Erythroleukemia: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(19 intermediate revisions by 2 users not shown)
Line 12: Line 12:
   MeshID        = D004915 |
   MeshID        = D004915 |
}}
}}
{{SI}}
{{SI}}
{{CMG}}; {{AE}}
{{CMG}}; {{AE}}{{MA}} [mailto:malihash@bidmc.harvard.edu] [mailto:malihash@bidmc.harvard.edu]
 
{{SK}}Pure erythroid leukemia,  FAB ( French-American-British)  M6, acute erythroid leukemia, Di Guglielmo’s disease
{{SK}}  


==Overview==
==Overview==
 
Erythroleukemia was first discovered by M. Copelli, in 1912. In 1917, Di Guglielmo, Italian [[Hematology|hematologist]], described [[leukemic]] nature of the erythroleukemia. Erythroleukemia accounts for < 5 % of [[acute myeloid leukemia|acute myeloid leukemia (AML)]]. Erythroleukemia may be classified into 2 groups: [[De novo]] cases of erythroleukemia and secondary erythroleukemia. Erythroleukemia may be classified according to previous version [[World Health Organization|WHO]] into 2 sub-types : The [[erythroid]]/[[myeloid]] type and the pure type. Erythroleukemia is the [[neoplastic]] proliferation of [[myeloid]] and [[erythroid]] precursors of [[bone marrow]] [[Hematopoietic stem cell|hematopoietic stem cells]]. A pure [[erythroid]] proliferation may also occur. The [[erythroblasts]] do not [[Staining|stain]] with [[myeloperoxidase|myeloperoxidase (MPO)]]. [[Marker|Markers]] of [[myeloid]] lineage can not be expressed on the [[erythroblasts]]. [[Leukemia|Leukemic]] [[Cell (biology)|cells]] are positive for [[myeloid]] [[Marker|markers]] such as [[CD117]], [[CD13]], [[CD33]], and[[myeloperoxidase|myeloperoxidase (MPO)]]. [[Megakaryocyte|Megakaryocytes]] [[Antigen|antigens]] can be positive in some cases of erythroleukemia, such as CD41 and [[CD61]]. Erythroleukemia may be caused by [[translocation]] t(1;16) generating the [[fusion gene]] [[NFIA]]/[[CBFA2T3]]. Erythroleukemia must be differentiated from [[MDS]] with [[erythroid]] predominance, other types of [[AML]] with increased [[erythroid]] precursors, [[AML]] with [[myelodysplasia]]-related changes. Non-[[Cancer|neoplastic]] disorders that can cause [[erythroid]] predominance in the [[bone marrow]] such as [[megaloblastic anemia]] due to [[vitamin B12]] or [[folate]] deficiency, heavy metal [[intoxication]] such as [[arsenic]], drug effects (such as [[antineoplastic agents]] or [[chloramphenicol]]) are other [[Differential diagnosis|differential diagnoses]]. The [[incidence]] of erythroleukemia is approximately 0.077 per 100,000 individuals worldwide. Erythroleukemia commonly affects individuals older than 50 years of age with a [[median]] age of 65. There is no racial predilection to erythroleukemia. Men are more commonly affected by erythroleukemia than women. The [[male]] to [[female]] ratio is approximately 2 to 1. There are no established [[Risk factor|risk factors]] for [[de novo]] cases of erythroleukemia. The most potent [[risk factor]] in the development of [[secondary]] erythroleukemia is previous [[myelodysplastic syndrome|myelodysplastic syndrome (MDS)]]. There is insufficient evidence to recommend routine [[screening]] for erythroleukemia. If left untreated, [[Patient|patients]] with erythroleukemia may progress to develop [[bleeding]] due to [[disseminated intravascular coagulation|disseminated intravascular coagulation (DIC)]]. Common [[Complication (medicine)|complications]] of erythroleukemia include [[infection]] and [[bleeding]]. [[Therapy]] related [[Complication (medicine)|complications]] are [[rash]], [[Cardiomyopathy|cardiomyopathy]] and [[cerebellar]] [[toxicity]]''.'' [[Prognosis]] is generally poor. [[Median]] survival ranges from 3 - 9 months after the initial [[diagnosis]]. A high [[proerythroblast]]/[[myeloblast]] ratio correlates with worse outcome. The [[diagnosis]] of erythroleukemia is based on the 2016 version of [[World Health Organization|WHO]] [[classification]] for [[AML]]. History and [[Symptom|symptoms]] include [[fatigue]], [[Malaise]], [[bone pain]], [[abdominal pain]], [[weight loss]], [[Easy bruising]], [[Fever]], and [[Dyspnea]]. [[Patient|Patients]] with erythroleukemia usually appear [[anemic]].  [[Physical examination]] of [[Patient|patients]] with erythroleukemia may include [[Ecchymoses]] or [[petechiae]], [[Hepatomegaly]], [[Splenomegaly]], [[Lymphadenopathy]], and [[headache]]. [[Medical laboratory|Laboratory]] findings include [[Pancytopenia]], few [[peripheral blood]] [[blast|blasts]], [[Dysplasia]] in [[bone marrow]] and [[peripheral blood]], [[Dysplasia|dysplastic]] [[PAS stain|PAS]] positive [[erythroblasts]] with overexpression of the [[multidrug resistance|multidrug resistance (MDR)]] [[gene]] product [[P-glycoprotein]], and high frequency of [[mutations]], especially of [[TP53]]. [[Electrocardiogram]] is useful for the assessment of [[QT interval]] prior to starting [[chemotherapy]]. An [[x-ray]] may be helpful in the [[diagnosis]] of [[Complication (medicine)|complications]] of erythroleukemia management which include [[infection]], volume overload. [[Chest X-ray|Chest x-ray]] is also useful for [[venous]] [[catheter]] placement for [[chemotherapy]]. An [[echocardiogram]] is helpful for assessing [[cardiac]] function ([[ejection fraction]]) in [[Patient|patients]] with [[acute myeloid leukemia]] before and after receiving [[anthracycline]] [[chemotherapy]]. An [[ultrasound]] is useful for the [[diagnosis]] of [[lower extremity]] [[thrombosis]], which commonly occurs in [[Patient|patients]] with [[acute myeloid leukemia]]. [[Abdominal]] and [[chest]] [[Computed tomography|CT scan]] may be helpful in the [[diagnosis]] of [[acute myeloid leukemia]]. Findings on [[CT scan]] suggestive of [[acute myeloid leukemia]] include [[lymphadenopathy]], [[hepatomegaly]], [[splenomegaly]] and [[pulmonary embolism]] because of [[Deep vein thrombosis|deep venous thrombosis]]. [[Brain]] [[MRI]] is helpful in the [[diagnosis]] of [[CNS]] [[bleeding]] in [[acute myeloid leukemia|acute myeloid leukemia (AML)]]. There are no other [[imaging]] findings associated with erythroleukemia. Other [[Diagnosis|diagnostic]] studies include [[cytogenetics]] and [[flow cytometry]]. [[Pharmacology|Pharmacologic]] [[Medicine|medical]] [[therapy]] is recommended for [[Patient|patients]] with erythroleukemia who are not candidates for intensive [[chemotherapy]] or [[Allogeneic|allogenic]] [[hematopoietic stem cell]] [[Organ transplant|transplantation]]. [[Pharmacology|Pharmacologic]] [[Medicine|medical]] [[Therapy|therapies]] for erythroleukemia include hypomethylating agents (HMA) such as [[Azacytidine|azacitidine]] and [[Decitabine]]. [[Surgery|Surgical]] interventions include [[Allogeneic|allogenic]] [[hematopoietic stem cell]] [[Organ transplant|transplantation]] (Allo-SCT). There are no established measures for the [[Prevention (medical)|primary prevention]] of erythroleukemia. Effective measures for the [[Prevention (medical)|secondary prevention]] of erythroleukemia include maintenance of [[Remission (medicine)|remission]] treatment post-[[Organ transplant|transplant]].
==Historical Perspective==
==Historical Perspective==
Erythroleukemia was first discovered by M. Copelli , in 1912.  
* Erythroleukemia was first discovered by M. Copelli, in 1912.<ref name="pmid21091147">{{cite journal |vauthors=Santos FP, Bueso-Ramos CE, Ravandi F |title=Acute erythroleukemia: diagnosis and management |journal=Expert Rev Hematol |volume=3 |issue=6 |pages=705–18 |date=December 2010 |pmid=21091147 |doi=10.1586/ehm.10.62 |url=}}</ref>
 
In 1917, Di Guglielmo, Italian hematologist, described leukemic nature of the erythroleukemia.  
 
The association between [important risk factor/cause] and [disease name] was made in/during [year/event].
 
In [year], [scientist] was the first to discover the association between [risk factor] and the development of [disease name].


In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].
* In 1917, Di Guglielmo, Italian [[Hematology|hematologist]], described [[leukemic]] nature of the erythroleukemia. [[Erythroblasts]] may have [[vacuolization]] in the [[cytoplasm]] surrounding the [[nucleus]] (pearl necklace).  
 
There have been several outbreaks of [disease name], including -----.
 
In [year], [diagnostic test/therapy] was developed by [scientist] to treat/diagnose [disease name].
 
The first known case of acute erythroid leukemia was described in 1912 by M. Copelli under the name ''erythromatosis''. In 1917, Italian hematologist Giovanni Di Guglielmo (1886–1962), expanded on the description, coining the name "eritroleucemia" (Italian for ''erythroleukemia''). Di Guglielmo was the first to recognize the leukemic nature of the condition, and it is sometimes referred to as Di Guglielmo's syndrome in recognition of his work.
 
Chris Squire, bassist from the progressive rock group Yes, died from complications related to acute erythroid leukemia on June 27, 2015


==Classification==
==Classification==
There is no established system for the classification of [disease name].
* Erythroleukemia accounts for < 5 % of [[acute myeloid leukemia|acute myeloid leukemia (AML)]].
* Erythroleukemia may be classified into 2 groups: [[De novo]] cases of erythroleukemia and secondary erythroleukemia.
* Erythroleukemia may be classified according to previous version [[World Health Organization|WHO]] into 2 sub-types : The [[erythroid]]/[[myeloid]] type and the pure type.<ref name="pmid12752097">{{cite journal |vauthors=Forestier E, Heim S, Blennow E, Borgström G, Holmgren G, Heinonen K, Johannsson J, Kerndrup G, Andersen MK, Lundin C, Nordgren A, Rosenquist R, Swolin B, Johansson B |title=Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001 |journal=Br. J. Haematol. |volume=121 |issue=4 |pages=566–77 |date=May 2003 |pmid=12752097 |doi= |url=}}</ref>


OR
* [[Diagnosis]] of [[erythroid]]/[[myeloid]] type, based on previous version [[WHO]]:


[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
** [[Erythroid]] precursors more than 50% of the cells in [[bone marrow]]
** The [[blast]]<nowiki/>[[blast|s]] comprise of 20% or more of the non-[[erythroid]] [[Cell (biology)|cells]]
'''2016 version of [[World Health Organization|WHO]] [[classification]] for [[AML]] ([[erythroid]]/[[myeloid]] type) :'''
* 20% or more [[blast|blasts]] in [[Bone marrow|bo]]<nowiki/>[[Bone marrow|ne marrow]] irrespective of the number of [[erythroid]] precursors


OR
* [[Diagnosis]] of pure [[erythroid]] [[leukemia]]:


[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3].
** [[Erythroblasts]] (at the stage of [[Proerythroblast|pronormoblast]] > 80% of the [[Bone marrow|marrow]] [[Cell (biology)|cells]] in [[Patient|patients]] without exposure to [[cytotoxic]] agent and without [[AML]] [[genetic]] abnormalities). [[Erythroblasts]] may have [[vacuolization]] in the [[cytoplasm]] surrounding the [[nucleus]] (pearl necklace).
[Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].
 
OR
 
Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.
 
OR
 
If the staging system involves specific and characteristic findings and features:
According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].
 
OR
 
The staging of [malignancy name] is based on the [staging system].
 
OR
 
There is no established system for the staging of [malignancy name].


==Pathophysiology==
==Pathophysiology==
The exact pathogenesis of [disease name] is not fully understood.
* Erythroleukemia is the [[neoplastic]] proliferation of [[myeloid]] and [[erythroid]] precursors of [[bone marrow]] [[Hematopoietic stem cell|hematopoietic stem cells]].
* Erythroleukemia accounts for 3 - 5% of all [[AML]] cases.<ref name="pmid210911472">{{cite journal |vauthors=Santos FP, Bueso-Ramos CE, Ravandi F |title=Acute erythroleukemia: diagnosis and management |journal=Expert Rev Hematol |volume=3 |issue=6 |pages=705–18 |date=December 2010 |pmid=21091147 |doi=10.1586/ehm.10.62 |url=}}</ref>
* A pure [[erythroid]] proliferation may also occur. 
* The [[erythroblasts]] do not [[Staining|stain]] with [[myeloperoxidase|myeloperoxidase (MPO)]].
* [[Marker|Markers]] of [[myeloid]] lineage can not be expressed on the [[erythroblasts]].
'''Microscopic Examanination:'''
* [[Erythroblasts]] may have [[vacuolization]] in the [[cytoplasm]] surrounding the [[nucleus]] (pearl necklace).  
'''Immunohistochemistry'''


OR
[[Leukemia|Leukemic]] [[Cell (biology)|cells]] are positive for [[myeloid]] [[Marker|markers]] such as:<ref name="pmid2386768">{{cite journal |vauthors=Cuneo A, Van Orshoven A, Michaux JL, Boogaerts M, Louwagie A, Doyen C, Dal Cin P, Fagioli F, Castoldi G, Van den Berghe H |title=Morphologic, immunologic and cytogenetic studies in erythroleukaemia: evidence for multilineage involvement and identification of two distinct cytogenetic-clinicopathological types |journal=Br. J. Haematol. |volume=75 |issue=3 |pages=346–54 |date=July 1990 |pmid=2386768 |doi= |url=}}</ref>
 
* [[CD117]]
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
* [[CD13]]
 
* [[CD33]]
OR
* [[myeloperoxidase|Myeloperoxidase (MPO)]]
 
[[Megakaryocyte|Megakaryocytes]] [[Antigen|antigens]] can be positive in some cases of erythroleukemia, such as:
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
* CD41
 
* [[CD61]]
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.


==Causes==
==Causes==
Disease name] may be caused by [cause1], [cause2], or [cause3].
Erythroleukemia may be caused by [[translocation]] t(1;16) generating the [[fusion gene]] [[NFIA]]/[[CBFA2T3]].<ref name="pmid23032695">{{cite journal |vauthors=Micci F, Thorsen J, Panagopoulos I, Nyquist KB, Zeller B, Tierens A, Heim S |title=High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24) |journal=Leukemia |volume=27 |issue=4 |pages=980–2 |date=April 2013 |pmid=23032695 |pmc=3626019 |doi=10.1038/leu.2012.266 |url=}}</ref>


OR
==Differentiating Erythroleukemia from Other Diseases==
 
* Erythroleukemia must be differentiated from [[MDS]] with [[erythroid]] predominance, other types of [[AML]] with increased [[erythroid]] precursors, [[AML]] with [[myelodysplasia]]-related changes.  
Common causes of [disease] include [cause1], [cause2], and [cause3].
* Non-[[Cancer|neoplastic]] disorders that can cause [[erythroid]] predominance in the [[bone marrow]] such as [[megaloblastic anemia]] due to [[vitamin B12]] or [[folate]] deficiency, heavy metal [[intoxication]] such as [[arsenic]], drug effects (such as [[antineoplastic agents]] or [[chloramphenicol]]) are other [[Differential diagnosis|differential diagnoses]].<ref name="pmid208070442">{{cite journal |vauthors=Zuo Z, Polski JM, Kasyan A, Medeiros LJ |title=Acute erythroid leukemia |journal=Arch. Pathol. Lab. Med. |volume=134 |issue=9 |pages=1261–70 |date=September 2010 |pmid=20807044 |doi=10.1043/2009-0350-RA.1 |url=}}</ref>
 
OR
 
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
 
OR
 
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click [[Pericarditis causes#Overview|here]].
 
==Differentiating ((Page name)) from Other Diseases==
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
 
OR
 
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].


==Epidemiology and Demographics==
==Epidemiology and Demographics==
The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.
* The [[incidence]] of erythroleukemia is approximately 0.077 per 100,000 individuals worldwide.<ref name="pmid11477115">{{cite journal |vauthors=Wells AW, Bown N, Reid MM, Hamilton PJ, Jackson GH, Taylor PR |title=Erythroleukaemia in the north of England: a population based study |journal=J. Clin. Pathol. |volume=54 |issue=8 |pages=608–12 |date=August 2001 |pmid=11477115 |pmc=1731487 |doi= |url=}}</ref>
 
OR
 
In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.
 
OR
 
In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.
 
 
 
Patients of all age groups may develop [disease name].
 
OR
 
The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.
 
OR
 
[Disease name] commonly affects individuals younger than/older than [number of years] years of age.
 
OR
 
[Chronic disease name] is usually first diagnosed among [age group].
 
OR
 
[Acute disease name] commonly affects [age group].
 
 
 
There is no racial predilection to [disease name].
 
OR
 
[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].
 
 
 
[Disease name] affects men and women equally.
 
OR
 
[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.
 


* Erythroleukemia commonly affects individuals older than 50 years of age with a [[median]] age of 65.<ref name="pmid210911473">{{cite journal |vauthors=Santos FP, Bueso-Ramos CE, Ravandi F |title=Acute erythroleukemia: diagnosis and management |journal=Expert Rev Hematol |volume=3 |issue=6 |pages=705–18 |date=December 2010 |pmid=21091147 |doi=10.1586/ehm.10.62 |url=}}</ref>


The majority of [disease name] cases are reported in [geographical region].
* There is no racial predilection to erythroleukemia.


OR
* Men are more commonly affected by erythroleukemia than women. The [[male]] to [[female]] ratio is approximately 2 to 1.


[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].


==Risk Factors==
==Risk Factors==
There are no established risk factors for [disease name].
* There are no established [[Risk factor|risk factors]] for [[de novo]] cases of erythroleukemia.  
 
OR


The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
* The most potent [[risk factor]] in the development of [[secondary]] erythroleukemia is previous [[myelodysplastic syndrome|myelodysplastic syndrome (MDS)]].<ref name="pmid1486289">{{cite journal |vauthors=Atkinson J, Hrisinko MA, Weil SC |title=Erythroleukemia: a review of 15 cases meeting 1985 FAB criteria and survey of the literature |journal=Blood Rev. |volume=6 |issue=4 |pages=204–14 |date=December 1992 |pmid=1486289 |doi= |url=}}</ref>


OR
* Other [[Risk factor|risk factors]] include: 


Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
** [[Ionizing radiation]] such as [[Thorium dioxide]] [[Suspension (chemistry)|suspension]] ([[Thorotrast]])
 
** Previous use of [[chemotherapy]] [[drugs]] such as [[Alkylating agent|alkylating agents]]
OR
** [[Familial]] erythroleukemia, [[Dominance relationship|autosomal dominant]] [[Disorder (medicine)|disorder]
 
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.


==Screening==
==Screening==
There is insufficient evidence to recommend routine screening for [disease/malignancy].
There is insufficient evidence to recommend routine [[screening]] for erythroleukemia.  
 
OR
 
According to the [guideline name], screening for [disease name] is not recommended.
 
OR
 
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].


==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
* If left untreated, [[Patient|patients]] with erythroleukemia may progress to develop [[bleeding]] due to [[disseminated intravascular coagulation|disseminated intravascular coagulation (DIC)]].  
 
OR
 
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].


OR
* Common [[Complication (medicine)|complications]] of erythroleukemia include [[infection]] and [[bleeding]]. [[Therapy]] related [[Complication (medicine)|complications]] are [[rash]], [[Cardiomyopathy|cardiomyopathy]] and [[cerebellar]] [[toxicity]]''.''


Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
* [[Prognosis]] is generally poor.
* [[Median]] survival ranges from 3 - 9 months after the initial [[diagnosis]].<ref name="pmid28420120">{{cite journal |vauthors=Almeida AM, Prebet T, Itzykson R, Ramos F, Al-Ali H, Shammo J, Pinto R, Maurillo L, Wetzel J, Musto P, Van De Loosdrecht AA, Costa MJ, Esteves S, Burgstaller S, Stauder R, Autzinger EM, Lang A, Krippl P, Geissler D, Falantes JF, Pedro C, Bargay J, Deben G, Garrido A, Bonanad S, Diez-Campelo M, Thepot S, Ades L, Sperr WR, Valent P, Fenaux P, Sekeres MA, Greil R, Pleyer L |title=Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study |journal=Int J Mol Sci |volume=18 |issue=4 |pages= |date=April 2017 |pmid=28420120 |pmc=5412421 |doi=10.3390/ijms18040837 |url=}}</ref>
* A high [[proerythroblast]]/[[myeloblast]] ratio correlates with worse outcome.<ref name="pmid17852448">{{cite journal |vauthors=Srinivas U, Kumar R, Pati H, Saxena R, Tyagi S |title=Sub classification and clinico-hematological correlation of 40 cases of acute erythroleukemia - can proerythroblast/myeloblast and proerythroblast/total erythroid cell ratios help subclassify? |journal=Hematology |volume=12 |issue=5 |pages=381–5 |date=October 2007 |pmid=17852448 |doi=10.1080/10245330701393816 |url=}}</ref>


==Diagnosis==
==Diagnosis==
===Diagnostic Study of Choice===
===Diagnostic Study of Choice===
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR


There are no established criteria for the diagnosis of [disease name].
===== Bone Marrow Biopsy =====
The [[diagnosis]] of erythroleukemia is based on the 2016 version of [[World Health Organization|WHO]] [[classification]] for [[AML]]:
* [[AML]] ([[erythroid]]/[[myeloid]] type): 20% or more [[blast|blasts]] in th<nowiki/>e [[bone marrow]] irrespective of the number of [[erythroid]] precursors
* Pure [[erythroid]] [[leukemia]]: [[Erythroblasts]], at the stage of [[pronormoblast]], more than 80% of the [[marrow]] [[Cells (biology)|cells]] in [[Patient|patients]] without exposure to [[cytotoxic]] agent and without [[AML]] [[Genetics|genetic]] abnormalities. [[Erythroblasts]] may have [[vacuolization]] in the [[cytoplasm]] surrounding the [[nucleus]] (pearl necklace).


===History and Symptoms===
===History and Symptoms===
The majority of patients with [disease name] are asymptomatic.
* [[Fatigue]]
 
* [[Malaise]]
OR
* [[Bone pain]]
 
* [[Abdominal pain]]
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
* [[Weight loss]]
* [[Easy bruising]]
* [[Fever]]
* [[Dyspnea]]
Less common [[Symptom|symptoms]] of erythroleukemia include diffuse [[joint pain]].


===Physical Examination===
===Physical Examination===
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
[[Patient|Patients]] with erythroleukemia usually appear [[anemic]]. [[Physical examination]] of [[Patient|patients]] with erythroleukemia may include:<ref name="pmid20807044">{{cite journal |vauthors=Zuo Z, Polski JM, Kasyan A, Medeiros LJ |title=Acute erythroid leukemia |journal=Arch. Pathol. Lab. Med. |volume=134 |issue=9 |pages=1261–70 |date=September 2010 |pmid=20807044 |doi=10.1043/2009-0350-RA.1 |url=}}</ref>
 
* [[Ecchymoses]] or [[petechiae]]
OR
* [[Hepatomegaly]]  
 
* [[Splenomegaly]]  
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
* [[Lymphadenopathy]]
 
* [[Headache]]
OR
 
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
 
OR
 
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].


===Laboratory Findings===
===Laboratory Findings===
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
* [[Pancytopenia]]<ref name="pmid26293512">{{cite journal |vauthors=Peng J, Hasserjian RP, Tang G, Patel KP, Goswami M, Jabbour EJ, Garcia-Manero G, Medeiros LJ, Wang SA |title=Myelodysplastic syndromes following therapy with hypomethylating agents (HMAs): development of acute erythroleukemia may not influence assessment of treatment response |journal=Leuk. Lymphoma |volume=57 |issue=4 |pages=812–9 |date=2016 |pmid=26293512 |doi=10.3109/10428194.2015.1079318 |url=}}</ref>
 
* Few [[peripheral blood]] [[blast]]<nowiki/>[[blast|s]]<ref name="pmid16337853">{{cite journal |vauthors=Lessard M, Struski S, Leymarie V, Flandrin G, Lafage-Pochitaloff M, Mozziconacci MJ, Talmant P, Bastard C, Charrin C, Baranger L, Hélias C, Cornillet-Lefebvre P, Mugneret F, Cabrol C, Pagès MP, Fert-Ferret D, Nguyen-Khac F, Quilichini B, Barin C, Berger R |title=Cytogenetic study of 75 erythroleukemias |journal=Cancer Genet. Cytogenet. |volume=163 |issue=2 |pages=113–22 |date=December 2005 |pmid=16337853 |doi=10.1016/j.cancergencyto.2005.05.006 |url=}}</ref>
OR
* [[Dysplasia]] in [[bone marrow]] and [[peripheral blood]]
 
* [[Dysplasia|Dysplastic]] [[PAS stain|PAS]] positive [[erythroblasts]] with overexpression of the [[multidrug resistance|multidrug resistance (MDR)]] [[gene]] product [[P-glycoprotein]]
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
* High frequency of [[mutations]], especially of [[TP53]]<ref name="pmid23648669">{{cite journal |vauthors=Grossmann V, Bacher U, Haferlach C, Schnittger S, Pötzinger F, Weissmann S, Roller A, Eder C, Fasan A, Zenger M, Staller M, Kern W, Kohlmann A, Haferlach T |title=Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics |journal=Leukemia |volume=27 |issue=9 |pages=1940–3 |date=September 2013 |pmid=23648669 |doi=10.1038/leu.2013.144 |url=}}</ref>
 
OR
 
[Test] is usually normal among patients with [disease name].
 
OR
 
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
 
OR
 
There are no diagnostic laboratory findings associated with [disease name].


===Electrocardiogram===
===Electrocardiogram===
There are no ECG findings associated with [disease name].
* [[Electrocardiogram]] is useful for the assessment of [[QT interval]] prior to starting [[chemotherapy]].
 
* It is also useful for assessing [[arrhythmias]] induced by [[anthracycline]] [[chemotherapy]].<ref name="pmid25616318">{{cite journal| author=Hefti E, Blanco JG| title=Anthracycline-Related Cardiotoxicity in Patients with Acute Myeloid Leukemia and Down Syndrome: A Literature Review. | journal=Cardiovasc Toxicol | year= 2016 | volume= 16 | issue= 1 | pages= 5-13 | pmid=25616318 | doi=10.1007/s12012-015-9307-1 | pmc=4514565 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25616318  }}</ref>
OR
* For more information, click [[Acute myeloid leukemia electrocardiogram|here]].  
 
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].


===X-ray===
===X-ray===
There are no x-ray findings associated with [disease name].
* An [[x-ray]] may be helpful in the [[diagnosis]] of [[Complication (medicine)|complications]] of erythroleukemia management which include [[infection]], volume overload.
 
* [[Chest X-ray|Chest x-ray]] is also useful for [[venous]] [[catheter]] placement for [[chemotherapy]].  
OR
 
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
 
OR
 
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].


===Echocardiography or Ultrasound===
===Echocardiography or Ultrasound===
There are no echocardiography/ultrasound  findings associated with [disease name].
* An [[echocardiogram]] is helpful for assessing [[cardiac]] function ([[ejection fraction]]) in [[Patient|patients]] with [[acute myeloid leukemia]] before and after receiving [[anthracycline]] [[chemotherapy]]. <ref name="pmid24947931">{{cite journal |vauthors=Armenian SH, Gelehrter SK, Vase T, Venkatramani R, Landier W, Wilson KD, Herrera C, Reichman L, Menteer JD, Mascarenhas L, Freyer DR, Venkataraman K, Bhatia S |title=Screening for cardiac dysfunction in anthracycline-exposed childhood cancer survivors |journal=Clin. Cancer Res. |volume=20 |issue=24 |pages=6314–23 |date=December 2014 |pmid=24947931 |pmc=4268342 |doi=10.1158/1078-0432.CCR-13-3490 |url=}}</ref>
 
OR
 
Echocardiography/ultrasound  may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].


OR
* An [[ultrasound]] is useful for the [[diagnosis]] of [[lower extremity]] [[thrombosis]], which commonly occurs in [[Patient|patients]] with [[acute myeloid leukemia]].<ref name="pmid20124617">{{cite journal |vauthors=Oehadian A, Iqbal M, Sumantri R |title=Deep vein thrombosis in acute myelogenous leukemia |journal=Acta Med Indones |volume=41 |issue=4 |pages=200–4 |date=October 2009 |pmid=20124617 |doi= |url=}}</ref>
 
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound  may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].


===CT scan===
===CT scan===
There are no CT scan findings associated with [disease name].
* [[Abdominal]] and [[chest]] [[Computed tomography|CT scan]] may be helpful in the [[diagnosis]] of [[acute myeloid leukemia]].
* Findings on [[CT scan]] suggestive of [[acute myeloid leukemia]] include [[lymphadenopathy]], [[hepatomegaly]], [[splenomegaly]] and [[pulmonary embolism]] because of [[Deep vein thrombosis|deep venous thrombosis]].<ref name="pmid27642861">{{cite journal |vauthors=Vallipuram J, Dhalla S, Bell CM, Dresser L, Han H, Husain S, Minden MD, Paul NS, So M, Steinberg M, Vallipuram M, Wong G, Morris AM |title=Chest CT scans are frequently abnormal in asymptomatic patients with newly diagnosed acute myeloid leukemia |journal=Leuk. Lymphoma |volume=58 |issue=4 |pages=834–841 |date=April 2017 |pmid=27642861 |doi=10.1080/10428194.2016.1213825 |url=}}</ref>


OR
* Non [[contrast]] [[brain]] [[CT scan]] is useful to rule out [[CNS]] [[Bleeding|bleed]].<ref name="pmid22931433">{{cite journal |vauthors=Chen CY, Tai CH, Cheng A, Wu HC, Tsay W, Liu JH, Chen PY, Huang SY, Yao M, Tang JL, Tien HF |title=Intracranial hemorrhage in adult patients with hematological malignancies |journal=BMC Med |volume=10 |issue= |pages=97 |date=August 2012 |pmid=22931433 |pmc=3482556 |doi=10.1186/1741-7015-10-97 |url=}}</ref>
 
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
 
OR
 
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].


===MRI===
===MRI===
There are no MRI findings associated with [disease name].
[[Brain]] [[MRI]] is helpful in the [[diagnosis]] of [[CNS]] [[bleeding]] in [[acute myeloid leukemia|acute myeloid leukemia (AML)]].<ref name="pmid26239467">{{cite journal |vauthors=Cervantes GM, Cayci Z |title=Intracranial CNS Manifestations of Myeloid Sarcoma in Patients with Acute Myeloid Leukemia: Review of the Literature and Three Case Reports from the Author's Institution |journal=J Clin Med |volume=4 |issue=5 |pages=1102–12 |date=May 2015 |pmid=26239467 |pmc=4470219 |doi=10.3390/jcm4051102 |url=}}</ref>
 
OR
 
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
 
OR
 
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].


===Other Imaging Findings===
===Other Imaging Findings===
There are no other imaging findings associated with [disease name].
There are no other [[imaging]] findings associated with erythroleukemia.  
 
OR
 
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].


===Other Diagnostic Studies===
===Other Diagnostic Studies===
There are no other diagnostic studies associated with [disease name].


OR
===== Flow Cytometry: =====
* The [[myeloid]] [[blast|blasts]] are often postive for [[myeloid]] [[marker]] such as [[CD117]], [[CD13]], [[CD33]] and [[Myeloperoxidase|MPO]].<ref name="pmid21393910">{{cite journal |vauthors=Sharma A, Buxi G, Walia R, Yadav RB, Sharma S |title=Childhood acute erythroleukemia diagnosis by flow cytometry |journal=Indian J Pathol Microbiol |volume=54 |issue=1 |pages=173–5 |date=2011 |pmid=21393910 |doi=10.4103/0377-4929.77395 |url=}}</ref>


[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
* The [[erythroblasts]] lack [[myeloid]] [[Antigen|antigens]]. They are postive for [[glycophorin A]].


OR
===== Cytogenetics: =====
 
* Loss of all or part of the long arm (q) of [[Chromosome|chromosomes]] 5 and/or 7. <ref name="pmid14862892">{{cite journal |vauthors=Atkinson J, Hrisinko MA, Weil SC |title=Erythroleukemia: a review of 15 cases meeting 1985 FAB criteria and survey of the literature |journal=Blood Rev. |volume=6 |issue=4 |pages=204–14 |date=December 1992 |pmid=1486289 |doi= |url=}}</ref>
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].


==Treatment==
==Treatment==
===Medical Therapy===
===Medical Therapy===
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
* [[Pharmacology|Pharmacologic]] [[Medicine|medical]] [[therapy]] is recommended for [[Patient|patients]] with erythroleukemia who are not candidates for intensive [[chemotherapy]] or [[Allogeneic|allogenic]] [[hematopoietic stem cell]] [[Organ transplant|transplantation]].<ref name="pmid284201202">{{cite journal |vauthors=Almeida AM, Prebet T, Itzykson R, Ramos F, Al-Ali H, Shammo J, Pinto R, Maurillo L, Wetzel J, Musto P, Van De Loosdrecht AA, Costa MJ, Esteves S, Burgstaller S, Stauder R, Autzinger EM, Lang A, Krippl P, Geissler D, Falantes JF, Pedro C, Bargay J, Deben G, Garrido A, Bonanad S, Diez-Campelo M, Thepot S, Ades L, Sperr WR, Valent P, Fenaux P, Sekeres MA, Greil R, Pleyer L |title=Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study |journal=Int J Mol Sci |volume=18 |issue=4 |pages= |date=April 2017 |pmid=28420120 |pmc=5412421 |doi=10.3390/ijms18040837 |url=}}</ref>
 
OR
 
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
 
OR
 
The majority of cases of [disease name] are self-limited and require only supportive care.
 
OR
 
[Disease name] is a medical emergency and requires prompt treatment.
 
OR
 
The mainstay of treatment for [disease name] is [therapy].
 
OR
 
The optimal therapy for [malignancy name] depends on the stage at diagnosis.
 
OR
 
[Therapy] is recommended among all patients who develop [disease name].
 
OR
 
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
 
OR
 
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
 
OR


Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
* [[Pharmacology|Pharmacologic]] [[Medicine|medical]] [[Therapy|therapies]] for erythroleukemia include hypomethylating agents (HMA) such as:<ref name="pmid20026804">{{cite journal |vauthors=Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Gattermann N, Germing U, Sanz G, List AF, Gore S, Seymour JF, Dombret H, Backstrom J, Zimmerman L, McKenzie D, Beach CL, Silverman LR |title=Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia |journal=J. Clin. Oncol. |volume=28 |issue=4 |pages=562–9 |date=February 2010 |pmid=20026804 |doi=10.1200/JCO.2009.23.8329 |url=}}</ref>


OR
** [[Azacytidine|Azacitidine]]
 
** [[Decitabine]]
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
For more information about [[Acute myeloid leukemia|acute myeloid leukemia (AML)]] [[Medicine|medical]] [[therapy]], click [[Acute myeloid leukemia medical therapy|here]].


===Surgery===
===Surgery===
Surgical intervention is not recommended for the management of [disease name].
* Allo-SCT ([[Allogeneic|Allogenic]] [[hematopoietic stem cell]] [[Organ transplant|transplantation]])<ref name="pmid284201202" />
 
OR
 
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
 
OR
 
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
 
OR
 
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
 
OR
 
Surgery is the mainstay of treatment for [disease or malignancy].


===Primary Prevention===
===Primary Prevention===
There are no established measures for the primary prevention of [disease name].
There are no established measures for the [[Prevention (medical)|primary prevention]] of erythroleukemia.  
 
OR
 
There are no available vaccines against [disease name].
 
OR
 
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
 
OR
 
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].


===Secondary Prevention===
===Secondary Prevention===
There are no established measures for the secondary prevention of [disease name].
Effective measures for the [[Prevention (medical)|secondary prevention]] of erythroleukemia include maintenance of [[Remission (medicine)|remission]] treatment post-[[Organ transplant|transplant]].<ref name="pmid21897227">{{cite journal |vauthors=Oran B, de Lima M |title=Prevention and treatment of acute myeloid leukemia relapse after allogeneic stem cell transplantation |journal=Curr. Opin. Hematol. |volume=18 |issue=6 |pages=388–94 |date=November 2011 |pmid=21897227 |doi=10.1097/MOH.0b013e32834b6158 |url=}}</ref>
 
OR
 
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].


==References==
==References==

Latest revision as of 14:31, 8 May 2019

Template:DiseaseDisorder infobox

WikiDoc Resources for Erythroleukemia

Articles

Most recent articles on Erythroleukemia

Most cited articles on Erythroleukemia

Review articles on Erythroleukemia

Articles on Erythroleukemia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Erythroleukemia

Images of Erythroleukemia

Photos of Erythroleukemia

Podcasts & MP3s on Erythroleukemia

Videos on Erythroleukemia

Evidence Based Medicine

Cochrane Collaboration on Erythroleukemia

Bandolier on Erythroleukemia

TRIP on Erythroleukemia

Clinical Trials

Ongoing Trials on Erythroleukemia at Clinical Trials.gov

Trial results on Erythroleukemia

Clinical Trials on Erythroleukemia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Erythroleukemia

NICE Guidance on Erythroleukemia

NHS PRODIGY Guidance

FDA on Erythroleukemia

CDC on Erythroleukemia

Books

Books on Erythroleukemia

News

Erythroleukemia in the news

Be alerted to news on Erythroleukemia

News trends on Erythroleukemia

Commentary

Blogs on Erythroleukemia

Definitions

Definitions of Erythroleukemia

Patient Resources / Community

Patient resources on Erythroleukemia

Discussion groups on Erythroleukemia

Patient Handouts on Erythroleukemia

Directions to Hospitals Treating Erythroleukemia

Risk calculators and risk factors for Erythroleukemia

Healthcare Provider Resources

Symptoms of Erythroleukemia

Causes & Risk Factors for Erythroleukemia

Diagnostic studies for Erythroleukemia

Treatment of Erythroleukemia

Continuing Medical Education (CME)

CME Programs on Erythroleukemia

International

Erythroleukemia en Espanol

Erythroleukemia en Francais

Business

Erythroleukemia in the Marketplace

Patents on Erythroleukemia

Experimental / Informatics

List of terms related to Erythroleukemia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mahda Alihashemi M.D. [2] [3] [4] Synonyms and keywords:Pure erythroid leukemia, FAB ( French-American-British) M6, acute erythroid leukemia, Di Guglielmo’s disease

Overview

Erythroleukemia was first discovered by M. Copelli, in 1912. In 1917, Di Guglielmo, Italian hematologist, described leukemic nature of the erythroleukemia. Erythroleukemia accounts for < 5 % of acute myeloid leukemia (AML). Erythroleukemia may be classified into 2 groups: De novo cases of erythroleukemia and secondary erythroleukemia. Erythroleukemia may be classified according to previous version WHO into 2 sub-types : The erythroid/myeloid type and the pure type. Erythroleukemia is the neoplastic proliferation of myeloid and erythroid precursors of bone marrow hematopoietic stem cells. A pure erythroid proliferation may also occur. The erythroblasts do not stain with myeloperoxidase (MPO). Markers of myeloid lineage can not be expressed on the erythroblasts. Leukemic cells are positive for myeloid markers such as CD117, CD13, CD33, andmyeloperoxidase (MPO). Megakaryocytes antigens can be positive in some cases of erythroleukemia, such as CD41 and CD61. Erythroleukemia may be caused by translocation t(1;16) generating the fusion gene NFIA/CBFA2T3. Erythroleukemia must be differentiated from MDS with erythroid predominance, other types of AML with increased erythroid precursors, AML with myelodysplasia-related changes. Non-neoplastic disorders that can cause erythroid predominance in the bone marrow such as megaloblastic anemia due to vitamin B12 or folate deficiency, heavy metal intoxication such as arsenic, drug effects (such as antineoplastic agents or chloramphenicol) are other differential diagnoses. The incidence of erythroleukemia is approximately 0.077 per 100,000 individuals worldwide. Erythroleukemia commonly affects individuals older than 50 years of age with a median age of 65. There is no racial predilection to erythroleukemia. Men are more commonly affected by erythroleukemia than women. The male to female ratio is approximately 2 to 1. There are no established risk factors for de novo cases of erythroleukemia. The most potent risk factor in the development of secondary erythroleukemia is previous myelodysplastic syndrome (MDS). There is insufficient evidence to recommend routine screening for erythroleukemia. If left untreated, patients with erythroleukemia may progress to develop bleeding due to disseminated intravascular coagulation (DIC). Common complications of erythroleukemia include infection and bleeding. Therapy related complications are rash, cardiomyopathy and cerebellar toxicity. Prognosis is generally poor. Median survival ranges from 3 - 9 months after the initial diagnosis. A high proerythroblast/myeloblast ratio correlates with worse outcome. The diagnosis of erythroleukemia is based on the 2016 version of WHO classification for AML. History and symptoms include fatigue, Malaise, bone pain, abdominal pain, weight loss, Easy bruising, Fever, and Dyspnea. Patients with erythroleukemia usually appear anemic. Physical examination of patients with erythroleukemia may include Ecchymoses or petechiae, Hepatomegaly, Splenomegaly, Lymphadenopathy, and headache. Laboratory findings include Pancytopenia, few peripheral blood blasts, Dysplasia in bone marrow and peripheral blood, dysplastic PAS positive erythroblasts with overexpression of the multidrug resistance (MDR) gene product P-glycoprotein, and high frequency of mutations, especially of TP53. Electrocardiogram is useful for the assessment of QT interval prior to starting chemotherapy. An x-ray may be helpful in the diagnosis of complications of erythroleukemia management which include infection, volume overload. Chest x-ray is also useful for venous catheter placement for chemotherapy. An echocardiogram is helpful for assessing cardiac function (ejection fraction) in patients with acute myeloid leukemia before and after receiving anthracycline chemotherapy. An ultrasound is useful for the diagnosis of lower extremity thrombosis, which commonly occurs in patients with acute myeloid leukemia. Abdominal and chest CT scan may be helpful in the diagnosis of acute myeloid leukemia. Findings on CT scan suggestive of acute myeloid leukemia include lymphadenopathy, hepatomegaly, splenomegaly and pulmonary embolism because of deep venous thrombosis. Brain MRI is helpful in the diagnosis of CNS bleeding in acute myeloid leukemia (AML). There are no other imaging findings associated with erythroleukemia. Other diagnostic studies include cytogenetics and flow cytometry. Pharmacologic medical therapy is recommended for patients with erythroleukemia who are not candidates for intensive chemotherapy or allogenic hematopoietic stem cell transplantation. Pharmacologic medical therapies for erythroleukemia include hypomethylating agents (HMA) such as azacitidine and Decitabine. Surgical interventions include allogenic hematopoietic stem cell transplantation (Allo-SCT). There are no established measures for the primary prevention of erythroleukemia. Effective measures for the secondary prevention of erythroleukemia include maintenance of remission treatment post-transplant.

Historical Perspective

  • Erythroleukemia was first discovered by M. Copelli, in 1912.[1]

Classification

  • Erythroleukemia accounts for < 5 % of acute myeloid leukemia (AML).
  • Erythroleukemia may be classified into 2 groups: De novo cases of erythroleukemia and secondary erythroleukemia.
  • Erythroleukemia may be classified according to previous version WHO into 2 sub-types : The erythroid/myeloid type and the pure type.[2]

2016 version of WHO classification for AML (erythroid/myeloid type) :

Pathophysiology

Microscopic Examanination:

Immunohistochemistry

Leukemic cells are positive for myeloid markers such as:[4]

Megakaryocytes antigens can be positive in some cases of erythroleukemia, such as:

Causes

Erythroleukemia may be caused by translocation t(1;16) generating the fusion gene NFIA/CBFA2T3.[5]

Differentiating Erythroleukemia from Other Diseases

Epidemiology and Demographics

  • The incidence of erythroleukemia is approximately 0.077 per 100,000 individuals worldwide.[7]
  • Erythroleukemia commonly affects individuals older than 50 years of age with a median age of 65.[8]
  • There is no racial predilection to erythroleukemia.
  • Men are more commonly affected by erythroleukemia than women. The male to female ratio is approximately 2 to 1.


Risk Factors

Screening

There is insufficient evidence to recommend routine screening for erythroleukemia.

Natural History, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

Bone Marrow Biopsy

The diagnosis of erythroleukemia is based on the 2016 version of WHO classification for AML:

History and Symptoms

Less common symptoms of erythroleukemia include diffuse joint pain.

Physical Examination

Patients with erythroleukemia usually appear anemic. Physical examination of patients with erythroleukemia may include:[12]

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography or Ultrasound

CT scan

MRI

Brain MRI is helpful in the diagnosis of CNS bleeding in acute myeloid leukemia (AML).[21]

Other Imaging Findings

There are no other imaging findings associated with erythroleukemia.

Other Diagnostic Studies

Flow Cytometry:
Cytogenetics:

Treatment

Medical Therapy

For more information about acute myeloid leukemia (AML) medical therapy, click here.

Surgery

Primary Prevention

There are no established measures for the primary prevention of erythroleukemia.

Secondary Prevention

Effective measures for the secondary prevention of erythroleukemia include maintenance of remission treatment post-transplant.[26]

References

  1. Santos FP, Bueso-Ramos CE, Ravandi F (December 2010). "Acute erythroleukemia: diagnosis and management". Expert Rev Hematol. 3 (6): 705–18. doi:10.1586/ehm.10.62. PMID 21091147.
  2. Forestier E, Heim S, Blennow E, Borgström G, Holmgren G, Heinonen K, Johannsson J, Kerndrup G, Andersen MK, Lundin C, Nordgren A, Rosenquist R, Swolin B, Johansson B (May 2003). "Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001". Br. J. Haematol. 121 (4): 566–77. PMID 12752097.
  3. Santos FP, Bueso-Ramos CE, Ravandi F (December 2010). "Acute erythroleukemia: diagnosis and management". Expert Rev Hematol. 3 (6): 705–18. doi:10.1586/ehm.10.62. PMID 21091147.
  4. Cuneo A, Van Orshoven A, Michaux JL, Boogaerts M, Louwagie A, Doyen C, Dal Cin P, Fagioli F, Castoldi G, Van den Berghe H (July 1990). "Morphologic, immunologic and cytogenetic studies in erythroleukaemia: evidence for multilineage involvement and identification of two distinct cytogenetic-clinicopathological types". Br. J. Haematol. 75 (3): 346–54. PMID 2386768.
  5. Micci F, Thorsen J, Panagopoulos I, Nyquist KB, Zeller B, Tierens A, Heim S (April 2013). "High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24)". Leukemia. 27 (4): 980–2. doi:10.1038/leu.2012.266. PMC 3626019. PMID 23032695.
  6. Zuo Z, Polski JM, Kasyan A, Medeiros LJ (September 2010). "Acute erythroid leukemia". Arch. Pathol. Lab. Med. 134 (9): 1261–70. doi:10.1043/2009-0350-RA.1. PMID 20807044.
  7. Wells AW, Bown N, Reid MM, Hamilton PJ, Jackson GH, Taylor PR (August 2001). "Erythroleukaemia in the north of England: a population based study". J. Clin. Pathol. 54 (8): 608–12. PMC 1731487. PMID 11477115.
  8. Santos FP, Bueso-Ramos CE, Ravandi F (December 2010). "Acute erythroleukemia: diagnosis and management". Expert Rev Hematol. 3 (6): 705–18. doi:10.1586/ehm.10.62. PMID 21091147.
  9. Atkinson J, Hrisinko MA, Weil SC (December 1992). "Erythroleukemia: a review of 15 cases meeting 1985 FAB criteria and survey of the literature". Blood Rev. 6 (4): 204–14. PMID 1486289.
  10. Almeida AM, Prebet T, Itzykson R, Ramos F, Al-Ali H, Shammo J, Pinto R, Maurillo L, Wetzel J, Musto P, Van De Loosdrecht AA, Costa MJ, Esteves S, Burgstaller S, Stauder R, Autzinger EM, Lang A, Krippl P, Geissler D, Falantes JF, Pedro C, Bargay J, Deben G, Garrido A, Bonanad S, Diez-Campelo M, Thepot S, Ades L, Sperr WR, Valent P, Fenaux P, Sekeres MA, Greil R, Pleyer L (April 2017). "Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study". Int J Mol Sci. 18 (4). doi:10.3390/ijms18040837. PMC 5412421. PMID 28420120.
  11. Srinivas U, Kumar R, Pati H, Saxena R, Tyagi S (October 2007). "Sub classification and clinico-hematological correlation of 40 cases of acute erythroleukemia - can proerythroblast/myeloblast and proerythroblast/total erythroid cell ratios help subclassify?". Hematology. 12 (5): 381–5. doi:10.1080/10245330701393816. PMID 17852448.
  12. Zuo Z, Polski JM, Kasyan A, Medeiros LJ (September 2010). "Acute erythroid leukemia". Arch. Pathol. Lab. Med. 134 (9): 1261–70. doi:10.1043/2009-0350-RA.1. PMID 20807044.
  13. Peng J, Hasserjian RP, Tang G, Patel KP, Goswami M, Jabbour EJ, Garcia-Manero G, Medeiros LJ, Wang SA (2016). "Myelodysplastic syndromes following therapy with hypomethylating agents (HMAs): development of acute erythroleukemia may not influence assessment of treatment response". Leuk. Lymphoma. 57 (4): 812–9. doi:10.3109/10428194.2015.1079318. PMID 26293512.
  14. Lessard M, Struski S, Leymarie V, Flandrin G, Lafage-Pochitaloff M, Mozziconacci MJ, Talmant P, Bastard C, Charrin C, Baranger L, Hélias C, Cornillet-Lefebvre P, Mugneret F, Cabrol C, Pagès MP, Fert-Ferret D, Nguyen-Khac F, Quilichini B, Barin C, Berger R (December 2005). "Cytogenetic study of 75 erythroleukemias". Cancer Genet. Cytogenet. 163 (2): 113–22. doi:10.1016/j.cancergencyto.2005.05.006. PMID 16337853.
  15. Grossmann V, Bacher U, Haferlach C, Schnittger S, Pötzinger F, Weissmann S, Roller A, Eder C, Fasan A, Zenger M, Staller M, Kern W, Kohlmann A, Haferlach T (September 2013). "Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics". Leukemia. 27 (9): 1940–3. doi:10.1038/leu.2013.144. PMID 23648669.
  16. Hefti E, Blanco JG (2016). "Anthracycline-Related Cardiotoxicity in Patients with Acute Myeloid Leukemia and Down Syndrome: A Literature Review". Cardiovasc Toxicol. 16 (1): 5–13. doi:10.1007/s12012-015-9307-1. PMC 4514565. PMID 25616318.
  17. Armenian SH, Gelehrter SK, Vase T, Venkatramani R, Landier W, Wilson KD, Herrera C, Reichman L, Menteer JD, Mascarenhas L, Freyer DR, Venkataraman K, Bhatia S (December 2014). "Screening for cardiac dysfunction in anthracycline-exposed childhood cancer survivors". Clin. Cancer Res. 20 (24): 6314–23. doi:10.1158/1078-0432.CCR-13-3490. PMC 4268342. PMID 24947931.
  18. Oehadian A, Iqbal M, Sumantri R (October 2009). "Deep vein thrombosis in acute myelogenous leukemia". Acta Med Indones. 41 (4): 200–4. PMID 20124617.
  19. Vallipuram J, Dhalla S, Bell CM, Dresser L, Han H, Husain S, Minden MD, Paul NS, So M, Steinberg M, Vallipuram M, Wong G, Morris AM (April 2017). "Chest CT scans are frequently abnormal in asymptomatic patients with newly diagnosed acute myeloid leukemia". Leuk. Lymphoma. 58 (4): 834–841. doi:10.1080/10428194.2016.1213825. PMID 27642861.
  20. Chen CY, Tai CH, Cheng A, Wu HC, Tsay W, Liu JH, Chen PY, Huang SY, Yao M, Tang JL, Tien HF (August 2012). "Intracranial hemorrhage in adult patients with hematological malignancies". BMC Med. 10: 97. doi:10.1186/1741-7015-10-97. PMC 3482556. PMID 22931433.
  21. Cervantes GM, Cayci Z (May 2015). "Intracranial CNS Manifestations of Myeloid Sarcoma in Patients with Acute Myeloid Leukemia: Review of the Literature and Three Case Reports from the Author's Institution". J Clin Med. 4 (5): 1102–12. doi:10.3390/jcm4051102. PMC 4470219. PMID 26239467.
  22. Sharma A, Buxi G, Walia R, Yadav RB, Sharma S (2011). "Childhood acute erythroleukemia diagnosis by flow cytometry". Indian J Pathol Microbiol. 54 (1): 173–5. doi:10.4103/0377-4929.77395. PMID 21393910.
  23. Atkinson J, Hrisinko MA, Weil SC (December 1992). "Erythroleukemia: a review of 15 cases meeting 1985 FAB criteria and survey of the literature". Blood Rev. 6 (4): 204–14. PMID 1486289.
  24. 24.0 24.1 Almeida AM, Prebet T, Itzykson R, Ramos F, Al-Ali H, Shammo J, Pinto R, Maurillo L, Wetzel J, Musto P, Van De Loosdrecht AA, Costa MJ, Esteves S, Burgstaller S, Stauder R, Autzinger EM, Lang A, Krippl P, Geissler D, Falantes JF, Pedro C, Bargay J, Deben G, Garrido A, Bonanad S, Diez-Campelo M, Thepot S, Ades L, Sperr WR, Valent P, Fenaux P, Sekeres MA, Greil R, Pleyer L (April 2017). "Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study". Int J Mol Sci. 18 (4). doi:10.3390/ijms18040837. PMC 5412421. PMID 28420120.
  25. Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Gattermann N, Germing U, Sanz G, List AF, Gore S, Seymour JF, Dombret H, Backstrom J, Zimmerman L, McKenzie D, Beach CL, Silverman LR (February 2010). "Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia". J. Clin. Oncol. 28 (4): 562–9. doi:10.1200/JCO.2009.23.8329. PMID 20026804.
  26. Oran B, de Lima M (November 2011). "Prevention and treatment of acute myeloid leukemia relapse after allogeneic stem cell transplantation". Curr. Opin. Hematol. 18 (6): 388–94. doi:10.1097/MOH.0b013e32834b6158. PMID 21897227.


Template:WikiDoc Sources