Immunodeficiency affecting cellular and humoral Immunity: Difference between revisions
Shyam Patel (talk | contribs) |
|||
(190 intermediate revisions by 4 users not shown) | |||
Line 3: | Line 3: | ||
{{ID}} | {{ID}} | ||
{{CMG}}; {{AE}} {{Akram}}, {{Anmol}} | {{CMG}}; {{AE}} {{Akram}}, {{ZAS}}, {{Anmol}}, {{sali}} | ||
==Overview== | ==Overview== | ||
[[Immunodeficiency]] disorders are associated with or predispose patients to various complications, including [[infections]], [[autoimmune disorders]], and [[lymphomas]] and other [[cancers]]. [[Primary immunodeficiencies]] are genetically determined and can be [[hereditary]]; secondary immunodeficiencies are acquired and much more common. [[combined immune defect]] affecting both types of [[acquired immunity]], i.e. both cellular and humoral responses. [[Acquired immunity]] remembers when it encounters an invading foreign cell or molecule [[antigen]] and quickly mounts a specific response on subsequent encounters. Cellular acquired responses are mediated by [[T cells]], also called [[T lymphocytes]], which kill infected cells, help [[B cells]], and control the immune response. [[Humoral immunity]] is mediated by [[B cells]] which produce antibodies [[immunoglobulins]] that help [[T cells]] and other immune cells to recognize and attack antigens. | |||
==Classification== | ==Classification== | ||
<br> | |||
{{Family tree/start}} | |||
{{Family tree | | | A01 | | | | A01=Immunodeficiency affecting cellular and humoral immunity}} | |||
{{Family tree | |,|-|^|-|.| | |}} | |||
{{Family tree | B01 | | B02 | |B01=Severe combined immunodeficiencies SCID, defined<br>by CD3 T cell lymphopenia|B02=Combined immunodeficiencies generally less pronounced<br>than severe combined immunodeficiency}} | |||
{{Family tree/end}} | |||
<br> | |||
===Severe Combined Immunodeficiency (SCID)=== | |||
<br> | |||
{{Family tree/start}} | {{Family tree/start}} | ||
{{Family tree | | | | | | | | | | A01 | | | | | | | | | | | | | | |A01= | {{Family tree | | | | | | | | | | A01 | | | | | | | | | | | | | | |A01=Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia}} | ||
{{Family tree | | | | | |,|-|-|-|-|^|-|-|-|-|.| | | | | | | | | | |}} | {{Family tree | | | | | |,|-|-|-|-|^|-|-|-|-|.| | | | | | | | | | |}} | ||
{{Family tree | | | | | B01 | | | | | | | | B02 | | | | | | | | | |B01=CD19 NL: SCID T-ve B+ve|B02=CD19 ↓: SCID T-ve B-ve}} | {{Family tree | | | | | B01 | | | | | | | | B02 | | | | | | | | | |B01=CD19 NL: SCID T-ve B+ve|B02=CD19 ↓: SCID T-ve B-ve}} | ||
Line 26: | Line 36: | ||
{{Family tree | | | | | | | |`| E05 | | | | | | | | | | | | | | | |E05=Winged helix def}} | {{Family tree | | | | | | | |`| E05 | | | | | | | | | | | | | | | |E05=Winged helix def}} | ||
{{Family tree/end}} | {{Family tree/end}} | ||
<br> | |||
===Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency=== | |||
<br> | |||
{{Family tree/start}} | |||
{{Family tree | | | | | | | | | | | | | | A01 | | | | | | | |A01=Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency }} | |||
{{Family tree | |,|-|-|-|-|v|-|-|-|-|v|-|-|^|-|-|v|-|-|-|-|v|-|-|-|-|.| | | |}} | |||
{{Family tree | B01 | | | B02 | | | B03 | | | | B04 | | | B05 | | | B06 | | |B01=Low CD4: MHC II Expression?|B02=Low CD8|B03=Low B Cells|B04=Ig: Often Normal|B05=Ig Low|B06=Normal Ig but Low Specific Antibody Response}} | |||
{{Family tree |!| | | | |!| | | | |!| | | | | |!| | | | |!| | | | |!| | | | |}} | |||
{{Family tree |)| C01 | |)| D01 | |)| E01 | | |)| F01 | |)| G01 | |)| H01 | |C01=Absent: MHCII deficiency|D01=CD8 deficiency|E01=DOCK8 deficiency|F01=CD3Y deficiency|G01=DOCK2 deficiency|H01=IL2IR deficiency}} | |||
{{Family tree |!| | | | |!| | | | |!| | | | | |!| | | | |!| | | | |!| | | | |}} | |||
{{Family tree |`| C02 | |)| D02 | |)| E02 | | |)| F02 | |)| G02 | |`| H02 | |C02=Present: MAGT 1 deficiency,LCK deficiency, UNC119 deficiency|D02=ZAP70 deficiency|E02=MST1 deficiency|F02=RHOH deficiency|G02=CARDII deficiency(LOF)|H02=MALT1 deficiency }} | |||
{{Family tree | | | | | |!| | | | |!| | | | | |!| | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | |`| D03 | |)| E03 | | |)| F03 | |)| G03 | | | | | | |D03=MHC1 deficiency|E03=IL21 deficiency|F03=TCR alpha deficiency|G03=BCL10 deficiency|}} | |||
{{Family tree | | | | | | | | | | |!| | | | | |!| | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | | | | | | |)| E04 | | |)| F04 | |)| G04 | | | | | | |E04=NIK deficiency|F04=BCL11B deficiency|G04=IKBKB deficiency|}} | |||
{{Family tree | | | | | | | | | | |!| | | | | |!| | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | | | | | | |`| E05 | | |)| F05 | |)| G05 | | | | | | |E05=Moesin deficiency|F05=OX40 deficiency|G05=ICOS deficiency|}} | |||
{{Family tree | | | | | | | | | | | | | | | | |!| | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | | | | | | | | | | | | |`| F06 | |)| G06 | | | | | | |F06=LAT deficiency|G06=TFRC deficiency|}} | |||
{{Family tree | | | | | | | | | | | | | | | | | | | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | | | | | | | | | | | | | | | | | |)| G07 | | | | | | |G07=RelB deficiency|}} | |||
{{Family tree | | | | | | | | | | | | | | | | | | | | | |!| | | | | | | | | |}} | |||
{{Family tree | | | | | | | | | | | | | | | | | | | | | |`| G08 | | | | | | |G08=CD40 ligand deficiency(CD154) }} | |||
{{Family tree/end}} | |||
<br> | |||
==γc (IL-2Rγ) deficiency== | ==γc (IL-2Rγ) deficiency== | ||
*X-linked transmission | *[[X-linked]] transmission. | ||
*It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG). | *It is caused by [[mutation]] in the gene encoding the gamma sub-unit of [[interleukin-2]] [[receptor]] ([[IL2RG]]). | ||
*Patients present with repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.<ref>{{Cite journal | *Patients present with repeated [[bacterial]], [[viral]] and fungal [[infections]], lack of delayed [[hypersensitivity]] and failure to thrive.<ref>{{Cite journal | ||
| author = [[W. H. HITZIG]] & [[H. WILLI]] | | author = [[W. H. HITZIG]] & [[H. WILLI]] | ||
| title = [Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")] | | title = [Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")] | ||
Line 40: | Line 75: | ||
| pmid = 13907792 | | pmid = 13907792 | ||
}}</ref> | }}</ref> | ||
*HSCT is the mainstay of treatment.<ref>{{Cite journal | *[[HSCT]] is the mainstay of treatment.<ref>{{Cite journal | ||
| author = [[Fred S. Rosen]] | | author = [[Fred S. Rosen]] | ||
| title = Successful gene therapy for severe combined immunodeficiency | | title = Successful gene therapy for severe combined immunodeficiency | ||
Line 54: | Line 89: | ||
==JAK-3 deficiency== | ==JAK-3 deficiency== | ||
*Autosomal recessive(AR) transmission | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutation in the Janus kinase-3 gene on chromosome 19. | *It is caused by [[homozygous]] or compound [[heterozygous]] mutation in the [[Janus kinase-3]] gene on [[chromosome 19]]. | ||
*It has a similar presentation to X-linked SCID as above.<ref>{{Cite journal | *It has a similar presentation to [[X-linked]] SCID as above.<ref>{{Cite journal | ||
| author = [[F. Candotti]], [[S. A. Oakes]], [[J. A. Johnston]], [[S. Giliani]], [[R. F. Schumacher]], [[P. Mella]], [[M. Fiorini]], [[A. G. Ugazio]], [[R. Badolato]], [[L. D. Notarangelo]], [[F. Bozzi]], [[P. Macchi]], [[D. Strina]], [[P. Vezzoni]], [[R. M. Blaese]], [[J. J. O'Shea]] & [[A. Villa]] | | author = [[F. Candotti]], [[S. A. Oakes]], [[J. A. Johnston]], [[S. Giliani]], [[R. F. Schumacher]], [[P. Mella]], [[M. Fiorini]], [[A. G. Ugazio]], [[R. Badolato]], [[L. D. Notarangelo]], [[F. Bozzi]], [[P. Macchi]], [[D. Strina]], [[P. Vezzoni]], [[R. M. Blaese]], [[J. J. O'Shea]] & [[A. Villa]] | ||
| title = Structural and functional basis for JAK3-deficient severe combined immunodeficiency | | title = Structural and functional basis for JAK3-deficient severe combined immunodeficiency | ||
Line 67: | Line 102: | ||
| pmid = 9354668 | | pmid = 9354668 | ||
}}</ref> | }}</ref> | ||
*HSCT is the mainstay of treatment.<ref>{{Cite journal | *[[HSCT]] is the mainstay of treatment.<ref>{{Cite journal | ||
| author = [[Joseph L. Roberts]], [[Andrea Lengi]], [[Stephanie M. Brown]], [[Min Chen]], [[Yong-Jie Zhou]], [[John J. O'Shea]] & [[Rebecca H. Buckley]] | | author = [[Joseph L. Roberts]], [[Andrea Lengi]], [[Stephanie M. Brown]], [[Min Chen]], [[Yong-Jie Zhou]], [[John J. O'Shea]] & [[Rebecca H. Buckley]] | ||
| title = Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation | | title = Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation | ||
Line 81: | Line 116: | ||
==IL7a== | ==IL7a== | ||
*Autosomal recessive(AR) transmission | *[[Autosomal recessive]] (AR) transmission | ||
*It is caused by homozygous or compound heterozygous mutation in the interleukin-7 receptor gene on chromosome 5.<ref>{{Cite journal | *It is caused by [[homozygous]] or compound [[heterozygous]] mutation in the [[interleukin-7 receptor]] [[gene]] on [[chromosome 5]].<ref>{{Cite journal | ||
| author = [[A. Puel]], [[S. F. Ziegler]], [[R. H. Buckley]] & [[W. J. Leonard]] | | author = [[A. Puel]], [[S. F. Ziegler]], [[R. H. Buckley]] & [[W. J. Leonard]] | ||
| title = Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency | | title = Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency | ||
Line 94: | Line 129: | ||
| pmid = 9843216 | | pmid = 9843216 | ||
}}</ref> | }}</ref> | ||
*It has a similar presentation to X-linked SCID as above<ref>{{Cite journal | *It has a similar presentation to [[X-linked]] [[SCID]] as above<ref>{{Cite journal | ||
| author = [[C. M. Roifman]], [[J. Zhang]], [[D. Chitayat]] & [[N. Sharfe]] | | author = [[C. M. Roifman]], [[J. Zhang]], [[D. Chitayat]] & [[N. Sharfe]] | ||
| title = A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency | | title = A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency | ||
Line 107: | Line 142: | ||
==CD3D== | ==CD3D== | ||
*Autosomal recessive(AR) transmission | *[[Autosomal recessive|Autosomal recessiv]]<nowiki/>e (AR) [[transmission]] | ||
*It is caused by mutation in the delta chain of the T3 T-cell antigen (OKT3) on chromosome 11.<ref>{{Cite journal | *It is caused by [[mutation]] in the delta chain of the T3 T-cell antigen ([[OKT3]]) on [[chromosome 11]].<ref>{{Cite journal | ||
| author = [[P. van den Elsen]], [[G. Bruns]], [[D. S. Gerhard]], [[D. Pravtcheva]], [[C. Jones]], [[D. Housman]], [[F. A. Ruddle]], [[S. Orkin]] & [[C. Terhorst]] | | author = [[P. van den Elsen]], [[G. Bruns]], [[D. S. Gerhard]], [[D. Pravtcheva]], [[C. Jones]], [[D. Housman]], [[F. A. Ruddle]], [[S. Orkin]] & [[C. Terhorst]] | ||
| title = Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9 | | title = Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9 | ||
Line 119: | Line 154: | ||
| pmid = 3857625 | | pmid = 3857625 | ||
}}</ref> | }}</ref> | ||
*Patients present with recurrent infections and failure to thrive. | *Patients present with recurrent [[infections]] and failure to thrive. | ||
*HSCT is the mainstay of treatment. <ref>{{Cite journal | *[[HSCT]] is the mainstay of treatment. <ref>{{Cite journal | ||
| author = [[Grace P. Yu]], [[Kari C. Nadeau]], [[David R. Berk]], [[Genevieve de Saint Basile]], [[Nathalie Lambert]], [[Perrine Knapnougel]], [[Joseph Roberts]], [[Kristina Kavanau]], [[Elizabeth Dunn]], [[E. Richard Stiehm]], [[David B. Lewis]], [[Dale T. Umetsu]], [[Jennifer M. Puck]] & [[Morton J. Cowan]] | | author = [[Grace P. Yu]], [[Kari C. Nadeau]], [[David R. Berk]], [[Genevieve de Saint Basile]], [[Nathalie Lambert]], [[Perrine Knapnougel]], [[Joseph Roberts]], [[Kristina Kavanau]], [[Elizabeth Dunn]], [[E. Richard Stiehm]], [[David B. Lewis]], [[Dale T. Umetsu]], [[Jennifer M. Puck]] & [[Morton J. Cowan]] | ||
| title = Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID | | title = Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID | ||
Line 134: | Line 169: | ||
==CD3E== | ==CD3E== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by mutation in the epsilon gene of T3 T-cell antigen on chromosome 11.<ref>{{Cite journal | *It is caused by [[mutation]] in the [[epsilon gene]] of T3 T-cell [[antigen]] on [[chromosome 11]].<ref>{{Cite journal | ||
| author = [[D. P. Gold]], [[J. J. van Dongen]], [[C. C. Morton]], [[G. A. Bruns]], [[P. van den Elsen]], [[A. H. Geurts van Kessel]] & [[C. Terhorst]] | | author = [[D. P. Gold]], [[J. J. van Dongen]], [[C. C. Morton]], [[G. A. Bruns]], [[P. van den Elsen]], [[A. H. Geurts van Kessel]] & [[C. Terhorst]] | ||
| title = The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice | | title = The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice | ||
Line 146: | Line 181: | ||
| pmid = 2882512 | | pmid = 2882512 | ||
}}</ref> | }}</ref> | ||
==CD247== | ==CD247== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous mutation in the CD247 (CD3Z) gene on chromosome 1.<ref>{{Cite journal | *It is caused by [[homozygous]] [[mutation]] in the [[CD247]] (CD3Z) gene on [[chromosome 1]].<ref>{{Cite journal | ||
| author = [[A. M. Weissman]], [[D. Hou]], [[D. G. Orloff]], [[W. S. Modi]], [[H. Seuanez]], [[S. J. O'Brien]] & [[R. D. Klausner]] | | author = [[A. M. Weissman]], [[D. Hou]], [[D. G. Orloff]], [[W. S. Modi]], [[H. Seuanez]], [[S. J. O'Brien]] & [[R. D. Klausner]] | ||
| title = Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex | | title = Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex | ||
Line 162: | Line 197: | ||
==CD45 deficiency== | ==CD45 deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by mutation in the CD45 gene on chromosome 1.<ref>{{Cite journal | *It is caused by [[mutation]] in the [[CD45]] [[gene]] on [[chromosome 1]].<ref>{{Cite journal | ||
| author = [[M. F. Seldin]], [[H. C. Morse]], [[R. C. LeBoeuf]] & [[A. D. Steinberg]] | | author = [[M. F. Seldin]], [[H. C. Morse]], [[R. C. LeBoeuf]] & [[A. D. Steinberg]] | ||
| title = Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q | | title = Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q | ||
Line 176: | Line 211: | ||
==Coronin-1A deficiency== | ==Coronin-1A deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by mutation in the CORO1A gene(which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on chromosome 16.<ref>{{Cite journal | *It is caused by [[mutation]] in the [[CORO1A]] [[gene]] (which encodes an actin-regulating protein that is expressed mainly in [[hematopoietic]] cells) on [[chromosome 16]].<ref>{{Cite journal | ||
| author = [[Lawrence R. Shiow]], [[David W. Roadcap]], [[Kenneth Paris]], [[Susan R. Watson]], [[Irina L. Grigorova]], [[Tonya Lebet]], [[Jinping An]], [[Ying Xu]], [[Craig N. Jenne]], [[Niko Foger]], [[Ricardo U. Sorensen]], [[Christopher C. Goodnow]], [[James E. Bear]], [[Jennifer M. Puck]] & [[Jason G. Cyster]] | | author = [[Lawrence R. Shiow]], [[David W. Roadcap]], [[Kenneth Paris]], [[Susan R. Watson]], [[Irina L. Grigorova]], [[Tonya Lebet]], [[Jinping An]], [[Ying Xu]], [[Craig N. Jenne]], [[Niko Foger]], [[Ricardo U. Sorensen]], [[Christopher C. Goodnow]], [[James E. Bear]], [[Jennifer M. Puck]] & [[Jason G. Cyster]] | ||
| title = The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency | | title = The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency | ||
Line 191: | Line 226: | ||
==Winged helix deficiency/Nude SCID== | ==Winged helix deficiency/Nude SCID== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by a mutation in the FOXN1 gene(a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. <ref>{{Cite journal | *It is caused by a mutation in the [[FOXN1]] [[gene]] (a transcription factor essential for the development and function of thymic epithelial cells) on [[chromosome 17]]. <ref>{{Cite journal | ||
| author = [[M. Schorpp]], [[M. Hofmann]], [[T. N. Dear]] & [[T. Boehm]] | | author = [[M. Schorpp]], [[M. Hofmann]], [[T. N. Dear]] & [[T. Boehm]] | ||
| title = Characterization of mouse and human nude genes | | title = Characterization of mouse and human nude genes | ||
Line 214: | Line 249: | ||
| pmid = 27548434 | | pmid = 27548434 | ||
}}</ref> | }}</ref> | ||
*Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.<ref>{{Cite journal | *Patients usually have the clinical triad of athymia, [[congenital]] [[alopecia universalis]] and nail [[dystrophy]] and present in early few months of life with severe, recurrent [[infections]].<ref>{{Cite journal | ||
| author = [[C. Pignata]], [[M. Fiore]], [[V. Guzzetta]], [[A. Castaldo]], [[G. Sebastio]], [[F. Porta]] & [[A. Guarino]] | | author = [[C. Pignata]], [[M. Fiore]], [[V. Guzzetta]], [[A. Castaldo]], [[G. Sebastio]], [[F. Porta]] & [[A. Guarino]] | ||
| title = Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs | | title = Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs | ||
Line 225: | Line 260: | ||
| doi = 10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O | | doi = 10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O | ||
| pmid = 8911612 | | pmid = 8911612 | ||
}}</ref>CNS defects have also been reported which include anencephaly and spina bifida.<ref>{{Cite journal | }}</ref>CNS defects have also been reported which include [[anencephaly]] and [[spina bifida]].<ref>{{Cite journal | ||
| author = [[S. Amorosi]], [[M. D'Armiento]], [[G. Calcagno]], [[I. Russo]], [[M. Adriani]], [[A. M. Christiano]], [[L. Weiner]], [[J. L. Brissette]] & [[C. Pignata]] | | author = [[S. Amorosi]], [[M. D'Armiento]], [[G. Calcagno]], [[I. Russo]], [[M. Adriani]], [[A. M. Christiano]], [[L. Weiner]], [[J. L. Brissette]] & [[C. Pignata]] | ||
| title = FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus | | title = FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus | ||
Line 249: | Line 284: | ||
| pmid = 25564533 | | pmid = 25564533 | ||
}}</ref> | }}</ref> | ||
*Prophylaxis and early treatment of infections is also an important step in management.<ref>{{Cite journal | *[[Prophylaxis]] and early treatment of [[infections]] is also an important step in [[management]].<ref>{{Cite journal | ||
| author = [[Linda M. Griffith]], [[Morton J. Cowan]], [[Luigi D. Notarangelo]], [[Jennifer M. Puck]], [[Rebecca H. Buckley]], [[Fabio Candotti]], [[Mary Ellen Conley]], [[Thomas A. Fleisher]], [[H. Bobby Gaspar]], [[Donald B. Kohn]], [[Hans D. Ochs]], [[Richard J. O'Reilly]], [[J. Douglas Rizzo]], [[Chaim M. Roifman]], [[Trudy N. Small]] & [[William T. Shearer]] | | author = [[Linda M. Griffith]], [[Morton J. Cowan]], [[Luigi D. Notarangelo]], [[Jennifer M. Puck]], [[Rebecca H. Buckley]], [[Fabio Candotti]], [[Mary Ellen Conley]], [[Thomas A. Fleisher]], [[H. Bobby Gaspar]], [[Donald B. Kohn]], [[Hans D. Ochs]], [[Richard J. O'Reilly]], [[J. Douglas Rizzo]], [[Chaim M. Roifman]], [[Trudy N. Small]] & [[William T. Shearer]] | ||
| title = Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management | | title = Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management | ||
Line 263: | Line 298: | ||
==ADA deficiency== | ==ADA deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutation in the adenosine deaminase gene (ADA) on chromosome 20. | *It is caused by [[homozygous]] or compound [[heterozygous]] [[mutation]] in the [[adenosine deaminase]] [[gene]] (ADA) on [[Chromosome 20 (human)|chromosome 20]]. | ||
*Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, nystagmus, sensorineural deafness and cognitive defects, and hepatic dysfucnction.<ref>{{Cite journal | *Patients have [[chondrosternal dysplasia]], neurologic abnormalities like movement disorders, [[nystagmus]], [[sensorineural deafness]] and [[cognitive defects]], and also [[hepatic dysfucnction]].<ref>{{Cite journal | ||
| author = [[H. Ratech]], [[M. A. Greco]], [[G. Gallo]], [[D. L. Rimoin]], [[H. Kamino]] & [[R. Hirschhorn]] | | author = [[H. Ratech]], [[M. A. Greco]], [[G. Gallo]], [[D. L. Rimoin]], [[H. Kamino]] & [[R. Hirschhorn]] | ||
| title = Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations | | title = Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations | ||
Line 299: | Line 334: | ||
}}</ref> | }}</ref> | ||
*Treatment options include: | *Treatment options include: | ||
*#Enzyme replacement therapy: PEG-ADA is used as the replacement therapy.<ref>{{Cite journal | *#Enzyme replacement therapy: [[Pegademase bovine]] (PEG-ADA) is used as the [[replacement therapy]].<ref>{{Cite journal | ||
| author = [[M. S. Hershfield]] | | author = [[M. S. Hershfield]] | ||
| title = PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency | | title = PEG-ADA: an alternative to haploidentical [[bone marrow transplantation]] and an adjunct to gene therapy for [[adenosine deaminase]] deficiency | ||
| journal = [[Human mutation]] | | journal = [[Human mutation]] | ||
| volume = 5 | | volume = 5 | ||
Line 311: | Line 346: | ||
| pmid = 7749407 | | pmid = 7749407 | ||
}}</ref> | }}</ref> | ||
*#Bone marrow transplantation<ref>{{Cite journal | *#[[Bone marrow transplantation]].<ref>{{Cite journal | ||
| author = [[R. H. Buckley]], [[S. E. Schiff]], [[R. I. Schiff]], [[L. Markert]], [[L. W. Williams]], [[J. L. Roberts]], [[L. A. Myers]] & [[F. E. Ward]] | | author = [[R. H. Buckley]], [[S. E. Schiff]], [[R. I. Schiff]], [[L. Markert]], [[L. W. Williams]], [[J. L. Roberts]], [[L. A. Myers]] & [[F. E. Ward]] | ||
| title = Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency | | title = Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency | ||
Line 325: | Line 360: | ||
==Reticular dysgenesis== | ==Reticular dysgenesis== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1. | *It is caused by [[homozygous]] or compound [[heterozygous]] [[mutation]] in the [[mitochondrial adenylate kinase-2 gene]] ([[AK2]]) on [[chromosome 1]]. | ||
*Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss. | *Patients present with [[agranulocytosis]], [[lymphopenia]] and [[sensorineural hearing loss]]. | ||
*Bone marrow transplant is the treatment of choice.<ref>{{Cite journal | *[[Bone marrow transplant]] is the treatment of choice.<ref>{{Cite journal | ||
| author = [[R. J. Levinsky]] & [[K. Tiedeman]] | | author = [[R. J. Levinsky]] & [[K. Tiedeman]] | ||
| title = Successful bone-marrow transplantation for reticular dysgenesis | | title = Successful bone-marrow transplantation for reticular dysgenesis | ||
Line 341: | Line 376: | ||
==DNA Ligase IV deficiency== | ==DNA Ligase IV deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13. | *It is caused by [[homozygous]] or compound [[heterozygous]] [[mutation]] in the [[LIG4]] gene on [[chromosome 13]]. | ||
*Patients show unusual facial features, microcephaly, developmental delay, pancytopenia, and various skin abnormalities.<ref>{{Cite journal | *Patients show unusual facial features, [[microcephaly]], [[developmental delay]], [[Pancytopenia|pancytopenia,]] and various skin abnormalities.<ref>{{Cite journal | ||
| author = [[M. O'Driscoll]], [[K. M. Cerosaletti]], [[P. M. Girard]], [[Y. Dai]], [[M. Stumm]], [[B. Kysela]], [[B. Hirsch]], [[A. Gennery]], [[S. E. Palmer]], [[J. Seidel]], [[R. A. Gatti]], [[R. Varon]], [[M. A. Oettinger]], [[H. Neitzel]], [[P. A. Jeggo]] & [[P. Concannon]] | | author = [[M. O'Driscoll]], [[K. M. Cerosaletti]], [[P. M. Girard]], [[Y. Dai]], [[M. Stumm]], [[B. Kysela]], [[B. Hirsch]], [[A. Gennery]], [[S. E. Palmer]], [[J. Seidel]], [[R. A. Gatti]], [[R. Varon]], [[M. A. Oettinger]], [[H. Neitzel]], [[P. A. Jeggo]] & [[P. Concannon]] | ||
| title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency | | title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency | ||
Line 354: | Line 389: | ||
| pmid = 11779494 | | pmid = 11779494 | ||
}}</ref> | }}</ref> | ||
==CERNUNNOS/XLF deficiency== | ==CERNUNNOS/XLF deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by mutations in the NHEJ1 gene on chromosome 2. | *It is caused by [[mutations]] in the [[NHEJ1]] [[gene]] on [[chromosome 2]]. | ||
*It is characterized by microcephaly, growth retardation and sensitivity to ionizing radiation.<ref>{{Cite journal | *It is characterized by [[microcephaly]], [[growth retardation]] and [[sensitivity]] to [[ionizing radiation]].<ref>{{Cite journal | ||
| author = [[Dietke Buck]], [[Laurent Malivert]], [[Regina de Chasseval]], [[Anne Barraud]], [[Marie-Claude Fondaneche]], [[Ozden Sanal]], [[Alessandro Plebani]], [[Jean-Louis Stephan]], [[Markus Hufnagel]], [[Francoise le Deist]], [[Alain Fischer]], [[Anne Durandy]], [[Jean-Pierre de Villartay]] & [[Patrick Revy]] | | author = [[Dietke Buck]], [[Laurent Malivert]], [[Regina de Chasseval]], [[Anne Barraud]], [[Marie-Claude Fondaneche]], [[Ozden Sanal]], [[Alessandro Plebani]], [[Jean-Louis Stephan]], [[Markus Hufnagel]], [[Francoise le Deist]], [[Alain Fischer]], [[Anne Durandy]], [[Jean-Pierre de Villartay]] & [[Patrick Revy]] | ||
| title = Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly | | title = Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly | ||
Line 372: | Line 407: | ||
==DNA PKcs deficiency== | ==DNA PKcs deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by a mutation in the PRKDC gene on chromosome 8.<ref>{{Cite journal | *It is caused by a [[mutation]] in the [[PRKDC gene]] on [[chromosome 8]].<ref>{{Cite journal | ||
| author = [[J. D. Sipley]], [[J. C. Menninger]], [[K. O. Hartley]], [[D. C. Ward]], [[S. P. Jackson]] & [[C. W. Anderson]] | | author = [[J. D. Sipley]], [[J. C. Menninger]], [[K. O. Hartley]], [[D. C. Ward]], [[S. P. Jackson]] & [[C. W. Anderson]] | ||
| title = Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8 | | title = Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8 | ||
Line 386: | Line 421: | ||
==RAG 1/2 deficiency== | ==RAG 1/2 deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutations in the RAG1 and RAG2 genes on chromosome 11.<ref>{{Cite journal | *It is caused by [[homozygous]] or compound [[heterozygous]] [[mutations]] in the [[RAG1]] and [[RAG2]] [[genes]] on [[chromosome 11]].<ref>{{Cite journal | ||
| author = [[K. Schwarz]], [[G. H. Gauss]], [[L. Ludwig]], [[U. Pannicke]], [[Z. Li]], [[D. Lindner]], [[W. Friedrich]], [[R. A. Seger]], [[T. E. Hansen-Hagge]], [[S. Desiderio]], [[M. R. Lieber]] & [[C. R. Bartram]] | | author = [[K. Schwarz]], [[G. H. Gauss]], [[L. Ludwig]], [[U. Pannicke]], [[Z. Li]], [[D. Lindner]], [[W. Friedrich]], [[R. A. Seger]], [[T. E. Hansen-Hagge]], [[S. Desiderio]], [[M. R. Lieber]] & [[C. R. Bartram]] | ||
| title = RAG mutations in human B cell-negative SCID | | title = RAG mutations in human B cell-negative SCID | ||
Line 398: | Line 433: | ||
| pmid = 8810255 | | pmid = 8810255 | ||
}}</ref> | }}</ref> | ||
*Patients present with persistent diarrhea, candidiasis, lung infections, fever, and opportunistic infections.<ref>{{Cite journal | *Patients present with persistent [[diarrhea]], [[candidiasis]], [[lung infections]], [[fever]], and [[opportunistic infections]].<ref>{{Cite journal | ||
| author = [[J. L. Stephan]], [[V. Vlekova]], [[F. Le Deist]], [[S. Blanche]], [[J. Donadieu]], [[G. De Saint-Basile]], [[A. Durandy]], [[C. Griscelli]] & [[A. Fischer]] | | author = [[J. L. Stephan]], [[V. Vlekova]], [[F. Le Deist]], [[S. Blanche]], [[J. Donadieu]], [[G. De Saint-Basile]], [[A. Durandy]], [[C. Griscelli]] & [[A. Fischer]] | ||
| title = Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients | | title = Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients | ||
Line 411: | Line 446: | ||
==DCLRE1C deficiency== | ==DCLRE1C deficiency== | ||
*Autosomal recessive (AR) transmission. | *[[Autosomal recessive]] (AR) transmission. | ||
*It is caused by mutation in the gene encoding Artemis in chromosome 10.<ref>{{Cite journal | *It is caused by [[mutation]] in the [[gene]] encoding [[Artemis (protein)|Artemis]] in [[chromosome 10]].<ref>{{Cite journal | ||
| author = [[L. Li]], [[D. Drayna]], [[D. Hu]], [[A. Hayward]], [[S. Gahagan]], [[H. Pabst]] & [[M. J. Cowan]] | | author = [[L. Li]], [[D. Drayna]], [[D. Hu]], [[A. Hayward]], [[S. Gahagan]], [[H. Pabst]] & [[M. J. Cowan]] | ||
| title = The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p | | title = The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p | ||
Line 424: | Line 459: | ||
| pmid = 9443881 | | pmid = 9443881 | ||
}}</ref> | }}</ref> | ||
==Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency== | |||
==Major Histocompatibility Complex II Deficiency== | |||
* Major Histocompatibility Complex class II deficiency, called as the [[bare lymphocyte syndrome]] type II.<ref name="pmid8717517">{{cite journal |vauthors=Mach B, Steimle V, Martinez-Soria E, Reith W |title=Regulation of MHC class II genes: lessons from a disease |journal=Annu. Rev. Immunol. |volume=14 |issue= |pages=301–31 |date=1996 |pmid=8717517 |doi=10.1146/annurev.immunol.14.1.301 |url=}}</ref> | |||
* It is a rare [[autosomal recessive]] disorder. | |||
* Lack of constitutive and inducible [[MHC class II]] expression in all cell types and tissues. | |||
==Magnesium Transporter Gene (MAGT1) Deficiency, Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Deficiency, UNC119 Deficiency== | |||
*[[Magnesium transporter gene]] (MAGT1) deficiency, [[T-cell]] [[tyrosine kinase]] Lck deficiency and [[Signaling adaptor protein Uncoordinated 119]] (Unc119) deficiency related with a condition called [[Idiopathic]] [[CD4]] [[lymphopenia]]. <ref name="pmid22184408">{{cite journal |vauthors=Gorska MM, Alam R |title=A mutation in the human Uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia |journal=Blood |volume=119 |issue=6 |pages=1399–406 |date=February 2012 |pmid=22184408 |pmc=3286207 |doi=10.1182/blood-2011-04-350686 |url=}}</ref> | |||
*MAGT1 deficiency stops the Mg (2+) influx, which impairs responses to [[antigen]] receptor engagement and successive steps like activation of [[phospholipase]] Cγ1 and Ca(2+) influx in [[T cells]] but not [[B cells]].<ref name="pmid21796205">{{cite journal |vauthors=Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ |title=Second messenger role for Mg2+ revealed by human T-cell immunodeficiency |journal=Nature |volume=475 |issue=7357 |pages=471–6 |date=July 2011 |pmid=21796205 |pmc=3159560 |doi=10.1038/nature10246 |url=}}</ref> | |||
*Lck is vital for both [[CD4]] and [[CD8]] [[T-cell]] development and function. LCK deficiency decrease [[T cell]] proliferation.<ref name="pmid10744646">{{cite journal |vauthors=Hubert P, Bergeron F, Ferreira V, Seligmann M, Oksenhendler E, Debre P, Autran B |title=Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia |journal=Int. Immunol. |volume=12 |issue=4 |pages=449–57 |date=April 2000 |pmid=10744646 |doi= |url=}}</ref> | |||
*Unc119 is necessary for activation of [[T-cell]] [[tyrosine kinase]] Lck. Unc119-deficiency reduce the activity of LCK and decrease [[interleukin 2]] production and cellular proliferation.<ref name="pmid16966372">{{cite journal |vauthors=Lovatt M, Filby A, Parravicini V, Werlen G, Palmer E, Zamoyska R |title=Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response |journal=Mol. Cell. Biol. |volume=26 |issue=22 |pages=8655–65 |date=November 2006 |pmid=16966372 |pmc=1636771 |doi=10.1128/MCB.00168-06 |url=}}</ref> | |||
==CD8 Deficiency== | |||
*[[CD8]] [[glycoproteins]] play vital role in both the maturation and function of MHC class I-restricted T lymphocytes.<ref name="pmid11435463">{{cite journal |vauthors=de la Calle-Martin O, Hernandez M, Ordi J, Casamitjana N, Arostegui JI, Caragol I, Ferrando M, Labrador M, Rodriguez-Sanchez JL, Espanol T |title=Familial CD8 deficiency due to a mutation in the CD8 alpha gene |journal=J. Clin. Invest. |volume=108 |issue=1 |pages=117–23 |date=July 2001 |pmid=11435463 |pmc=209336 |doi=10.1172/JCI10993 |url=}}</ref> | |||
*CD8 deficiency is [[autosomal recessive]] familial condition. | |||
*There is single mutation in the CD8α gene that is due to missense mutation (gly90-->ser) in both alleles of the [[immunoglobulin]] domain of the CD8 alpha gene. | |||
==Zeta-Chain-Associated Protein Kinase 70 (ZAP70) Deficiency== | |||
*[[ZAP70]] [[gene]] encodes a [[tyrosine kinase]] that is important for [[T-cell signaling]].<ref name="pmid8124727">{{cite journal |vauthors=Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM |title=Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase |journal=Cell |volume=76 |issue=5 |pages=947–58 |date=March 1994 |pmid=8124727 |doi= |url=}}</ref> | |||
*[[ZAP70]] deficiency, results in loss of the activity of this [[kinase]]. | |||
*[[ZAP70]] is expressed mostly in T and [[NK cells]], deficiency causes dysregulated [[T cells]].<ref name="pmid26783323">{{cite journal |vauthors=Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, Sunderam U, Fu SM, Srinivasan R, Kuriyan J, Brenner SE, Weiss A, Puck JM |title=A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70 |journal=J. Exp. Med. |volume=213 |issue=2 |pages=155–65 |date=February 2016 |pmid=26783323 |pmc=4749924 |doi=10.1084/jem.20150888 |url=}}</ref> | |||
==Major Histocompatibility Complex 1 Deficiency== | |||
*It is [[autosomal recessive]] disorder also called as [[Bare lymphocyte syndrome]] type I.<ref name="pmid25001848">{{cite journal |vauthors=Hanna S, Etzioni A |title=MHC class I and II deficiencies |journal=J. Allergy Clin. Immunol. |volume=134 |issue=2 |pages=269–75 |date=August 2014 |pmid=25001848 |doi=10.1016/j.jaci.2014.06.001 |url=}}</ref> | |||
*It is extremely rare condition, less than 30 patients reported worldwide. | |||
*There is [[homozygous]] inactivating mutation of [[transporter associated with antigen processing]] (TAP), which helps in [[peptide]] loading on [[MHC1]].<ref name="pmid16087697">{{cite journal |vauthors=Zimmer J, Andrès E, Donato L, Hanau D, Hentges F, de la Salle H |title=Clinical and immunological aspects of HLA class I deficiency |journal=QJM |volume=98 |issue=10 |pages=719–27 |date=October 2005 |pmid=16087697 |doi=10.1093/qjmed/hci112 |url=}}</ref> | |||
==Dedicator of Cytokinesis 8 (DOCK8) Deficiency== | |||
* It is previously known as [[autosomal recessive]] [[hyper-IgE syndrome]].<ref name="pmid20864884">{{cite journal |vauthors=Su HC |title=Dedicator of cytokinesis 8 (DOCK8) deficiency |journal=Curr Opin Allergy Clin Immunol |volume=10 |issue=6 |pages=515–20 |date=December 2010 |pmid=20864884 |pmc=3096565 |doi=10.1097/ACI.0b013e32833fd718 |url=}}</ref> | |||
*Absence of [[DOCK8]] expression impairs [[T cell]] expansion, which causes [[T cell]] [[lymphopenia]] and susceptibility to cutaneous viral infections. | |||
*Clinical manifestation includes [[eczema]], recurrent [[skin abscesses]], [[pneumonias]], and elevated [[serum]] [[IgE]]. | |||
==Macrophage Stimulating 1 Deficiency== | |||
* Macrophage stimulating 1 encoded by [[gene]] contains four kringle domains and a [[serine protease]] domain.<ref name="urlMST1 macrophage stimulating 1 [Homo sapiens (human)] - Gene - NCBI">{{cite web |url=https://www.ncbi.nlm.nih.gov/gene/4485#reference-sequences |title=MST1 macrophage stimulating 1 [Homo sapiens (human)] - Gene - NCBI |format= |work= |accessdate=}}</ref> | |||
* Macrophage Stimulating 1 (MST1) deficiency causes increased [[cell death]] of naive and proliferating T cells.<ref name="pmid22174160">{{cite journal |vauthors=Nehme NT, Schmid JP, Debeurme F, André-Schmutz I, Lim A, Nitschke P, Rieux-Laucat F, Lutz P, Picard C, Mahlaoui N, Fischer A, de Saint Basile G |title=MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival |journal=Blood |volume=119 |issue=15 |pages=3458–68 |date=April 2012 |pmid=22174160 |pmc=3824282 |doi=10.1182/blood-2011-09-378364 |url=}}</ref> | |||
*MST1-deficient [[T cells]] poorly expressed the [[transcription factor]] [[FOXO1]], the [[IL-7 receptor]], and [[BCL2]]. | |||
==Interleukin 21 Deficiency== | |||
*[[IL-21]] is produced by activated [[T cells]].<ref name="pmid17509926">{{cite journal |vauthors=Brandt K, Singh PB, Bulfone-Paus S, Rückert R |title=Interleukin-21: a new modulator of immunity, infection, and cancer |journal=Cytokine Growth Factor Rev. |volume=18 |issue=3-4 |pages=223–32 |date=2007 |pmid=17509926 |doi=10.1016/j.cytogfr.2007.04.003 |url=}}</ref> | |||
*[[IL-21]] targets [[lymphoid]] and [[myeloid]] cells and regulates [[innate and acquired immune]] responses. | |||
*[[Homozygous]] [[loss-of-function mutations]] in the [[interleukin-21]] receptor [[gene]] is one cause of [[IL21]] deficiency.<ref name="pmid23440042">{{cite journal |vauthors=Kotlarz D, Ziętara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, Krawitz PM, Robinson PN, Hecht J, Puchałka J, Gertz EM, Schäffer AA, Lawrence MG, Kardava L, Pfeifer D, Baumann U, Pfister ED, Hanson EP, Schambach A, Jacobs R, Kreipe H, Moir S, Milner JD, Schwille P, Mundlos S, Klein C |title=Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome |journal=J. Exp. Med. |volume=210 |issue=3 |pages=433–43 |date=March 2013 |pmid=23440042 |pmc=3600901 |doi=10.1084/jem.20111229 |url=}}</ref> | |||
*[[IL-21]] deficiency causes impaired proliferation and [[immunoglobulin]] class-switching in [[B cells]]. | |||
== NF-κB inducing kinase Deficiency== | |||
*[[NF-κB-inducing kinase]] (NIK) is involved in [[lymphoid]] organogenesis through [[lymphotoxin]]-β receptor signaling.<ref name="urlEssential Role of NF-κB-Inducing Kinase in T Cell Activation Through the TCR/CD3 Pathway | The Journal of Immunology">{{cite web |url=+https://doi.org/10.4049/jimmunol.169.3.1151 |title=Essential Role of NF-κB-Inducing Kinase in T Cell Activation Through the TCR/CD3 Pathway | The Journal of Immunology |format= |work= |accessdate=}}</ref> | |||
*NIK deficiency is [[autosomal recessive]] disorder.<ref>Rezaei, Nima, Asghar Aghamohammadi, and Luigi Notarangelo. Primary immunodeficiency diseases : definition, diagnosis, and management. Berlin, Germany: Springer, 2016. Print </ref> | |||
*It is caused by mutation in [[MAP3K14]]. | |||
==Moesin Deficiency== | |||
* It is newly described [[X linked]] combined [[immunodeficiency]].<ref name="pmid28378256">{{cite journal |vauthors=Delmonte OM, Biggs CM, Hayward A, Comeau AM, Kuehn HS, Rosenzweig SD, Notarangelo LD |title=First Case of X-Linked Moesin Deficiency Identified After Newborn Screening for SCID |journal=J. Clin. Immunol. |volume=37 |issue=4 |pages=336–338 |date=May 2017 |pmid=28378256 |pmc=6082367 |doi=10.1007/s10875-017-0391-9 |url=}}</ref> | |||
* It present early in life with [[lymphopenia]] and [[hypogammaglobulinemia]]. | |||
* There is poor [[immune]] response to [[vaccine]] antigens, and increased susceptibility to [[bacterial]] and [[[varicella zoster virus]] (VZV) infections. | |||
* This [[immunodeficiency]] is caused by [[genetic defects]] of the [[moesin]] (MSN) [[gene]]. | |||
==CD3Y Deficiency== | |||
*Deficiency of the CD3Y component of the TcR/CD3 complex is associated with a long-term severe defect of peripheral blood CD4+ CD45RA+ and CD8+ lymphocytes, whereas CD4+CD45RO+, B and natural killer lymphocytes are unaffected.<ref name="pmid8325321">{{cite journal |vauthors=Timón M, Arnaiz-Villena A, Rodríguez-Gallego C, Pérez-Aciego P, Pacheco A, Regueiro JR |title=Selective disbalances of peripheral blood T lymphocyte subsets in human CD3 gamma deficiency |journal=Eur. J. Immunol. |volume=23 |issue=7 |pages=1440–4 |date=July 1993 |pmid=8325321 |doi=10.1002/eji.1830230706 |url=}}</ref> | |||
*These results suggest that the CD3Y site of the TcR/CD3 complex is required for the peripheral representation of certain T cell types. | |||
==RHOH Deficiency== | |||
* Ras homolog gene family H (RhoH) is a membrane-bound adaptor protein that helps in proximal [[T-cell]] receptor signaling.<ref name="urlRedirecting">{{cite web |url=https://doi.org/10.1016/j.jaci.2018.09.032 |title=Redirecting |format= |work= |accessdate=}}</ref> | |||
* Ras homolog gene family H (RHOH) deficiency leads to T cell defects and persistent [[HPV]] infections.<ref name="pmid22850876">{{cite journal |vauthors=Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, Fieschi C, Lim A, Abhyankar A, Gineau L, Mueller-Fleckenstein I, Schmidt M, Taieb A, Krueger J, Abel L, Tangye SG, Orth G, Williams DA, Casanova JL, Jouanguy E |title=Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections |journal=J. Clin. Invest. |volume=122 |issue=9 |pages=3239–47 |date=September 2012 |pmid=22850876 |pmc=3428089 |doi=10.1172/JCI62949 |url=}}</ref> | |||
* RHOH encodes an atypical Rho GTPase expressed predominantly in [[hematopoietic]] cells. | |||
==T-cell Receptor Alpha Deficiency== | |||
* The alpha chain is synthesized by recombination joining of single V segment with a J segment. Recombination of many different V segments with several J segments provides a wide range of antigen recognition.<ref name="urlTcra T cell receptor alpha chain [Mus musculus (house mouse)] - Gene - NCBI">{{cite web |url=https://www.ncbi.nlm.nih.gov/gene/21473 |title=Tcra T cell receptor alpha chain [Mus musculus (house mouse)] - Gene - NCBI |format= |work= |accessdate=}}</ref> | |||
* [[T-cell]] receptor-alpha deficiency is [[autosomal recessive]] disorder.<ref name="pmid21206088">{{cite journal |vauthors=Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, Barge D, Ciupek A, Straatman-Iwanowska A, Pasha S, Guckian M, Anderson G, Huissoon A, Cant A, Tate WP, Hambleton S, Maher ER |title=Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells |journal=J. Clin. Invest. |volume=121 |issue=2 |pages=695–702 |date=February 2011 |pmid=21206088 |pmc=3026716 |doi=10.1172/JCI41931 |url=}}</ref> | |||
* It is caused by homozygous mutation in the TRAC gene on [[chromosome]] 14q11. | |||
==BCL11B Deficiency== | |||
* BCL11B is required for [[T-cell]] differentiation and have vital role in the transcriptional regulation of these genes.<ref name="pmid20544728">{{cite journal |vauthors=Kastner P, Chan S, Vogel WK, Zhang LJ, Topark-Ngarm A, Golonzhka O, Jost B, Le Gras S, Gross MK, Leid M |title=Bcl11b represses a mature T-cell gene expression program in immature CD4(+)CD8(+) thymocytes |journal=Eur. J. Immunol. |volume=40 |issue=8 |pages=2143–54 |date=August 2010 |pmid=20544728 |pmc=2942964 |doi=10.1002/eji.200940258 |url=}}</ref> | |||
* BCL11B gene encodes a zinc-finger transcription factor involved in [[hematopoietic]] progenitor cell development.<ref name="pmid27959755">{{cite journal |vauthors=Punwani D, Zhang Y, Yu J, Cowan MJ, Rana S, Kwan A, Adhikari AN, Lizama CO, Mendelsohn BA, Fahl SP, Chellappan A, Srinivasan R, Brenner SE, Wiest DL, Puck JM |title=Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B |journal=N. Engl. J. Med. |volume=375 |issue=22 |pages=2165–2176 |date=December 2016 |pmid=27959755 |pmc=5215776 |doi=10.1056/NEJMoa1509164 |url=}}</ref> | |||
* Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired [[immune cell]] development.<ref name="pmid29985992">{{cite journal |vauthors=Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen KLI, Hempel M, Haack TB, Baresic A, Genetti CA, Funari MFA, Lessel I, Kuhlmann L, Simon R, Liu P, Denecke J, Kuechler A, de Kruijff I, Shoukier M, Lek M, Mullen T, Lüdecke HJ, Lerario AM, Kobbe R, Krieger T, Demeer B, Lebrun M, Keren B, Nava C, Buratti J, Afenjar A, Shinawi M, Guillen Sacoto MJ, Gauthier J, Hamdan FF, Laberge AM, Campeau PM, Louie RJ, Cathey SS, Prinz I, Jorge AAL, Terhal PA, Lenhard B, Wieczorek D, Strom TM, Agrawal PB, Britsch S, Tolosa E, Kubisch C |title=BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells |journal=Brain |volume= |issue= |pages= |date=July 2018 |pmid=29985992 |doi=10.1093/brain/awy173 |url=}}</ref> | |||
==OX40 Deficiency== | |||
* It is an [[autosomal recessive]] disorder. <ref name="pmid23897980">{{cite journal |vauthors=Byun M, Ma CS, Akçay A, Pedergnana V, Palendira U, Myoung J, Avery DT, Liu Y, Abhyankar A, Lorenzo L, Schmidt M, Lim HK, Cassar O, Migaud M, Rozenberg F, Canpolat N, Aydogan G, Fleckenstein B, Bustamante J, Picard C, Gessain A, Jouanguy E, Cesarman E, Olivier M, Gros P, Abel L, Croft M, Tangye SG, Casanova JL |title=Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood |journal=J. Exp. Med. |volume=210 |issue=9 |pages=1743–59 |date=August 2013 |pmid=23897980 |pmc=3754857 |doi=10.1084/jem.20130592 |url=}}</ref> | |||
* OX40 is a co-stimulatory receptor expressed on activated [[T cells]]. | |||
* Its ligand, OX40L, is expressed on various cell types, including [[endothelial cells]]. | |||
* OX40L was abundantly expressed in [[Kaposi Sarcoma]] lesions. | |||
* OX40 deficiency causes low proportion of effector memory CD4(+) T cells in the peripheral [[blood]]. | |||
==LAT Deficiency== | |||
* Linker for Activation of T cell (LAT) is substrate of the ZAP70 [[tyrosine kinase]].<ref name="pmid27353087">{{cite journal |vauthors=Weiss A |title=Human LAT mutation results in immune deficiency and autoimmunity but also raises questions about signaling pathways |journal=J. Exp. Med. |volume=213 |issue=7 |pages=1114 |date=June 2016 |pmid=27353087 |pmc=4925028 |doi=10.1084/jem.2137insight1 |url=}}</ref> | |||
* LAT is phosphorylated on multiple tyrosines and serve as docking sites for many effector molecules. | |||
* Germ line LAT deficiency causes early [[thymocyte]] developmental arrest and complete absence of peripheral [[T cells]]. | |||
* LAT mutations results in premature LAT truncation, diminishing known tyrosine phosphorylation sites. | |||
==DOCK2 Deficiency== | |||
* Dedicator of cytokinesis 2 gene (DOCK2) deficiency is [[autosomal recessive]] disorder.<ref name="pmid26083206">{{cite journal |vauthors=Dobbs K, Domínguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, Haapaniemi E, Keles S, Bilic I, Okada S, Massaad MJ, Rounioja S, Alwahadneh AM, Serwas NK, Capuder K, Çiftçi E, Felgentreff K, Ohsumi TK, Pedergnana V, Boisson B, Haskoloğlu Ş, Ensari A, Schuster M, Moretta A, Itan Y, Patrizi O, Rozenberg F, Lebon P, Saarela J, Knip M, Petrovski S, Goldstein DB, Parrott RE, Savas B, Schambach A, Tabellini G, Bock C, Chatila TA, Comeau AM, Geha RS, Abel L, Buckley RH, İkincioğulları A, Al-Herz W, Helminen M, Doğu F, Casanova JL, Boztuğ K, Notarangelo LD |title=Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections |journal=N. Engl. J. Med. |volume=372 |issue=25 |pages=2409–22 |date=June 2015 |pmid=26083206 |pmc=4480434 |doi=10.1056/NEJMoa1413462 |url=}}</ref> | |||
* It causes defect in the chemokine-induced migration and actin polymerization. | |||
* DOCK2 deficiency affects [[T cells]], [[B cells]] function and [[NK-cell]] degranulation. | |||
==CARD11 Deficiency== | |||
* It is [[autosomal recessive]] primary [[immunodeficiency]] with normal numbers of T and [[B lymphocytes]], but defective intracellular signaling.<ref name="pmid23374270">{{cite journal |vauthors=Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, Cohen S, Shachar I, Miosge LA, Schlesier M, Fuchs I, Enders A, Eibel H, Grimbacher B, Warnatz K |title=Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects |journal=J. Allergy Clin. Immunol. |volume=131 |issue=2 |pages=477–85.e1 |date=February 2013 |pmid=23374270 |doi=10.1016/j.jaci.2012.11.050 |url=}}</ref> | |||
* Caspase recruitment domain 11 (CARD11) is fundamental signaling component that mediates TCR-induced NF-kappa B activation.<ref name="pmid12154356">{{cite journal |vauthors=Wang D, You Y, Case SM, McAllister-Lucas LM, Wang L, DiStefano PS, Nuñez G, Bertin J, Lin X |title=A requirement for CARMA1 in TCR-induced NF-kappa B activation |journal=Nat. Immunol. |volume=3 |issue=9 |pages=830–5 |date=September 2002 |pmid=12154356 |doi=10.1038/ni824 |url=}}</ref> | |||
* Deficiency in CARD11 proceeds to impaired activation of NF-kappa B and also defect in interleukin-2 (IL-2) production. | |||
==BCL10 Deficiency== | |||
* BCL10 is an [[autosomal recessive]] disorder.<ref name="pmid25365219">{{cite journal |vauthors=Torres JM, Martinez-Barricarte R, García-Gómez S, Mazariegos MS, Itan Y, Boisson B, Rholvarez R, Jiménez-Reinoso A, del Pino L, Rodríguez-Pena R, Ferreira A, Hernández-Jiménez E, Toledano V, Cubillos-Zapata C, Díaz-Almirón M, López-Collazo E, Unzueta-Roch JL, Sánchez-Ramón S, Regueiro JR, López-Granados E, Casanova JL, Pérez de Diego R |title=Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity |journal=J. Clin. Invest. |volume=124 |issue=12 |pages=5239–48 |date=December 2014 |pmid=25365219 |pmc=4348943 |doi=10.1172/JCI77493 |url=}}</ref> | |||
* Complete BCL10 deficiency affects both [[hematopoietic]] and nonhematopoietic immunity. | |||
* It presents with Homozygous loss-of-expression and loss-of-function mutation of BCL10. | |||
* NF-κB-mediated fibroblast functions were drastically affected. | |||
==IKBKB Deficiency== | |||
* IKBKB encodes IκB kinase 2 (IKK2, also known as IKKβ).<ref name="pmid24369075">{{cite journal |vauthors=Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A, Rizzi M, Janda A, Hese K, Schlesier M, Holzmann K, Borte S, Laux C, Rump EM, Rosenberg A, Zelinski T, Schrezenmeier H, Wirth T, Ehl S, Schroeder ML, Schwarz K |title=Deficiency of innate and acquired immunity caused by an IKBKB mutation |journal=N. Engl. J. Med. |volume=369 |issue=26 |pages=2504–14 |date=December 2013 |pmid=24369075 |doi=10.1056/NEJMoa1309199 |url=}}</ref> | |||
* Deficiency of IKBKB causes loss of expression of IKK2, also known as IKK-nuclear factor κB (NF-κB) pathway. | |||
* IKBKB deficiency results in impairment of adaptive and innate [[immunity]]. | |||
==ICOS Deficiency== | |||
* Inducible co-stimulator (ICOS) deficiency causes combined B- and T-cell [[immunodeficiency]].<ref name="pmid28861081">{{cite journal |vauthors=Schepp J, Chou J, Skrabl-Baumgartner A, Arkwright PD, Engelhardt KR, Hambleton S, Morio T, Röther E, Warnatz K, Geha R, Grimbacher B |title=14 Years after Discovery: Clinical Follow-up on 15 Patients with Inducible Co-Stimulator Deficiency |journal=Front Immunol |volume=8 |issue= |pages=964 |date=2017 |pmid=28861081 |pmc=5561331 |doi=10.3389/fimmu.2017.00964 |url=}}</ref> | |||
* Genetic diagnosis is the only tool to differentiate ICOS deficiency from other immunological defects. | |||
* Antibody deficiency, [[autoimmunity]], and combined [[immunodeficiency]] should be screened for ICOS mutations. | |||
* ICOS deficiency was the first monogenic defect that cause common variable immunodeficiency (CVID)-like disease. | |||
==TFRC Deficiency== | |||
* TFRC deficiency is [[autosomal recessive]] disorder.<ref name="pmid26642240">{{cite journal |vauthors=Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, Bainter W, Fraulino D, Rahimov F, Sieff C, Liu ZJ, Alshemmari SH, Al-Ramadi BK, Al-Dhekri H, Arnaout R, Abu-Shukair M, Vatsayan A, Silver E, Ahuja S, Davies EG, Sola-Visner M, Ohsumi TK, Andrews NC, Notarangelo LD, Fleming MD, Al-Herz W, Kunkel LM, Geha RS |title=A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency |journal=Nat. Genet. |volume=48 |issue=1 |pages=74–8 |date=January 2016 |pmid=26642240 |pmc=4696875 |doi=10.1038/ng.3465 |url=}}</ref> | |||
* TFRC gene encodes the transferrin receptor, which is essential for cellular iron uptake. | |||
* TFRC gene mutation causes defected TfR1 internalization motif and receptor [[endocytosis]]. | |||
==ReIB Deficiency== | |||
* RelB is an NF-κB family [[transcription factor]].<ref name="urlRelB deficiency causes combined immunodeficiency - LymphoSign Journal">{{cite web |url=https://doi.org/10.14785/lpsn-2015-0005 |title=RelB deficiency causes combined immunodeficiency - LymphoSign Journal |format= |work= |accessdate=}}</ref> | |||
* Homozygous mutation in the gene for the NFκB transcription factor RelB causes repeated infection. | |||
* This mutation introduces a premature stop codon, which results in an ablation of RelB expression. | |||
* There is diminished antibody response to [[immunizations]]. | |||
==CD40 ligand Deficiency== | |||
* CD40 ligand (CD40L) deficiency leads to opportunistic infections.<ref name="pmid27554817">{{cite journal |vauthors=Cabral-Marques O, Ramos RN, Schimke LF, Khan TA, Amaral EP, Barbosa Bomfim CC, Junior OR, França TT, Arslanian C, Carola Correia Lima JD, Weber CW, Ferreira JF, Tavares FS, Sun J, D'Imperio Lima MR, Seelaender M, Garcia Calich VL, Marzagão Barbuto JA, Costa-Carvalho BT, Riemekasten G, Seminario G, Bezrodnik L, Notarangelo L, Torgerson TR, Ochs HD, Condino-Neto A |title=Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ |journal=J. Allergy Clin. Immunol. |volume=139 |issue=3 |pages=900–912.e7 |date=March 2017 |pmid=27554817 |doi=10.1016/j.jaci.2016.07.018 |url=}}</ref> | |||
* CD40 ligand (CD154), present on activated CD4-positive [[T cells]].<ref name="pmid11687447">{{cite journal |vauthors=O'Gorman MR, DuChateau B, Paniagua M, Hunt J, Bensen N, Yogev R |title=Abnormal CD40 ligand (CD154) expression in human immunodeficiency virus-infected children |journal=Clin. Diagn. Lab. Immunol. |volume=8 |issue=6 |pages=1104–9 |date=November 2001 |pmid=11687447 |pmc=96233 |doi=10.1128/CDLI.8.6.1104-1109.2001 |url=}}</ref> | |||
* Ligand for CD40 (CD40L) is a membrane glycoprotein on activated T cells that induces B cell proliferation and [[immunoglobulin]] secretion.<ref name="pmid7679801">{{cite journal |vauthors=Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK |title=CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome |journal=Science |volume=259 |issue=5097 |pages=990–3 |date=February 1993 |pmid=7679801 |doi= |url=}}</ref> | |||
* CD40L defects results in the failure of [[B cells]] to undergo immunoglobulin class switching. | |||
==IL21R Deficiency== | |||
* IL21R is type I cytokine receptors, which also include receptors for [[hematopoietic]] growth factors.<ref name="pmid11081504">{{cite journal |vauthors=Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D |title=Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function |journal=Nature |volume=408 |issue=6808 |pages=57–63 |date=November 2000 |pmid=11081504 |doi=10.1038/35040504 |url=}}</ref> | |||
* IL21R deficiency ceases proliferation and maturation of [[natural killer]] (NK) and [[B-cell]]. | |||
* IL21R deficiency also stop immunoglobulin class-switching in B cells, cytokine production in T cells, and NK cell cytotoxicity.<ref name="pmid23440042">{{cite journal |vauthors=Kotlarz D, Ziętara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, Krawitz PM, Robinson PN, Hecht J, Puchałka J, Gertz EM, Schäffer AA, Lawrence MG, Kardava L, Pfeifer D, Baumann U, Pfister ED, Hanson EP, Schambach A, Jacobs R, Kreipe H, Moir S, Milner JD, Schwille P, Mundlos S, Klein C |title=Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome |journal=J. Exp. Med. |volume=210 |issue=3 |pages=433–43 |date=March 2013 |pmid=23440042 |pmc=3600901 |doi=10.1084/jem.20111229 |url=}}</ref> | |||
==MALT1 Deficiency== | |||
* [[MALT1]] vital for immune receptor-driven signaling pathways which leads to [[NF-κB]] activation.<ref name="pmid25762782">{{cite journal |vauthors=Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U, Burkhart C, Dawson J, Niwa S, Katopodis A, Nuesslein-Hildesheim B, Weckbecker G, Zenke G, Kinzel B, Traggiai E, Brenner D, Brüstle A, St Paul M, Zamurovic N, McCoy KD, Rolink A, Régnier CH, Mak TW, Ohashi PS, Patel DD, Calzascia T |title=Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation |journal=J. Immunol. |volume=194 |issue=8 |pages=3723–34 |date=April 2015 |pmid=25762782 |doi=10.4049/jimmunol.1402254 |url=}}</ref> | |||
* [[MALT1]] deficiency leads to reduced [[T cell]] proliferation, defective [[IL-2]] and [[TNF-α]] production, as well as impaired [[Th17 differentiation]]. | |||
* [[MALT1]] deficiency also impaired [[nuclear factor-κB]] activation and [[IL-2 production]].<ref name="pmid23727036">{{cite journal |vauthors=Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, Chouery E, Mikhael R, Gorka O, Gewies A, Portales P, Nakayama T, Hosokawa H, Revy P, Herrod H, Le Deist F, Lefranc G, Ruland J, Geha RS |title=A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency |journal=J. Allergy Clin. Immunol. |volume=132 |issue=1 |pages=151–8 |date=July 2013 |pmid=23727036 |pmc=3700575 |doi=10.1016/j.jaci.2013.04.047 |url=}}</ref> | |||
==References== | ==References== | ||
{{Reflist|2}} |
Latest revision as of 22:42, 28 January 2019
Immunodeficiency Main Page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Zahir Ali Shaikh, MD[3], Anmol Pitliya, M.B.B.S. M.D.[4], Syed Musadiq Ali M.B.B.S.[5]
Overview
Immunodeficiency disorders are associated with or predispose patients to various complications, including infections, autoimmune disorders, and lymphomas and other cancers. Primary immunodeficiencies are genetically determined and can be hereditary; secondary immunodeficiencies are acquired and much more common. combined immune defect affecting both types of acquired immunity, i.e. both cellular and humoral responses. Acquired immunity remembers when it encounters an invading foreign cell or molecule antigen and quickly mounts a specific response on subsequent encounters. Cellular acquired responses are mediated by T cells, also called T lymphocytes, which kill infected cells, help B cells, and control the immune response. Humoral immunity is mediated by B cells which produce antibodies immunoglobulins that help T cells and other immune cells to recognize and attack antigens.
Classification
Immunodeficiency affecting cellular and humoral immunity | |||||||||||||||||
Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia | Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency | ||||||||||||||||
Severe Combined Immunodeficiency (SCID)
Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia | |||||||||||||||||||||||||||||||||||||||||||||||||||||
CD19 NL: SCID T-ve B+ve | CD19 ↓: SCID T-ve B-ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||
SCID T-ve B+ve NK-ve | SCID T-ve B+ve NK+ve | SCID T-ve B-ve NK-ve | SCID T-ve B-ve NK+ve | ||||||||||||||||||||||||||||||||||||||||||||||||||
yc deficiency | IL7Ra . | ADA def | Microcephaly present | Microcephaly absent | |||||||||||||||||||||||||||||||||||||||||||||||||
JAK-3 def | CD3D, CD3E, CD247 | Reticular dysgenesis | DNA Ligase IV def | RAG1/2 def | |||||||||||||||||||||||||||||||||||||||||||||||||
CD45 def | XLF def | DCLRE1C def | |||||||||||||||||||||||||||||||||||||||||||||||||||
Coronin-1A def | DNA PKcs def | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Winged helix def | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency
Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low CD4: MHC II Expression? | Low CD8 | Low B Cells | Ig: Often Normal | Ig Low | Normal Ig but Low Specific Antibody Response | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Absent: MHCII deficiency | CD8 deficiency | DOCK8 deficiency | CD3Y deficiency | DOCK2 deficiency | IL2IR deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Present: MAGT 1 deficiency,LCK deficiency, UNC119 deficiency | ZAP70 deficiency | MST1 deficiency | RHOH deficiency | CARDII deficiency(LOF) | MALT1 deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MHC1 deficiency | IL21 deficiency | TCR alpha deficiency | BCL10 deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NIK deficiency | BCL11B deficiency | IKBKB deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Moesin deficiency | OX40 deficiency | ICOS deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LAT deficiency | TFRC deficiency | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RelB deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CD40 ligand deficiency(CD154) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
γc (IL-2Rγ) deficiency
- X-linked transmission.
- It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG).
- Patients present with repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.[1]
- HSCT is the mainstay of treatment.[2]
JAK-3 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the Janus kinase-3 gene on chromosome 19.
- It has a similar presentation to X-linked SCID as above.[3]
- HSCT is the mainstay of treatment.[4]
IL7a
- Autosomal recessive (AR) transmission
- It is caused by homozygous or compound heterozygous mutation in the interleukin-7 receptor gene on chromosome 5.[5]
- It has a similar presentation to X-linked SCID as above[6]
CD3D
- Autosomal recessive (AR) transmission
- It is caused by mutation in the delta chain of the T3 T-cell antigen (OKT3) on chromosome 11.[7]
- Patients present with recurrent infections and failure to thrive.
- HSCT is the mainstay of treatment. [8]
CD3E
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the epsilon gene of T3 T-cell antigen on chromosome 11.[9]
CD247
- Autosomal recessive (AR) transmission.
- It is caused by homozygous mutation in the CD247 (CD3Z) gene on chromosome 1.[10]
CD45 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the CD45 gene on chromosome 1.[11]
Coronin-1A deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the CORO1A gene (which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on chromosome 16.[12]
Winged helix deficiency/Nude SCID
- Autosomal recessive (AR) transmission.
- It is caused by a mutation in the FOXN1 gene (a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. [13][14]
- Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.[15]CNS defects have also been reported which include anencephaly and spina bifida.[16]
- Initial management includes immediate referral to a specialist center in suspected patients and providing supportive care until a definitive diagnosis reached.[17]
- Prophylaxis and early treatment of infections is also an important step in management.[18]
ADA deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the adenosine deaminase gene (ADA) on chromosome 20.
- Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, nystagmus, sensorineural deafness and cognitive defects, and also hepatic dysfucnction.[19][20][21]
- Treatment options include:
- Enzyme replacement therapy: Pegademase bovine (PEG-ADA) is used as the replacement therapy.[22]
- Bone marrow transplantation.[23]
Reticular dysgenesis
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1.
- Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss.
- Bone marrow transplant is the treatment of choice.[24]
DNA Ligase IV deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13.
- Patients show unusual facial features, microcephaly, developmental delay, pancytopenia, and various skin abnormalities.[25]
CERNUNNOS/XLF deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutations in the NHEJ1 gene on chromosome 2.
- It is characterized by microcephaly, growth retardation and sensitivity to ionizing radiation.[26]
DNA PKcs deficiency
- Autosomal recessive (AR) transmission.
- It is caused by a mutation in the PRKDC gene on chromosome 8.[27]
RAG 1/2 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutations in the RAG1 and RAG2 genes on chromosome 11.[28]
- Patients present with persistent diarrhea, candidiasis, lung infections, fever, and opportunistic infections.[29]
DCLRE1C deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the gene encoding Artemis in chromosome 10.[30]
Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency
Major Histocompatibility Complex II Deficiency
- Major Histocompatibility Complex class II deficiency, called as the bare lymphocyte syndrome type II.[31]
- It is a rare autosomal recessive disorder.
- Lack of constitutive and inducible MHC class II expression in all cell types and tissues.
Magnesium Transporter Gene (MAGT1) Deficiency, Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Deficiency, UNC119 Deficiency
- Magnesium transporter gene (MAGT1) deficiency, T-cell tyrosine kinase Lck deficiency and Signaling adaptor protein Uncoordinated 119 (Unc119) deficiency related with a condition called Idiopathic CD4 lymphopenia. [32]
- MAGT1 deficiency stops the Mg (2+) influx, which impairs responses to antigen receptor engagement and successive steps like activation of phospholipase Cγ1 and Ca(2+) influx in T cells but not B cells.[33]
- Lck is vital for both CD4 and CD8 T-cell development and function. LCK deficiency decrease T cell proliferation.[34]
- Unc119 is necessary for activation of T-cell tyrosine kinase Lck. Unc119-deficiency reduce the activity of LCK and decrease interleukin 2 production and cellular proliferation.[35]
CD8 Deficiency
- CD8 glycoproteins play vital role in both the maturation and function of MHC class I-restricted T lymphocytes.[36]
- CD8 deficiency is autosomal recessive familial condition.
- There is single mutation in the CD8α gene that is due to missense mutation (gly90-->ser) in both alleles of the immunoglobulin domain of the CD8 alpha gene.
Zeta-Chain-Associated Protein Kinase 70 (ZAP70) Deficiency
- ZAP70 gene encodes a tyrosine kinase that is important for T-cell signaling.[37]
- ZAP70 deficiency, results in loss of the activity of this kinase.
- ZAP70 is expressed mostly in T and NK cells, deficiency causes dysregulated T cells.[38]
Major Histocompatibility Complex 1 Deficiency
- It is autosomal recessive disorder also called as Bare lymphocyte syndrome type I.[39]
- It is extremely rare condition, less than 30 patients reported worldwide.
- There is homozygous inactivating mutation of transporter associated with antigen processing (TAP), which helps in peptide loading on MHC1.[40]
Dedicator of Cytokinesis 8 (DOCK8) Deficiency
- It is previously known as autosomal recessive hyper-IgE syndrome.[41]
- Absence of DOCK8 expression impairs T cell expansion, which causes T cell lymphopenia and susceptibility to cutaneous viral infections.
- Clinical manifestation includes eczema, recurrent skin abscesses, pneumonias, and elevated serum IgE.
Macrophage Stimulating 1 Deficiency
- Macrophage stimulating 1 encoded by gene contains four kringle domains and a serine protease domain.[42]
- Macrophage Stimulating 1 (MST1) deficiency causes increased cell death of naive and proliferating T cells.[43]
- MST1-deficient T cells poorly expressed the transcription factor FOXO1, the IL-7 receptor, and BCL2.
Interleukin 21 Deficiency
- IL-21 is produced by activated T cells.[44]
- IL-21 targets lymphoid and myeloid cells and regulates innate and acquired immune responses.
- Homozygous loss-of-function mutations in the interleukin-21 receptor gene is one cause of IL21 deficiency.[45]
- IL-21 deficiency causes impaired proliferation and immunoglobulin class-switching in B cells.
NF-κB inducing kinase Deficiency
- NF-κB-inducing kinase (NIK) is involved in lymphoid organogenesis through lymphotoxin-β receptor signaling.[46]
- NIK deficiency is autosomal recessive disorder.[47]
- It is caused by mutation in MAP3K14.
Moesin Deficiency
- It is newly described X linked combined immunodeficiency.[48]
- It present early in life with lymphopenia and hypogammaglobulinemia.
- There is poor immune response to vaccine antigens, and increased susceptibility to bacterial and [[[varicella zoster virus]] (VZV) infections.
- This immunodeficiency is caused by genetic defects of the moesin (MSN) gene.
CD3Y Deficiency
- Deficiency of the CD3Y component of the TcR/CD3 complex is associated with a long-term severe defect of peripheral blood CD4+ CD45RA+ and CD8+ lymphocytes, whereas CD4+CD45RO+, B and natural killer lymphocytes are unaffected.[49]
- These results suggest that the CD3Y site of the TcR/CD3 complex is required for the peripheral representation of certain T cell types.
RHOH Deficiency
- Ras homolog gene family H (RhoH) is a membrane-bound adaptor protein that helps in proximal T-cell receptor signaling.[50]
- Ras homolog gene family H (RHOH) deficiency leads to T cell defects and persistent HPV infections.[51]
- RHOH encodes an atypical Rho GTPase expressed predominantly in hematopoietic cells.
T-cell Receptor Alpha Deficiency
- The alpha chain is synthesized by recombination joining of single V segment with a J segment. Recombination of many different V segments with several J segments provides a wide range of antigen recognition.[52]
- T-cell receptor-alpha deficiency is autosomal recessive disorder.[53]
- It is caused by homozygous mutation in the TRAC gene on chromosome 14q11.
BCL11B Deficiency
- BCL11B is required for T-cell differentiation and have vital role in the transcriptional regulation of these genes.[54]
- BCL11B gene encodes a zinc-finger transcription factor involved in hematopoietic progenitor cell development.[55]
- Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development.[56]
OX40 Deficiency
- It is an autosomal recessive disorder. [57]
- OX40 is a co-stimulatory receptor expressed on activated T cells.
- Its ligand, OX40L, is expressed on various cell types, including endothelial cells.
- OX40L was abundantly expressed in Kaposi Sarcoma lesions.
- OX40 deficiency causes low proportion of effector memory CD4(+) T cells in the peripheral blood.
LAT Deficiency
- Linker for Activation of T cell (LAT) is substrate of the ZAP70 tyrosine kinase.[58]
- LAT is phosphorylated on multiple tyrosines and serve as docking sites for many effector molecules.
- Germ line LAT deficiency causes early thymocyte developmental arrest and complete absence of peripheral T cells.
- LAT mutations results in premature LAT truncation, diminishing known tyrosine phosphorylation sites.
DOCK2 Deficiency
- Dedicator of cytokinesis 2 gene (DOCK2) deficiency is autosomal recessive disorder.[59]
- It causes defect in the chemokine-induced migration and actin polymerization.
- DOCK2 deficiency affects T cells, B cells function and NK-cell degranulation.
CARD11 Deficiency
- It is autosomal recessive primary immunodeficiency with normal numbers of T and B lymphocytes, but defective intracellular signaling.[60]
- Caspase recruitment domain 11 (CARD11) is fundamental signaling component that mediates TCR-induced NF-kappa B activation.[61]
- Deficiency in CARD11 proceeds to impaired activation of NF-kappa B and also defect in interleukin-2 (IL-2) production.
BCL10 Deficiency
- BCL10 is an autosomal recessive disorder.[62]
- Complete BCL10 deficiency affects both hematopoietic and nonhematopoietic immunity.
- It presents with Homozygous loss-of-expression and loss-of-function mutation of BCL10.
- NF-κB-mediated fibroblast functions were drastically affected.
IKBKB Deficiency
- IKBKB encodes IκB kinase 2 (IKK2, also known as IKKβ).[63]
- Deficiency of IKBKB causes loss of expression of IKK2, also known as IKK-nuclear factor κB (NF-κB) pathway.
- IKBKB deficiency results in impairment of adaptive and innate immunity.
ICOS Deficiency
- Inducible co-stimulator (ICOS) deficiency causes combined B- and T-cell immunodeficiency.[64]
- Genetic diagnosis is the only tool to differentiate ICOS deficiency from other immunological defects.
- Antibody deficiency, autoimmunity, and combined immunodeficiency should be screened for ICOS mutations.
- ICOS deficiency was the first monogenic defect that cause common variable immunodeficiency (CVID)-like disease.
TFRC Deficiency
- TFRC deficiency is autosomal recessive disorder.[65]
- TFRC gene encodes the transferrin receptor, which is essential for cellular iron uptake.
- TFRC gene mutation causes defected TfR1 internalization motif and receptor endocytosis.
ReIB Deficiency
- RelB is an NF-κB family transcription factor.[66]
- Homozygous mutation in the gene for the NFκB transcription factor RelB causes repeated infection.
- This mutation introduces a premature stop codon, which results in an ablation of RelB expression.
- There is diminished antibody response to immunizations.
CD40 ligand Deficiency
- CD40 ligand (CD40L) deficiency leads to opportunistic infections.[67]
- CD40 ligand (CD154), present on activated CD4-positive T cells.[68]
- Ligand for CD40 (CD40L) is a membrane glycoprotein on activated T cells that induces B cell proliferation and immunoglobulin secretion.[69]
- CD40L defects results in the failure of B cells to undergo immunoglobulin class switching.
IL21R Deficiency
- IL21R is type I cytokine receptors, which also include receptors for hematopoietic growth factors.[70]
- IL21R deficiency ceases proliferation and maturation of natural killer (NK) and B-cell.
- IL21R deficiency also stop immunoglobulin class-switching in B cells, cytokine production in T cells, and NK cell cytotoxicity.[45]
MALT1 Deficiency
- MALT1 vital for immune receptor-driven signaling pathways which leads to NF-κB activation.[71]
- MALT1 deficiency leads to reduced T cell proliferation, defective IL-2 and TNF-α production, as well as impaired Th17 differentiation.
- MALT1 deficiency also impaired nuclear factor-κB activation and IL-2 production.[72]
References
- ↑ W. H. HITZIG & H. WILLI (1961). "[Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")]". Schweizerische medizinische Wochenschrift. 91: 1625–1633. PMID 13907792. Unknown parameter
|month=
ignored (help) - ↑ Fred S. Rosen (2002). "Successful gene therapy for severe combined immunodeficiency". The New England journal of medicine. 346 (16): 1241–1243. doi:10.1056/NEJM200204183461612. PMID 11961154. Unknown parameter
|month=
ignored (help) - ↑ F. Candotti, S. A. Oakes, J. A. Johnston, S. Giliani, R. F. Schumacher, P. Mella, M. Fiorini, A. G. Ugazio, R. Badolato, L. D. Notarangelo, F. Bozzi, P. Macchi, D. Strina, P. Vezzoni, R. M. Blaese, J. J. O'Shea & A. Villa (1997). "Structural and functional basis for JAK3-deficient severe combined immunodeficiency". Blood. 90 (10): 3996–4003. PMID 9354668. Unknown parameter
|month=
ignored (help) - ↑ Joseph L. Roberts, Andrea Lengi, Stephanie M. Brown, Min Chen, Yong-Jie Zhou, John J. O'Shea & Rebecca H. Buckley (2004). "Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation". Blood. 103 (6): 2009–2018. doi:10.1182/blood-2003-06-2104. PMID 14615376. Unknown parameter
|month=
ignored (help) - ↑ A. Puel, S. F. Ziegler, R. H. Buckley & W. J. Leonard (1998). "Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency". Nature genetics. 20 (4): 394–397. doi:10.1038/3877. PMID 9843216. Unknown parameter
|month=
ignored (help) - ↑ C. M. Roifman, J. Zhang, D. Chitayat & N. Sharfe (2000). "A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency". Blood. 96 (8): 2803–2807. PMID 11023514. Unknown parameter
|month=
ignored (help) - ↑ P. van den Elsen, G. Bruns, D. S. Gerhard, D. Pravtcheva, C. Jones, D. Housman, F. A. Ruddle, S. Orkin & C. Terhorst (1985). "Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9". Proceedings of the National Academy of Sciences of the United States of America. 82 (9): 2920–2924. PMID 3857625. Unknown parameter
|month=
ignored (help) - ↑ Grace P. Yu, Kari C. Nadeau, David R. Berk, Genevieve de Saint Basile, Nathalie Lambert, Perrine Knapnougel, Joseph Roberts, Kristina Kavanau, Elizabeth Dunn, E. Richard Stiehm, David B. Lewis, Dale T. Umetsu, Jennifer M. Puck & Morton J. Cowan (2011). "Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID". Pediatric transplantation. 15 (7): 733–741. doi:10.1111/j.1399-3046.2011.01563.x. PMID 21883749. Unknown parameter
|month=
ignored (help) - ↑ D. P. Gold, J. J. van Dongen, C. C. Morton, G. A. Bruns, P. van den Elsen, A. H. Geurts van Kessel & C. Terhorst (1987). "The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice". Proceedings of the National Academy of Sciences of the United States of America. 84 (6): 1664–1668. PMID 2882512. Unknown parameter
|month=
ignored (help) - ↑ A. M. Weissman, D. Hou, D. G. Orloff, W. S. Modi, H. Seuanez, S. J. O'Brien & R. D. Klausner (1988). "Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex". Proceedings of the National Academy of Sciences of the United States of America. 85 (24): 9709–9713. PMID 2974162. Unknown parameter
|month=
ignored (help) - ↑ M. F. Seldin, H. C. Morse, R. C. LeBoeuf & A. D. Steinberg (1988). "Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q". Genomics. 2 (1): 48–56. PMID 3384439. Unknown parameter
|month=
ignored (help) - ↑ Lawrence R. Shiow, David W. Roadcap, Kenneth Paris, Susan R. Watson, Irina L. Grigorova, Tonya Lebet, Jinping An, Ying Xu, Craig N. Jenne, Niko Foger, Ricardo U. Sorensen, Christopher C. Goodnow, James E. Bear, Jennifer M. Puck & Jason G. Cyster (2008). "The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency". Nature immunology. 9 (11): 1307–1315. doi:10.1038/ni.1662. PMID 18836449. Unknown parameter
|month=
ignored (help) - ↑ M. Schorpp, M. Hofmann, T. N. Dear & T. Boehm (1997). "Characterization of mouse and human nude genes". Immunogenetics. 46 (6): 509–515. PMID 9321431.
- ↑ Saulius Zuklys, Adam Handel, Saule Zhanybekova, Fatima Govani, Marcel Keller, Stefano Maio, Carlos E. Mayer, Hong Ying Teh, Katrin Hafen, Giuseppe Gallone, Thomas Barthlott, Chris P. Ponting & Georg A. Hollander (2016). "Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells". Nature immunology. 17 (10): 1206–1215. doi:10.1038/ni.3537. PMID 27548434. Unknown parameter
|month=
ignored (help) - ↑ C. Pignata, M. Fiore, V. Guzzetta, A. Castaldo, G. Sebastio, F. Porta & A. Guarino (1996). "Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs". American journal of medical genetics. 65 (2): 167–170. doi:10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O. PMID 8911612. Unknown parameter
|month=
ignored (help) - ↑ S. Amorosi, M. D'Armiento, G. Calcagno, I. Russo, M. Adriani, A. M. Christiano, L. Weiner, J. L. Brissette & C. Pignata (2008). "FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus". Clinical genetics. 73 (4): 380–384. doi:10.1111/j.1399-0004.2008.00977.x. PMID 18339010. Unknown parameter
|month=
ignored (help) - ↑ Lizzy Rivers & H. Bobby Gaspar (2015). "Severe combined immunodeficiency: recent developments and guidance on clinical management". Archives of disease in childhood. 100 (7): 667–672. doi:10.1136/archdischild-2014-306425. PMID 25564533. Unknown parameter
|month=
ignored (help) - ↑ Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter
|month=
ignored (help) - ↑ H. Ratech, M. A. Greco, G. Gallo, D. L. Rimoin, H. Kamino & R. Hirschhorn (1985). "Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations". The American journal of pathology. 120 (1): 157–169. PMID 4014441. Unknown parameter
|month=
ignored (help) - ↑ R. Hirschhorn, P. S. Paageorgiou, H. H. Kesarwala & L. T. Taft (1980). "Amerioration of neurologic abnormalities after "enzyme replacement" in adenosine deaminase deficiency". The New England journal of medicine. 303 (7): 377–380. doi:10.1056/NEJM198008143030706. PMID 6156414. Unknown parameter
|month=
ignored (help) - ↑ M. E. Bollinger, F. X. Arredondo-Vega, I. Santisteban, K. Schwarz, M. S. Hershfield & H. M. Lederman (1996). "Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency". The New England journal of medicine. 334 (21): 1367–1371. doi:10.1056/NEJM199605233342104. PMID 8614422. Unknown parameter
|month=
ignored (help) - ↑ M. S. Hershfield (1995). "PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency". Human mutation. 5 (2): 107–112. doi:10.1002/humu.1380050202. PMID 7749407.
- ↑ R. H. Buckley, S. E. Schiff, R. I. Schiff, L. Markert, L. W. Williams, J. L. Roberts, L. A. Myers & F. E. Ward (1999). "Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency". The New England journal of medicine. 340 (7): 508–516. doi:10.1056/NEJM199902183400703. PMID 10021471. Unknown parameter
|month=
ignored (help) - ↑ R. J. Levinsky & K. Tiedeman (1983). "Successful bone-marrow transplantation for reticular dysgenesis". Lancet (London, England). 1 (8326 Pt 1): 671–672. PMID 6132037. Unknown parameter
|month=
ignored (help) - ↑ M. O'Driscoll, K. M. Cerosaletti, P. M. Girard, Y. Dai, M. Stumm, B. Kysela, B. Hirsch, A. Gennery, S. E. Palmer, J. Seidel, R. A. Gatti, R. Varon, M. A. Oettinger, H. Neitzel, P. A. Jeggo & P. Concannon (2001). "DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency". Molecular cell. 8 (6): 1175–1185. PMID 11779494. Unknown parameter
|month=
ignored (help) - ↑ Dietke Buck, Laurent Malivert, Regina de Chasseval, Anne Barraud, Marie-Claude Fondaneche, Ozden Sanal, Alessandro Plebani, Jean-Louis Stephan, Markus Hufnagel, Francoise le Deist, Alain Fischer, Anne Durandy, Jean-Pierre de Villartay & Patrick Revy (2006). "Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly". Cell. 124 (2): 287–299. doi:10.1016/j.cell.2005.12.030. PMID 16439204. Unknown parameter
|month=
ignored (help) - ↑ J. D. Sipley, J. C. Menninger, K. O. Hartley, D. C. Ward, S. P. Jackson & C. W. Anderson (1995). "Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8". Proceedings of the National Academy of Sciences of the United States of America. 92 (16): 7515–7519. PMID 7638222. Unknown parameter
|month=
ignored (help) - ↑ K. Schwarz, G. H. Gauss, L. Ludwig, U. Pannicke, Z. Li, D. Lindner, W. Friedrich, R. A. Seger, T. E. Hansen-Hagge, S. Desiderio, M. R. Lieber & C. R. Bartram (1996). "RAG mutations in human B cell-negative SCID". Science (New York, N.Y.). 274 (5284): 97–99. PMID 8810255. Unknown parameter
|month=
ignored (help) - ↑ J. L. Stephan, V. Vlekova, F. Le Deist, S. Blanche, J. Donadieu, G. De Saint-Basile, A. Durandy, C. Griscelli & A. Fischer (1993). "Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients". The Journal of pediatrics. 123 (4): 564–572. PMID 8410508. Unknown parameter
|month=
ignored (help) - ↑ L. Li, D. Drayna, D. Hu, A. Hayward, S. Gahagan, H. Pabst & M. J. Cowan (1998). "The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p". American journal of human genetics. 62 (1): 136–144. doi:10.1086/301688. PMID 9443881. Unknown parameter
|month=
ignored (help) - ↑ Mach B, Steimle V, Martinez-Soria E, Reith W (1996). "Regulation of MHC class II genes: lessons from a disease". Annu. Rev. Immunol. 14: 301–31. doi:10.1146/annurev.immunol.14.1.301. PMID 8717517.
- ↑ Gorska MM, Alam R (February 2012). "A mutation in the human Uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia". Blood. 119 (6): 1399–406. doi:10.1182/blood-2011-04-350686. PMC 3286207. PMID 22184408.
- ↑ Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ (July 2011). "Second messenger role for Mg2+ revealed by human T-cell immunodeficiency". Nature. 475 (7357): 471–6. doi:10.1038/nature10246. PMC 3159560. PMID 21796205.
- ↑ Hubert P, Bergeron F, Ferreira V, Seligmann M, Oksenhendler E, Debre P, Autran B (April 2000). "Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia". Int. Immunol. 12 (4): 449–57. PMID 10744646.
- ↑ Lovatt M, Filby A, Parravicini V, Werlen G, Palmer E, Zamoyska R (November 2006). "Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response". Mol. Cell. Biol. 26 (22): 8655–65. doi:10.1128/MCB.00168-06. PMC 1636771. PMID 16966372.
- ↑ de la Calle-Martin O, Hernandez M, Ordi J, Casamitjana N, Arostegui JI, Caragol I, Ferrando M, Labrador M, Rodriguez-Sanchez JL, Espanol T (July 2001). "Familial CD8 deficiency due to a mutation in the CD8 alpha gene". J. Clin. Invest. 108 (1): 117–23. doi:10.1172/JCI10993. PMC 209336. PMID 11435463.
- ↑ Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM (March 1994). "Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase". Cell. 76 (5): 947–58. PMID 8124727.
- ↑ Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, Sunderam U, Fu SM, Srinivasan R, Kuriyan J, Brenner SE, Weiss A, Puck JM (February 2016). "A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70". J. Exp. Med. 213 (2): 155–65. doi:10.1084/jem.20150888. PMC 4749924. PMID 26783323.
- ↑ Hanna S, Etzioni A (August 2014). "MHC class I and II deficiencies". J. Allergy Clin. Immunol. 134 (2): 269–75. doi:10.1016/j.jaci.2014.06.001. PMID 25001848.
- ↑ Zimmer J, Andrès E, Donato L, Hanau D, Hentges F, de la Salle H (October 2005). "Clinical and immunological aspects of HLA class I deficiency". QJM. 98 (10): 719–27. doi:10.1093/qjmed/hci112. PMID 16087697.
- ↑ Su HC (December 2010). "Dedicator of cytokinesis 8 (DOCK8) deficiency". Curr Opin Allergy Clin Immunol. 10 (6): 515–20. doi:10.1097/ACI.0b013e32833fd718. PMC 3096565. PMID 20864884.
- ↑ "MST1 macrophage stimulating 1 [Homo sapiens (human)] - Gene - NCBI".
- ↑ Nehme NT, Schmid JP, Debeurme F, André-Schmutz I, Lim A, Nitschke P, Rieux-Laucat F, Lutz P, Picard C, Mahlaoui N, Fischer A, de Saint Basile G (April 2012). "MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival". Blood. 119 (15): 3458–68. doi:10.1182/blood-2011-09-378364. PMC 3824282. PMID 22174160.
- ↑ Brandt K, Singh PB, Bulfone-Paus S, Rückert R (2007). "Interleukin-21: a new modulator of immunity, infection, and cancer". Cytokine Growth Factor Rev. 18 (3–4): 223–32. doi:10.1016/j.cytogfr.2007.04.003. PMID 17509926.
- ↑ 45.0 45.1 Kotlarz D, Ziętara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, Krawitz PM, Robinson PN, Hecht J, Puchałka J, Gertz EM, Schäffer AA, Lawrence MG, Kardava L, Pfeifer D, Baumann U, Pfister ED, Hanson EP, Schambach A, Jacobs R, Kreipe H, Moir S, Milner JD, Schwille P, Mundlos S, Klein C (March 2013). "Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome". J. Exp. Med. 210 (3): 433–43. doi:10.1084/jem.20111229. PMC 3600901. PMID 23440042.
- ↑ [+https://doi.org/10.4049/jimmunol.169.3.1151 "Essential Role of NF-κB-Inducing Kinase in T Cell Activation Through the TCR/CD3 Pathway | The Journal of Immunology"] Check
|url=
value (help). - ↑ Rezaei, Nima, Asghar Aghamohammadi, and Luigi Notarangelo. Primary immunodeficiency diseases : definition, diagnosis, and management. Berlin, Germany: Springer, 2016. Print
- ↑ Delmonte OM, Biggs CM, Hayward A, Comeau AM, Kuehn HS, Rosenzweig SD, Notarangelo LD (May 2017). "First Case of X-Linked Moesin Deficiency Identified After Newborn Screening for SCID". J. Clin. Immunol. 37 (4): 336–338. doi:10.1007/s10875-017-0391-9. PMC 6082367. PMID 28378256.
- ↑ Timón M, Arnaiz-Villena A, Rodríguez-Gallego C, Pérez-Aciego P, Pacheco A, Regueiro JR (July 1993). "Selective disbalances of peripheral blood T lymphocyte subsets in human CD3 gamma deficiency". Eur. J. Immunol. 23 (7): 1440–4. doi:10.1002/eji.1830230706. PMID 8325321.
- ↑ "Redirecting".
- ↑ Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, Fieschi C, Lim A, Abhyankar A, Gineau L, Mueller-Fleckenstein I, Schmidt M, Taieb A, Krueger J, Abel L, Tangye SG, Orth G, Williams DA, Casanova JL, Jouanguy E (September 2012). "Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections". J. Clin. Invest. 122 (9): 3239–47. doi:10.1172/JCI62949. PMC 3428089. PMID 22850876.
- ↑ "Tcra T cell receptor alpha chain [Mus musculus (house mouse)] - Gene - NCBI".
- ↑ Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, Barge D, Ciupek A, Straatman-Iwanowska A, Pasha S, Guckian M, Anderson G, Huissoon A, Cant A, Tate WP, Hambleton S, Maher ER (February 2011). "Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells". J. Clin. Invest. 121 (2): 695–702. doi:10.1172/JCI41931. PMC 3026716. PMID 21206088.
- ↑ Kastner P, Chan S, Vogel WK, Zhang LJ, Topark-Ngarm A, Golonzhka O, Jost B, Le Gras S, Gross MK, Leid M (August 2010). "Bcl11b represses a mature T-cell gene expression program in immature CD4(+)CD8(+) thymocytes". Eur. J. Immunol. 40 (8): 2143–54. doi:10.1002/eji.200940258. PMC 2942964. PMID 20544728.
- ↑ Punwani D, Zhang Y, Yu J, Cowan MJ, Rana S, Kwan A, Adhikari AN, Lizama CO, Mendelsohn BA, Fahl SP, Chellappan A, Srinivasan R, Brenner SE, Wiest DL, Puck JM (December 2016). "Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B". N. Engl. J. Med. 375 (22): 2165–2176. doi:10.1056/NEJMoa1509164. PMC 5215776. PMID 27959755.
- ↑ Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen K, Hempel M, Haack TB, Baresic A, Genetti CA, Funari M, Lessel I, Kuhlmann L, Simon R, Liu P, Denecke J, Kuechler A, de Kruijff I, Shoukier M, Lek M, Mullen T, Lüdecke HJ, Lerario AM, Kobbe R, Krieger T, Demeer B, Lebrun M, Keren B, Nava C, Buratti J, Afenjar A, Shinawi M, Guillen Sacoto MJ, Gauthier J, Hamdan FF, Laberge AM, Campeau PM, Louie RJ, Cathey SS, Prinz I, Jorge A, Terhal PA, Lenhard B, Wieczorek D, Strom TM, Agrawal PB, Britsch S, Tolosa E, Kubisch C (July 2018). "BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells". Brain. doi:10.1093/brain/awy173. PMID 29985992. Vancouver style error: initials (help)
- ↑ Byun M, Ma CS, Akçay A, Pedergnana V, Palendira U, Myoung J, Avery DT, Liu Y, Abhyankar A, Lorenzo L, Schmidt M, Lim HK, Cassar O, Migaud M, Rozenberg F, Canpolat N, Aydogan G, Fleckenstein B, Bustamante J, Picard C, Gessain A, Jouanguy E, Cesarman E, Olivier M, Gros P, Abel L, Croft M, Tangye SG, Casanova JL (August 2013). "Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood". J. Exp. Med. 210 (9): 1743–59. doi:10.1084/jem.20130592. PMC 3754857. PMID 23897980.
- ↑ Weiss A (June 2016). "Human LAT mutation results in immune deficiency and autoimmunity but also raises questions about signaling pathways". J. Exp. Med. 213 (7): 1114. doi:10.1084/jem.2137insight1. PMC 4925028. PMID 27353087.
- ↑ Dobbs K, Domínguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, Haapaniemi E, Keles S, Bilic I, Okada S, Massaad MJ, Rounioja S, Alwahadneh AM, Serwas NK, Capuder K, Çiftçi E, Felgentreff K, Ohsumi TK, Pedergnana V, Boisson B, Haskoloğlu Ş, Ensari A, Schuster M, Moretta A, Itan Y, Patrizi O, Rozenberg F, Lebon P, Saarela J, Knip M, Petrovski S, Goldstein DB, Parrott RE, Savas B, Schambach A, Tabellini G, Bock C, Chatila TA, Comeau AM, Geha RS, Abel L, Buckley RH, İkincioğulları A, Al-Herz W, Helminen M, Doğu F, Casanova JL, Boztuğ K, Notarangelo LD (June 2015). "Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections". N. Engl. J. Med. 372 (25): 2409–22. doi:10.1056/NEJMoa1413462. PMC 4480434. PMID 26083206.
- ↑ Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, Cohen S, Shachar I, Miosge LA, Schlesier M, Fuchs I, Enders A, Eibel H, Grimbacher B, Warnatz K (February 2013). "Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects". J. Allergy Clin. Immunol. 131 (2): 477–85.e1. doi:10.1016/j.jaci.2012.11.050. PMID 23374270.
- ↑ Wang D, You Y, Case SM, McAllister-Lucas LM, Wang L, DiStefano PS, Nuñez G, Bertin J, Lin X (September 2002). "A requirement for CARMA1 in TCR-induced NF-kappa B activation". Nat. Immunol. 3 (9): 830–5. doi:10.1038/ni824. PMID 12154356.
- ↑ Torres JM, Martinez-Barricarte R, García-Gómez S, Mazariegos MS, Itan Y, Boisson B, Rholvarez R, Jiménez-Reinoso A, del Pino L, Rodríguez-Pena R, Ferreira A, Hernández-Jiménez E, Toledano V, Cubillos-Zapata C, Díaz-Almirón M, López-Collazo E, Unzueta-Roch JL, Sánchez-Ramón S, Regueiro JR, López-Granados E, Casanova JL, Pérez de Diego R (December 2014). "Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity". J. Clin. Invest. 124 (12): 5239–48. doi:10.1172/JCI77493. PMC 4348943. PMID 25365219.
- ↑ Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A, Rizzi M, Janda A, Hese K, Schlesier M, Holzmann K, Borte S, Laux C, Rump EM, Rosenberg A, Zelinski T, Schrezenmeier H, Wirth T, Ehl S, Schroeder ML, Schwarz K (December 2013). "Deficiency of innate and acquired immunity caused by an IKBKB mutation". N. Engl. J. Med. 369 (26): 2504–14. doi:10.1056/NEJMoa1309199. PMID 24369075.
- ↑ Schepp J, Chou J, Skrabl-Baumgartner A, Arkwright PD, Engelhardt KR, Hambleton S, Morio T, Röther E, Warnatz K, Geha R, Grimbacher B (2017). "14 Years after Discovery: Clinical Follow-up on 15 Patients with Inducible Co-Stimulator Deficiency". Front Immunol. 8: 964. doi:10.3389/fimmu.2017.00964. PMC 5561331. PMID 28861081.
- ↑ Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, Bainter W, Fraulino D, Rahimov F, Sieff C, Liu ZJ, Alshemmari SH, Al-Ramadi BK, Al-Dhekri H, Arnaout R, Abu-Shukair M, Vatsayan A, Silver E, Ahuja S, Davies EG, Sola-Visner M, Ohsumi TK, Andrews NC, Notarangelo LD, Fleming MD, Al-Herz W, Kunkel LM, Geha RS (January 2016). "A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency". Nat. Genet. 48 (1): 74–8. doi:10.1038/ng.3465. PMC 4696875. PMID 26642240.
- ↑ "RelB deficiency causes combined immunodeficiency - LymphoSign Journal".
- ↑ Cabral-Marques O, Ramos RN, Schimke LF, Khan TA, Amaral EP, Barbosa Bomfim CC, Junior OR, França TT, Arslanian C, Carola Correia Lima JD, Weber CW, Ferreira JF, Tavares FS, Sun J, D'Imperio Lima MR, Seelaender M, Garcia Calich VL, Marzagão Barbuto JA, Costa-Carvalho BT, Riemekasten G, Seminario G, Bezrodnik L, Notarangelo L, Torgerson TR, Ochs HD, Condino-Neto A (March 2017). "Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ". J. Allergy Clin. Immunol. 139 (3): 900–912.e7. doi:10.1016/j.jaci.2016.07.018. PMID 27554817.
- ↑ O'Gorman MR, DuChateau B, Paniagua M, Hunt J, Bensen N, Yogev R (November 2001). "Abnormal CD40 ligand (CD154) expression in human immunodeficiency virus-infected children". Clin. Diagn. Lab. Immunol. 8 (6): 1104–9. doi:10.1128/CDLI.8.6.1104-1109.2001. PMC 96233. PMID 11687447.
- ↑ Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK (February 1993). "CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome". Science. 259 (5097): 990–3. PMID 7679801.
- ↑ Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (November 2000). "Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function". Nature. 408 (6808): 57–63. doi:10.1038/35040504. PMID 11081504.
- ↑ Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U, Burkhart C, Dawson J, Niwa S, Katopodis A, Nuesslein-Hildesheim B, Weckbecker G, Zenke G, Kinzel B, Traggiai E, Brenner D, Brüstle A, St Paul M, Zamurovic N, McCoy KD, Rolink A, Régnier CH, Mak TW, Ohashi PS, Patel DD, Calzascia T (April 2015). "Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation". J. Immunol. 194 (8): 3723–34. doi:10.4049/jimmunol.1402254. PMID 25762782.
- ↑ Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, Chouery E, Mikhael R, Gorka O, Gewies A, Portales P, Nakayama T, Hosokawa H, Revy P, Herrod H, Le Deist F, Lefranc G, Ruland J, Geha RS (July 2013). "A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency". J. Allergy Clin. Immunol. 132 (1): 151–8. doi:10.1016/j.jaci.2013.04.047. PMC 3700575. PMID 23727036.