posterior fossa haematomas: a cooperative study on 205 cases. Neurol Res. 1984;6:145–151.</ref>
*Controlling ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recommended, and may actually be harmful.<ref name=Van> van Loon J, Van Calenbergh F, Goffin J, Plets C. Controversies in the management of spontaneous cerebellar haemorrhage: a consecutive series of 49 cases and review of the literature. Acta Neurochir (Wien). 1993;122:187–193.</ref>
====Intraventricular hemorrhage====
*using of ventricular catheter (VC) alone may be ineffective because of difficulty maintaining catheter patency and the slow removal of intraventricular blood.<ref name=Huttner>Huttner HB, Köhrmann M, Berger C, Georgiadis D, Schwab S. Influence of intraventricular hemorrhage and occlusive hydrocephalus on the long-term outcome of treated patients with basal ganglia hemorrhage: a case-control study. J Neurosurg. 2006;105:412–417. doi: 10.3171/jns.2006.105.3.412.</ref>
*There are now reports of alternative procedures for IVH, such as endoscopic surgical evacuation and [[ventriculostomy]].
==2015 AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhage<ref name=ASA/AHA-ICH-Guid> 2015 AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhagehttp://stroke.ahajournals.org/content/early/2015/05/28/STR.0000000000000069 Accessed on November 10, 2016</ref>==
===Hemostasis and Coagulopathy, Antiplatelet Agents, and DVT Prophylaxis: Recommendations===
===Surgical Treatment of ICH: Recommendations===
{|class="wikitable"
|-
| colspan="1" style="text-align:center; background:LightGreen"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]]
|-
| bgcolor="LightGreen"|<nowiki>"</nowiki>'''1.'''Patients with cerebellar hemorrhage who are deteriorating neurologically or who have brainstem compression and/or hydrocephalus from ventricular obstruction should undergo surgical removal of the hemorrhage as soon as possible  ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki>
|}


Surgical decompression may result in
{|class="wikitable"
|-
|colspan="1" style="text-align:center; background:LightCoral"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class III]] (Harm)
|-
|bgcolor="LightCoral"|<nowiki>"</nowiki>'''1.''' Initial treatment of patients with cerebellar hemorrhage who are deteriorating neurologically or who have brainstem compression and/or hydrocephalus from ventricular obstruction is not recommended ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|}


Several nonrandomized studies have suggested that patients with  
{|class="wikitable"
cerebellar hemorrhages >3 cm in diameter
|-
patients in whom cerebellar hemorrhage is associated with brainstem compression or hydrocephalus have better outcomes with surgical decompression.
| colspan="1" style="text-align:center; background:LemonChiffon"|[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIb]]
Attempting to control ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recom- mended, and may actually be harmful, particularly in patients with compressed cisterns.239 In contrast to cerebellar hemor- rhage, evacuation of brainstem hemorrhages may be harm- ful in many cases. Given the broad lack of clinical equipoise for surgical evacuation of cerebellar hemorrhages, especially those >3 cm in diameter occurring in potentially salvageable patients, it is unlikely that a randomized trial could be con- ducted to compare surgery versus conservative treatment.
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''1.''' For most patients with supratentorial ICH, the usefulness of surgery is not well established ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: A]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''2.''' A policy of early hematoma evacuation is not clearly beneficial compared with hematoma evacution when patients deteriorate ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: A]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''3.''' Supratentorial hematoma evacuation in deteriorating patients might be considered as a life-saving measure ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''4.'''Decompressive hemicraniectomy (DC) with or without hematoma evacuation might reduce mortality for patients with supratentorial ICH who are in a [[coma]], have large hematomas with significant midline shift, or have elevated ICP refractory to medical management ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: C]])''<nowiki>"</nowiki>
|-
|bgcolor="LemonChiffon"|<nowiki>"</nowiki>'''5.'''  The effectiveness of minimally invasive clot evacuation with stereotactic or endoscopic aspiration with or without [[thrombolytic]] usage is uncertain ''([[ACC AHA guidelines classification scheme#Level of Evidence|Level of Evidence: B]])''<nowiki>"</nowiki>
|}


==References==
==References==

Latest revision as of 14:01, 1 December 2016

Hemorrhagic stroke Microchapters

Main Stroke Page

Ischemic Stroke Page

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Stroke from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Emergency Diagnosis and Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

CT

MRI

Other Imaging Findings

Treatment

Early Assessment

NIH Stroke Scale

Management

Surgery

Rehabilitation

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhage (2015)

Management of ICH

AHA/ASA Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage (2012)

Management of aSAH

AHA/ASA Guideline Recommendation for the Primary Prevention of Stroke (2014)

Primary Prevention of Stroke

AHA/ASA Guideline Recommendations for Prevention of Stroke in Women (2014)

Overview

Sex-Specific Risk Factors

Pregnancy and Complications
Cerebral Venous Thrombosis
Oral Contraceptives
Menopause and Postmenopausal Hormonal Therapy

Risk Factors Commoner in Women

Migraine with Aura
Obesity, Metabolic Syndrome, and Lifestyle Factors
Atrial Fibrillation

Prevention

Case Studies

Case #1

Hemorrhagic stroke surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hemorrhagic stroke surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hemorrhagic stroke surgery

CDC on Hemorrhagic stroke surgery

Hemorrhagic stroke surgery in the news

Blogs on Hemorrhagic stroke surgery

Directions to Hospitals Treating Stroke

Risk calculators and risk factors for Hemorrhagic stroke surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]}; Associate Editor(s)-in-Chief: Sara Mehrsefat, M.D. [2]

Overview

The role of surgery for most patients with spontaneous ICH remains controversial. The theoretical rationale for hematoma evacuation revolves around the concepts of preventing herniation, reducing ICP, and decreasing the pathophysiological impact of the hematoma on surrounding tissue by decreasing mass effect or the cellular toxicity of blood products. Additionally, the current recommendations do not apply to intracranial hemorrhage caused by trauma or underlying structural lesions such as aneurysms and arteriovenous malformations, because these patients were not included in the described ICH surgery trials.[1][2]

The indications for surgery in patients with ICH vary with the site of the bleed

Surgery

  • The indications for surgery in patients with ICH vary with the site of the bleed

Timing of surgery

  • Timing of surgery for ICH remains controversial. Randomized prospective trials to date have reported on a wide time frame for surgery that ranges from 4 to 96 hours after symptom onset. Ultra-early craniotomy (within 4 hours from ictus) was associated with an increased risk of rebleeding in a study that involved 24 patients.[2][3][4][5]

Surgical techniques

Open craniotomy

Open craniotomy is the most widely studied surgical techniques in patients with supratentorial ICH [1]. Other methods include endoscopic hemorrhage aspiration, use of fibrinolytic therapy to dissolve the clot followed by aspiration, and CT-guided stereotactic aspiration. Studies of these less invasive techniques are in progress.[6][7]

Minimally invasive surgical evacuation of ICH

Several recent randomized studies have shown minimally invasive aspiration associated with better outcomes with less invasive approaches compared to standard craniotomies.[6][8]

Site of the bleed

Supratentorial hemorrhage

Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, and it is still unclarified whether surgery may benefit specific groups of patients with supratentorial ICH. Therefore, the routine evacuation of supratentorial ICH in the first 96 hours is not recommended.[2][9]

Standard craniotomy should be considered in following conditions:

  • Hematoma near the cortical surface (lobar clots >30 mL within 1 cm of the surface)
  • Recent onset of hemorrhage
  • Ongoing clinical deterioration
  • Involvement of the nondominant hemisphere

Craniotomy should not be considered in following conditions:

  • Patients who are either fully alert or deeply comatose.

Posterior fossa hemorrhage

Because of the narrow confines of the posterior fossa, obstructive hydrocephalus and local mass effect on the brainstem can result in rapid deterioration of the patient with cerebellar hemorrhage.

  • Surgical decompression in patients whom cerebellar hemorrhage is associated with brainstem compression or hydrocephalus or patients with cerebellar hemorrhages >3 cm in diameteris are associated with good outcomes.[10]
  • Controlling ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recommended, and may actually be harmful.[11]

Intraventricular hemorrhage

  • using of ventricular catheter (VC) alone may be ineffective because of difficulty maintaining catheter patency and the slow removal of intraventricular blood.[12]
  • There are now reports of alternative procedures for IVH, such as endoscopic surgical evacuation and ventriculostomy.

2015 AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhage[13]

Hemostasis and Coagulopathy, Antiplatelet Agents, and DVT Prophylaxis: Recommendations

Surgical Treatment of ICH: Recommendations

Class I
"1.Patients with cerebellar hemorrhage who are deteriorating neurologically or who have brainstem compression and/or hydrocephalus from ventricular obstruction should undergo surgical removal of the hemorrhage as soon as possible (Level of Evidence: B)"
Class III (Harm)
"1. Initial treatment of patients with cerebellar hemorrhage who are deteriorating neurologically or who have brainstem compression and/or hydrocephalus from ventricular obstruction is not recommended (Level of Evidence: C)"
Class IIb
"1. For most patients with supratentorial ICH, the usefulness of surgery is not well established (Level of Evidence: A)"
"2. A policy of early hematoma evacuation is not clearly beneficial compared with hematoma evacution when patients deteriorate (Level of Evidence: A)"
"3. Supratentorial hematoma evacuation in deteriorating patients might be considered as a life-saving measure (Level of Evidence: C)"
"4.Decompressive hemicraniectomy (DC) with or without hematoma evacuation might reduce mortality for patients with supratentorial ICH who are in a coma, have large hematomas with significant midline shift, or have elevated ICP refractory to medical management (Level of Evidence: C)"
"5. The effectiveness of minimally invasive clot evacuation with stereotactic or endoscopic aspiration with or without thrombolytic usage is uncertain (Level of Evidence: B)"

References

  1. Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, Dong Q, Guo J, Li L, Guo J, Xie P. Minimally invasive surgery for spontaneous supratentorial intra- cerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke. 2012;43:2923–2930. doi: 10.1161/STROKEAHA.112.667535.
  2. 2.0 2.1 2.2 Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.
  3. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH; STICH investigators. Early surgery versus initial conservative treatment in patients with spontane- ous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–397. doi: 10.1016/S0140-6736(05)17826-X.
  4. Pantazis G, Tsitsopoulos P, Mihas C, Katsiva V, Stavrianos V, Zymaris S. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: a prospective randomized study. Surg Neurol. 2006;66:492–501.
  5. Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, Wang J, Parsons MW, Liu G, Anderson CS; INTERACT1 Investigators. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–319. doi: 10.1212/ WNL.0b013e318260cbba.
  6. 6.0 6.1 Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.
  7. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intrace- rebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–634. doi: 10.1161/STROKEAHA.111.000411.
  8. Fung C, Murek M, Z’Graggen WJ, Krähenbühl AK, Gautschi OP, Schucht P, Gralla J, Schaller K, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Decompressive hemicraniectomy in patients with supratento- rial intracerebral hemorrhage. Stroke. 2012;43:3207–3211. doi: 10.1161/ STROKEAHA.112.666537.
  9. Mendelow AD, Gregson BA, Mitchell PM, Murray GD, Rowan EN, Gholkar AR; STICH II Investigators. Surgical Trial in Lobar Intracerebral Haemorrhage (STICH II) protocol. Trials. 2011;12:124. doi: 10.1186/1745-6215-12-124.
  10. Da Pian R, Bazzan A, Pasqualin A. Surgical versus medical treatment of spontaneous posterior fossa haematomas: a cooperative study on 205 cases. Neurol Res. 1984;6:145–151.
  11. van Loon J, Van Calenbergh F, Goffin J, Plets C. Controversies in the management of spontaneous cerebellar haemorrhage: a consecutive series of 49 cases and review of the literature. Acta Neurochir (Wien). 1993;122:187–193.
  12. Huttner HB, Köhrmann M, Berger C, Georgiadis D, Schwab S. Influence of intraventricular hemorrhage and occlusive hydrocephalus on the long-term outcome of treated patients with basal ganglia hemorrhage: a case-control study. J Neurosurg. 2006;105:412–417. doi: 10.3171/jns.2006.105.3.412.
  13. 2015 AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhagehttp://stroke.ahajournals.org/content/early/2015/05/28/STR.0000000000000069 Accessed on November 10, 2016


Template:WS Template:WH