Bloom syndrome protein: Difference between revisions
Matt Pijoan (talk | contribs) m 1 revision imported |
|||
(One intermediate revision by one other user not shown) | |||
Line 10: | Line 10: | ||
The budding yeast ''[[Saccharomyces cerevisiae]]'' encodes an ortholog of the Bloom syndrome (BLM) protein that is designated [[Sgs1]] (Small growth suppressor 1). Sgs1(BLM) is a [[helicase]] that functions in [[homologous recombination]]al repair of DSBs. The [[Sgs1]](BLM) helicase appears to be a central regulator of most of the recombination events that occur during ''S. cerevisiae'' [[meiosis]].<ref name=De>{{cite journal |vauthors=De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M |title=BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism |journal=Mol. Cell |volume=46 |issue=1 |pages=43–53 |year=2012 |pmid=22500736 |pmc=3328772 |doi=10.1016/j.molcel.2012.02.020 |url=}}</ref> During normal meiosis Sgs1(BLM) is responsible for directing recombination towards the alternate formation of either early NCOs or [[Holliday junction]] joint molecules, the latter being subsequently resolved as COs.<ref name=De /> | The budding yeast ''[[Saccharomyces cerevisiae]]'' encodes an ortholog of the Bloom syndrome (BLM) protein that is designated [[Sgs1]] (Small growth suppressor 1). Sgs1(BLM) is a [[helicase]] that functions in [[homologous recombination]]al repair of DSBs. The [[Sgs1]](BLM) helicase appears to be a central regulator of most of the recombination events that occur during ''S. cerevisiae'' [[meiosis]].<ref name=De>{{cite journal |vauthors=De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M |title=BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism |journal=Mol. Cell |volume=46 |issue=1 |pages=43–53 |year=2012 |pmid=22500736 |pmc=3328772 |doi=10.1016/j.molcel.2012.02.020 |url=}}</ref> During normal meiosis Sgs1(BLM) is responsible for directing recombination towards the alternate formation of either early NCOs or [[Holliday junction]] joint molecules, the latter being subsequently resolved as COs.<ref name=De /> | ||
In the plant ''[[Arabidopsis thaliana]]'', homologs of the Sgs1(BLM) helicase act as major barriers to meiotic CO formation.<ref name=Mazel>{{cite journal |vauthors=Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R |title=Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=112 |issue=15 |pages=4713–8 |year=2015 |pmid=25825745 |pmc=4403193 |doi=10.1073/pnas.1423107112 |url=}}</ref> These helicases are thought to displace the invading strand allowing its annealing with the other 3’overhang end of the DSB, leading to NCO recombinant formation by a process called synthesis dependent strand annealing (SDSA) (see [[Genetic recombination]] and Figure in this section). It is estimated that only about 4% of DSBs are repaired by CO recombination.<ref name="pmid22723424">{{vcite2 journal |vauthors=Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R |title=FANCM limits meiotic crossovers |journal=Science |volume=336 |issue=6088 |pages=1588–90 |year=2012 |pmid=22723424 |doi=10.1126/science.1220381 |url=}}</ref> Sequela-Arnaud et al.<ref name=Mazel /> suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past [[natural selection]]. | In the plant ''[[Arabidopsis thaliana]]'', homologs of the Sgs1(BLM) helicase act as major barriers to meiotic CO formation.<ref name=Mazel>{{cite journal |vauthors=Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R |title=Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=112 |issue=15 |pages=4713–8 |year=2015 |pmid=25825745 |pmc=4403193 |doi=10.1073/pnas.1423107112 |url=|hdl=1854/LU-6829814 }}</ref> These helicases are thought to displace the invading strand allowing its annealing with the other 3’overhang end of the DSB, leading to NCO recombinant formation by a process called synthesis dependent strand annealing (SDSA) (see [[Genetic recombination]] and Figure in this section). It is estimated that only about 4% of DSBs are repaired by CO recombination.<ref name="pmid22723424">{{vcite2 journal |vauthors=Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R |title=FANCM limits meiotic crossovers |journal=Science |volume=336 |issue=6088 |pages=1588–90 |year=2012 |pmid=22723424 |doi=10.1126/science.1220381 |url=}}</ref> Sequela-Arnaud et al.<ref name=Mazel /> suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past [[natural selection]]. | ||
== Interactions == | == Interactions == |
Latest revision as of 12:42, 9 January 2019
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.[1]
The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities. Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3' → 5' helicase activity. The normal protein may act to suppress inappropriate homologous recombination.[2]
Meiosis
Recombination during meiosis is often initiated by a DNA double-strand break (DSB). During recombination, sections of DNA at the 5' ends of the break are cut away in a process called resection. In the strand invasion step that follows, an overhanging 3' end of the broken DNA molecule then "invades" the DNA of an homologous chromosome that is not broken. After strand invasion, the further sequence of events may follow either of two main pathways leading to a crossover (CO) or a non-crossover (NCO) recombinant (see Genetic recombination and bottom of Figure in this section).
The budding yeast Saccharomyces cerevisiae encodes an ortholog of the Bloom syndrome (BLM) protein that is designated Sgs1 (Small growth suppressor 1). Sgs1(BLM) is a helicase that functions in homologous recombinational repair of DSBs. The Sgs1(BLM) helicase appears to be a central regulator of most of the recombination events that occur during S. cerevisiae meiosis.[3] During normal meiosis Sgs1(BLM) is responsible for directing recombination towards the alternate formation of either early NCOs or Holliday junction joint molecules, the latter being subsequently resolved as COs.[3]
In the plant Arabidopsis thaliana, homologs of the Sgs1(BLM) helicase act as major barriers to meiotic CO formation.[4] These helicases are thought to displace the invading strand allowing its annealing with the other 3’overhang end of the DSB, leading to NCO recombinant formation by a process called synthesis dependent strand annealing (SDSA) (see Genetic recombination and Figure in this section). It is estimated that only about 4% of DSBs are repaired by CO recombination.[5] Sequela-Arnaud et al.[4] suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past natural selection.
Interactions
Bloom syndrome protein has been shown to interact with:
References
- ↑ Karow JK, Chakraverty RK, Hickson ID (January 1998). "The Bloom's syndrome gene product is a 3'-5' DNA helicase". J Biol Chem. 272 (49): 30611–4. doi:10.1074/jbc.272.49.30611. PMID 9388193.
- ↑ "Bloom syndrome". Genetics Home Reference. NIH. Retrieved 19 March 2013.
- ↑ 3.0 3.1 De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M (2012). "BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism". Mol. Cell. 46 (1): 43–53. doi:10.1016/j.molcel.2012.02.020. PMC 3328772. PMID 22500736.
- ↑ 4.0 4.1 Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R (2015). "Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM". Proc. Natl. Acad. Sci. U.S.A. 112 (15): 4713–8. doi:10.1073/pnas.1423107112. hdl:1854/LU-6829814. PMC 4403193. PMID 25825745.
- ↑ Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, et al. (2012). "FANCM limits meiotic crossovers". Science. 336 (6088): 1588–90. doi:10.1126/science.1220381. PMID 22723424.
- ↑ 6.0 6.1 Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (April 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
- ↑ Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (August 2002). "Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM". J. Biol. Chem. 277 (34): 30515–23. doi:10.1074/jbc.M203801200. PMID 12034743.
- ↑ Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I (June 2004). "Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1". Mol. Cell. Biol. 24 (11): 4710–9. doi:10.1128/MCB.24.11.4710-4719.2004. PMC 416397. PMID 15143166.
- ↑ 9.0 9.1 9.2 9.3 Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R, Ward IM, Celeste A, Nussenzweig A, Chen J, Halazonetis TD, Harris CC (September 2004). "Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest". J. Cell Biol. 166 (6): 801–13. doi:10.1083/jcb.200405128. PMC 2172115. PMID 15364958.
- ↑ Deans AJ, West SC (24 December 2009). "FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia". Mol. Cell. 36 (6): 943–53. doi:10.1016/j.molcel.2009.12.006. PMID 20064461.
- ↑ Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM (March 2004). "Stimulation of flap endonuclease-1 by the Bloom's syndrome protein". J. Biol. Chem. 279 (11): 9847–56. doi:10.1074/jbc.M309898200. PMID 14688284.
- ↑ 12.0 12.1 Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP (August 2001). "Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha". Nucleic Acids Res. 29 (15): 3172–80. doi:10.1093/nar/29.15.3172. PMC 55826. PMID 11470874.
- ↑ Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J (August 2001). "The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair". J. Biol. Chem. 276 (32): 30031–5. doi:10.1074/jbc.M009664200. PMID 11325959.
- ↑ Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I (November 2001). "Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1". Nucleic Acids Res. 29 (21): 4378–86. doi:10.1093/nar/29.21.4378. PMC 60193. PMID 11691925.
- ↑ Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (August 2001). "Functional interaction of p53 and BLM DNA helicase in apoptosis". J. Biol. Chem. 276 (35): 32948–55. doi:10.1074/jbc.M103298200. PMID 11399766.
- ↑ Garkavtsev IV, Kley N, Grigorian IA, Gudkov AV (December 2001). "The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control". Oncogene. 20 (57): 8276–80. doi:10.1038/sj.onc.1205120. PMID 11781842.
- ↑ Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D, Griffith JD, Li JL, Hickson ID, Shen JC, Loeb LA, Mazur SJ, Appella E, Brosh RM, Karmakar P, Bohr VA, Harris CC (August 2002). "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53". J. Biol. Chem. 277 (35): 31980–7. doi:10.1074/jbc.M204111200. PMID 12080066.
- ↑ 18.0 18.1 Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (November 2003). "Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)". J. Biol. Chem. 278 (48): 48357–66. doi:10.1074/jbc.M308838200. PMID 12975363.
- ↑ Wu L, Davies SL, Levitt NC, Hickson ID (June 2001). "Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51". J. Biol. Chem. 276 (22): 19375–81. doi:10.1074/jbc.M009471200. PMID 11278509.
- ↑ 20.0 20.1 Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA (August 2000). "Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity". J. Biol. Chem. 275 (31): 23500–8. doi:10.1074/jbc.M001557200. PMID 10825162.
- ↑ Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (October 2002). "Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases". J. Biol. Chem. 277 (43): 41110–9. doi:10.1074/jbc.M205396200. PMID 12181313.
- ↑ Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (April 2002). "The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination". J. Cell Sci. 115 (Pt 8): 1611–22. PMID 11950880.
- ↑ Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (March 2000). "The Bloom's syndrome gene product interacts with topoisomerase III". J. Biol. Chem. 275 (13): 9636–44. doi:10.1074/jbc.275.13.9636. PMID 10734115.
- ↑ Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (June 2001). "Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability". Hum. Mol. Genet. 10 (12): 1287–98. doi:10.1093/hmg/10.12.1287. PMID 11406610.
- ↑ von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Hickson ID, Bohr VA (June 2002). "Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins". J. Biol. Chem. 277 (24): 22035–44. doi:10.1074/jbc.M200914200. PMID 11919194.
Further reading
- Woo LL, Onel K, Ellis NA (2007). "The broken genome: genetic and pharmacologic approaches to breaking DNA". Ann. Med. 39 (3): 208–18. doi:10.1080/08035250601167136. PMID 17457718.
- McDaniel LD, Schultz RA (1992). "Elevated sister chromatid exchange phenotype of Bloom syndrome cells is complemented by human chromosome 15". Proc. Natl. Acad. Sci. U.S.A. 89 (17): 7968–72. doi:10.1073/pnas.89.17.7968. PMC 49836. PMID 1518822.
- Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995). "The Bloom's syndrome gene product is homologous to RecQ helicases". Cell. 83 (4): 655–66. doi:10.1016/0092-8674(95)90105-1. PMID 7585968.
- German J, Roe AM, Leppert MF, Ellis NA (1994). "Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1". Proc. Natl. Acad. Sci. U.S.A. 91 (14): 6669–73. doi:10.1073/pnas.91.14.6669. PMC 44264. PMID 8022833.
- Foucault F, Vaury C, Barakat A, Thibout D, Planchon P, Jaulin C, Praz F, Amor-Guéret M (1998). "Characterization of a new BLM mutation associated with a topoisomerase II alpha defect in a patient with Bloom's syndrome". Hum. Mol. Genet. 6 (9): 1427–34. doi:10.1093/hmg/6.9.1427. PMID 9285778.
- Kaneko H, Orii KO, Matsui E, Shimozawa N, Fukao T, Matsumoto T, Shimamoto A, Furuichi Y, Hayakawa S, Kasahara K, Kondo N (1997). "BLM (the causative gene of Bloom syndrome) protein translocation into the nucleus by a nuclear localization signal". Biochem. Biophys. Res. Commun. 240 (2): 348–53. doi:10.1006/bbrc.1997.7648. PMID 9388480.
- Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (2000). "The Bloom's syndrome gene product interacts with topoisomerase III". J. Biol. Chem. 275 (13): 9636–44. doi:10.1074/jbc.275.13.9636. PMID 10734115.
- Yankiwski V, Marciniak RA, Guarente L, Neff NF (2000). "Nuclear structure in normal and Bloom syndrome cells". Proc. Natl. Acad. Sci. U.S.A. 97 (10): 5214–9. doi:10.1073/pnas.090525897. PMC 25808. PMID 10779560.
- Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
- Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000). "The Bloom's syndrome gene product promotes branch migration of Holliday junctions". Proc. Natl. Acad. Sci. U.S.A. 97 (12): 6504–8. doi:10.1073/pnas.100448097. PMC 18638. PMID 10823897.
- Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA (2000). "Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity". J. Biol. Chem. 275 (31): 23500–8. doi:10.1074/jbc.M001557200. PMID 10825162.
- Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C, Amor-Guéret M (2000). "Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase". Oncogene. 19 (23): 2731–8. doi:10.1038/sj.onc.1203595. PMID 10851073.
- Barakat A, Ababou M, Onclercq R, Dutertre S, Chadli E, Hda N, Benslimane A, Amor-Guéret M (2000). "Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome". Hum. Mutat. 15 (6): 584–5. doi:10.1002/1098-1004(200006)15:6<584::AID-HUMU28>3.0.CO;2-I. PMID 10862105.
- Brosh RM, Karow JK, White EJ, Shaw ND, Hickson ID, Bohr VA (2000). "Potent inhibition of Werner and Bloom helicases by DNA minor groove binding drugs". Nucleic Acids Res. 28 (12): 2420–30. doi:10.1093/nar/28.12.2420. PMC 102731. PMID 10871376.
- Wu L, Davies SL, Levitt NC, Hickson ID (2001). "Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51". J. Biol. Chem. 276 (22): 19375–81. doi:10.1074/jbc.M009471200. PMID 11278509.
- Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J (2001). "The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair". J. Biol. Chem. 276 (32): 30031–5. doi:10.1074/jbc.M009664200. PMID 11325959.
- Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (2001). "Functional interaction of p53 and BLM DNA helicase in apoptosis". J. Biol. Chem. 276 (35): 32948–55. doi:10.1074/jbc.M103298200. PMID 11399766.
- Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (2001). "Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability". Hum. Mol. Genet. 10 (12): 1287–98. doi:10.1093/hmg/10.12.1287. PMID 11406610.
- Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP (2001). "Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIα". Nucleic Acids Res. 29 (15): 3172–80. doi:10.1093/nar/29.15.3172. PMC 55826. PMID 11470874.
External links
- GeneReviews/NCBI/NIH/UW entry on Bloom Syndrome
- Human BLM genome location and BLM gene details page in the UCSC Genome Browser.