KIF23: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (1 revision imported)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Kinesin-like protein KIF23''' is a [[protein]] that in humans is encoded by the ''KIF23'' [[gene]].<ref name="pmid1406973">{{cite journal |vauthors=Nislow C, Lombillo VA, Kuriyama R, McIntosh JR | title = A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles | journal = Nature | volume = 359 | issue = 6395 | pages = 543–7 |date=Nov 1992 | pmid = 1406973 | pmc = | doi = 10.1038/359543a0 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: KIF23 kinesin family member 23| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9493| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Kinesin family member 23
| HGNCid = 6392
| Symbol = KIF23
| AltSymbols =; CHO1; KNSL5; MKLP-1; MKLP1
| OMIM = 605064
| ECnumber = 
| Homologene = 11491
| MGIid = 1919069
| GeneAtlas_image1 = PBB_GE_KIF23_204709_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003777 |text = microtubule motor activity}} {{GNF_GO|id=GO:0005524 |text = ATP binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005819 |text = spindle}} {{GNF_GO|id=GO:0005871 |text = kinesin complex}} {{GNF_GO|id=GO:0005874 |text = microtubule}}
| Process = {{GNF_GO|id=GO:0000022 |text = mitotic spindle elongation}} {{GNF_GO|id=GO:0007018 |text = microtubule-based movement}} {{GNF_GO|id=GO:0007049 |text = cell cycle}} {{GNF_GO|id=GO:0007067 |text = mitosis}} {{GNF_GO|id=GO:0051301 |text = cell division}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 9493
    | Hs_Ensembl = ENSG00000137807
    | Hs_RefseqProtein = NP_004847
    | Hs_RefseqmRNA = NM_004856
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 15
    | Hs_GenLoc_start = 67493697
    | Hs_GenLoc_end = 67527810
    | Hs_Uniprot = Q02241
    | Mm_EntrezGene = 71819
    | Mm_Ensembl = ENSMUSG00000032254
    | Mm_RefseqmRNA = NM_024245
    | Mm_RefseqProtein = NP_077207
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 9
    | Mm_GenLoc_start = 61715670
    | Mm_GenLoc_end = 61744742
    | Mm_Uniprot = 
  }}
}}
'''Kinesin family member 23''', also known as '''KIF23''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: KIF23 kinesin family member 23| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9493| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
=== In cell division ===
{{PBB_Summary
| section_title =  
| summary_text = The protein encoded by this gene is a member of kinesin-like protein family. This family includes microtubule-dependent molecular motors that transport organelles within cells and move chromosomes during cell division. This protein has been shown to cross-bridge antiparallel microtubules and drive microtubule movement in vitro. Alternate splicing of this gene results in two transcript variants encoding two different isoforms.<ref name="entrez">{{cite web | title = Entrez Gene: KIF23 kinesin family member 23| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9493| accessdate = }}</ref>
}}


==References==
KIF23 (also known as Kinesin-6, CHO1/MKLP1, [[Caenorhabditis elegans|C. elegans]] ZEN-4 and [[Drosophila]] Pavarotti) is a member of kinesin-like protein family. This family includes microtubule-dependent molecular motors that transport [[organelle]]s within cells and move chromosomes during [[cell division]]. This protein has been shown to cross-bridge antiparallel [[microtubule]]s and drive microtubule movement in vitro. Alternate [[gene splicing|splicing]] of this gene results in two transcript variants encoding two different [[protein isoform|isoforms]], better known as CHO1, the larger isoform and MKLP1, the smaller isoform.<ref name="entrez"/>  KIF23 is a plus-end directed motor protein expressed in [[mitosis]], involved in the formation of the cleavage furrow in late [[anaphase]] and in [[cytokinesis]].<ref name="pmid1406973" /><ref name="pmid19962307">{{cite journal |vauthors=Hutterer A, Glotzer M, Mishima M | title = Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody | journal = Curr. Biol. | volume = 19 | issue = 23 | pages = 2043–9 |date=December 2009 | pmid = 19962307 | pmc = 3349232 | doi = 10.1016/j.cub.2009.10.050 }}</ref><ref name="pmid20109573">{{cite journal |vauthors=Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH | title = Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone | journal = Semin. Cell Dev. Biol. | volume = 21 | issue = 3 | pages = 290–9 |date=May 2010 | pmid = 20109573 | doi = 10.1016/j.semcdb.2010.01.017 | pmc = 3951275 }}</ref> KIF23 is part of the [[centralspindlin]] complex that includes [[PRC1]], [[Aurora B]] and [[14-3-3]] which cluster together at the [[Spindle apparatus|spindle]] midzone to enable anaphase in dividing cells.<ref name="pmid16461284">{{cite journal |vauthors=Neef R, Klein UR, Kopajtich R, Barr FA | title = Cooperation between mitotic kinesins controls the late stages of cytokinesis | journal = Curr. Biol. | volume = 16 | issue = 3 | pages = 301–7 |date=February 2006 | pmid = 16461284 | doi = 10.1016/j.cub.2005.12.030 }}</ref><ref name="pmid20451386">{{cite journal |vauthors=Douglas ME, Davies T, Joseph N, Mishima M | title = Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis | journal = Curr. Biol. | volume = 20 | issue = 10 | pages = 927–33 |date=May 2010 | pmid = 20451386 | pmc = 3348768 | doi = 10.1016/j.cub.2010.03.055 }}</ref><ref name="pmid19197328">{{cite journal | author = Glotzer M | title = The 3Ms of central spindle assembly: microtubules, motors and MAPs | journal = Nat. Rev. Mol. Cell Biol. | volume = 10 | issue = 1 | pages = 9–20 |date=January 2009 | pmid = 19197328 | pmc = 2789570 | doi = 10.1038/nrm2609 }}</ref>
{{reflist|2}}
 
==Further reading==
=== In neurons ===
{{refbegin | 2}}
 
{{PBB_Further_reading
In neuronal development KIF23 is involved in the transport of minus-end distal microtubules into [[dendrite]]s and is expressed exclusively in cell bodies and dendrites.<ref name="pmid9410876">{{cite journal |vauthors=Sharp DJ, Kuriyama R, Essner R, Baas PW | title = Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation | journal = J. Cell Sci. | volume = 110 | issue = 19| pages = 2373–80 |date=October 1997 | pmid = 9410876 | doi = }}</ref><ref name="pmid9265650">{{cite journal |vauthors=Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW | title = Identification of a microtubule-associated motor protein essential for dendritic differentiation | journal = J. Cell Biol. | volume = 138 | issue = 4 | pages = 833–43 |date=August 1997 | pmid = 9265650 | pmc = 2138050 | doi =10.1083/jcb.138.4.833 }}</ref><ref name="pmid9024695">{{cite journal |vauthors=Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW | title = Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells | journal = J. Cell Biol. | volume = 136 | issue = 3 | pages = 659–68 |date=February 1997 | pmid = 9024695 | pmc = 2134303 | doi =10.1083/jcb.136.3.659 }}</ref><ref name="pmid10908619">{{cite journal |vauthors=Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW | title = Depletion of a microtubule-associated motor protein induces the loss of dendritic identity | journal = J. Neurosci. | volume = 20 | issue = 15 | pages = 5782–91 |date=August 2000 | pmid = 10908619 | doi = }}</ref><ref name="pmid16418225">{{cite journal |vauthors=Xu X, He C, Zhang Z, Chen Y | title = MKLP1 requires specific domains for its dendritic targeting | journal = J. Cell Sci. | volume = 119 | issue = Pt 3 | pages = 452–8 |date=February 2006 | pmid = 16418225 | doi = 10.1242/jcs.02750 }}</ref> Knockdown of KIF23 by antisense oligonucleotides and by siRNA both cause a significant increase in axon length and a decrease in dendritic phenotype in neuroblastoma cells and in rat neurons.<ref name="pmid9024695" /><ref name="pmid10908619" /><ref name="pmid23035110">{{cite journal |vauthors=Lin S, Liu M, Mozgova OI, Yu W, Baas PW | title = Mitotic motors coregulate microtubule patterns in axons and dendrites | journal = J. Neurosci. | volume = 32 | issue = 40 | pages = 14033–49 |date=October 2012 | pmid = 23035110 | doi = 10.1523/JNEUROSCI.3070-12.2012 | pmc = 3482493 }}</ref> In differentiating neurons, KIF23 restricts the movement of short microtubules into axons by acting as a "brake" against the driving forces of cytoplasmic dynein. As neurons mature, KIF23 drives minus-end distal microtubules into nascent dendrites contributing to the multi-polar orientation of dendritic microtubules and the formation of their short, fat, tapering morphology.<ref name="pmid23035110"/>
| citations =
 
*{{cite journal  | author=Miki H, Setou M, Kaneshiro K, Hirokawa N |title=All kinesin superfamily protein, KIF, genes in mouse and human. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue= 13 |pages= 7004-11 |year= 2001 |pmid= 11416179 |doi= 10.1073/pnas.111145398 }}
[[File:Kinesin-6 and Kinesin-12.jpg|thumbnail|Model for co-regulation of microtubule polarity in axons and dendrites by different mitotic kinesins. During axonal differentiation, forces generated by cytoplasmic dynein drive plus-end-distal microtubules into the axon and nascent dendrites (not shown). (A) Forces generated by kinesin-6 at the cell body oppose the forces generated by cytoplasmic dynein, restricting the transport of plus-end-distal microtubules into the axon. As the neuron matures, kinesin-6 fuels the transport of short microtubules with their minus-end distal into all of the processes except the one designated to remain the axon, thus causing the other processes to differentiate into dendrites. (B) Forces generated by kinesin-12 behave similarly to kinesin-6 with regard to introducing minus-end-distal microtubules into the dendrite, but kinesin-12 is also present in the axon and growth cone, pushing plus-end-distal microtubules back toward the cell body. As a result, kinesin-12 behaves like kinesin-6 with regard to dendrites but produces effects more like kinesin-5 with regard to the axon.]]
*{{cite journal | author=Nislow C, Lombillo VA, Kuriyama R, McIntosh JR |title=A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. |journal=Nature |volume=359 |issue= 6395 |pages= 543-7 |year= 1992 |pmid= 1406973 |doi= 10.1038/359543a0 }}
 
*{{cite journal  | author=Lee KS, Yuan YL, Kuriyama R, Erikson RL |title=Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. |journal=Mol. Cell. Biol. |volume=15 |issue= 12 |pages= 7143-51 |year= 1996 |pmid= 8524282 |doi= }}
== Interactions ==
*{{cite journal | author=Deavours BE, Walker RA |title=Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1. |journal=Biochem. Biophys. Res. Commun. |volume=260 |issue= 3 |pages= 605-8 |year= 1999 |pmid= 10403813 |doi= 10.1006/bbrc.1999.0952 }}
 
*{{cite journal | author=Boman AL, Kuai J, Zhu X, ''et al.'' |title=Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. |journal=Cell Motil. Cytoskeleton |volume=44 |issue= 2 |pages= 119-32 |year= 1999 |pmid= 10506747 |doi= 10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C }}
KIF23 has been shown to [[Protein-protein interaction|interact]] with:
*{{cite journal  | author=Mishima M, Kaitna S, Glotzer M |title=Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. |journal=Dev. Cell |volume=2 |issue= 1 |pages= 41-54 |year= 2002 |pmid= 11782313 |doi=  }}
* [[ARF3]],<ref name="pmid10506747">{{cite journal |vauthors=Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA | title = Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion | journal = Cell Motil. Cytoskeleton | volume = 44 | issue = 2 | pages = 119–32 |date=October 1999 | pmid = 10506747 | doi = 10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C }}</ref>
*{{cite journal  | author=Kuriyama R, Gustus C, Terada Y, ''et al.'' |title=CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. |journal=J. Cell Biol. |volume=156 |issue= 5 |pages= 783-90 |year= 2002 |pmid= 11877456 |doi= 10.1083/jcb.200109090 }}
* [[Aurora B kinase|AURKB]],<ref name="pmid20451386" /><ref name="pmid15854913">{{cite journal |vauthors=Guse A, Mishima M, Glotzer M | title = Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis | journal = Curr. Biol. | volume = 15 | issue = 8 | pages = 778–86 |date=April 2005 | pmid = 15854913 | doi = 10.1016/j.cub.2005.03.041 }}</ref><ref name="pmid20347825">{{cite journal |vauthors=Li J, Wang J, Jiao H, Liao J, Xu X | title = Cytokinesis and cancer: Polo loves ROCK'n' Rho(A) | journal = J Genet Genomics | volume = 37 | issue = 3 | pages = 159–72 |date=March 2010 | pmid = 20347825 | doi = 10.1016/S1673-8527(09)60034-5 }}</ref>
*{{cite journal | author=Kitamura T, Kawashima T, Minoshima Y, ''et al.'' |title=Role of MgcRacGAP/Cyk4 as a regulator of the small GTPase Rho family in cytokinesis and cell differentiation. |journal=Cell Struct. Funct. |volume=26 |issue= 6 |pages= 645-51 |year= 2002 |pmid= 11942621 |doi= }}
* [[BIRC6]],<ref name="pmid18329369">{{cite journal |vauthors=Pohl C, Jentsch S | title = Final stages of cytokinesis and midbody ring formation are controlled by BRUCE | journal = Cell | volume = 132 | issue = 5 | pages = 832–45 |date=March 2008 | pmid = 18329369 | doi = 10.1016/j.cell.2008.01.012 }}</ref> and
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* [[PRC1]].<ref name="pmid15297875">{{cite journal |vauthors=Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K | title = Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation | journal = EMBO J. | volume = 23 | issue = 16 | pages = 3237–48 |date=August 2004 | pmid = 15297875 | pmc = 514520 | doi = 10.1038/sj.emboj.7600347 }}</ref>
*{{cite journal | author=Obuse C, Yang H, Nozaki N, ''et al.'' |title=Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. |journal=Genes Cells |volume=9 |issue= 2 |pages= 105-20 |year= 2004 |pmid= 15009096 |doi= }}
 
*{{cite journal | author=Matuliene J, Kuriyama R |title=Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1. |journal=Mol. Biol. Cell |volume=15 |issue= 7 |pages= 3083-94 |year= 2005 |pmid= 15075367 |doi= 10.1091/mbc.E03-12-0888 }}
== Mutation and diseases ==
*{{cite journal | author=Liu X, Zhou T, Kuriyama R, Erikson RL |title=Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. |journal=J. Cell. Sci. |volume=117 |issue= Pt 15 |pages= 3233-46 |year= 2005 |pmid= 15199097 |doi= 10.1242/jcs.01173 }}
 
*{{cite journal | author=Kurasawa Y, Earnshaw WC, Mochizuki Y, ''et al.'' |title=Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. |journal=EMBO J. |volume=23 |issue= 16 |pages= 3237-48 |year= 2005 |pmid= 15297875 |doi= 10.1038/sj.emboj.7600347 }}
KIF23 has been implicated in the formation and proliferation of [[Glioma 261|GL261]] [[glioma]]s in mouse.<ref name="pmid21904957">{{cite journal |vauthors=Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M | title = Downregulation of KIF23 suppresses glioma proliferation | journal = J. Neurooncol. | volume = 106 | issue = 3 | pages = 519–29 |date=February 2012 | pmid = 21904957 | doi = 10.1007/s11060-011-0706-2 }}</ref>
*{{cite journal  | author=Beausoleil SA, Jedrychowski M, Schwartz D, ''et al.'' |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130-5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 }}
 
*{{cite journal  | author=Jin J, Smith FD, Stark C, ''et al.'' |title=Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. |journal=Curr. Biol. |volume=14 |issue= 16 |pages= 1436-50 |year= 2004 |pmid= 15324660 |doi= 10.1016/j.cub.2004.07.051 }}
== References ==
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
{{reflist|35em}}
*{{cite journal | author=Rush J, Moritz A, Lee KA, ''et al.'' |title=Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. |journal=Nat. Biotechnol. |volume=23 |issue= 1 |pages= 94-101 |year= 2005 |pmid= 15592455 |doi= 10.1038/nbt1046 }}
 
*{{cite journal | author=Benzinger A, Muster N, Koch HB, ''et al.'' |title=Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. |journal=Mol. Cell Proteomics |volume=4 |issue= 6 |pages= 785-95 |year= 2005 |pmid= 15778465 |doi= 10.1074/mcp.M500021-MCP200 }}
== Further reading ==
*{{cite journal  | author=Zhu C, Bossy-Wetzel E, Jiang W |title=Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. |journal=Biochem. J. |volume=389 |issue= Pt 2 |pages= 373-81 |year= 2005 |pmid= 15796717 |doi= 10.1042/BJ20050097 }}
{{refbegin|35em}}
}}
* {{cite journal |vauthors=Miki H, Setou M, Kaneshiro K, Hirokawa N | title = All kinesin superfamily protein, KIF, genes in mouse and human | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 13 | pages = 7004–11 |date=June 2001 | pmid = 11416179 | pmc = 34614 | doi = 10.1073/pnas.111145398 }}
* {{cite journal |vauthors=Lee KS, Yuan YL, Kuriyama R, Erikson RL | title = Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1 | journal = Mol. Cell. Biol. | volume = 15 | issue = 12 | pages = 7143–51 |date=December 1995 | pmid = 8524282 | pmc = 230970 | doi =  }}
* {{cite journal |vauthors=Deavours BE, Walker RA | title = Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1 | journal = Biochem. Biophys. Res. Commun. | volume = 260 | issue = 3 | pages = 605–8 |date=July 1999 | pmid = 10403813 | doi = 10.1006/bbrc.1999.0952 }}
* {{cite journal |vauthors=Mishima M, Kaitna S, Glotzer M | title = Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity | journal = Dev. Cell | volume = 2 | issue = 1 | pages = 41–54 |date=January 2002 | pmid = 11782313 | doi =10.1016/S1534-5807(01)00110-1 }}
* {{cite journal |vauthors=Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J | title = CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis | journal = J. Cell Biol. | volume = 156 | issue = 5 | pages = 783–90 |date=March 2002 | pmid = 11877456 | pmc = 2173305 | doi = 10.1083/jcb.200109090 }}
* {{cite journal |vauthors=Kitamura T, Kawashima T, Minoshima Y, Tonozuka Y, Hirose K, Nosaka T | title = Role of MgcRacGAP/Cyk4 as a regulator of the small GTPase Rho family in cytokinesis and cell differentiation | journal = Cell Struct. Funct. | volume = 26 | issue = 6 | pages = 645–51 |date=December 2001 | pmid = 11942621 | doi = 10.1247/csf.26.645 }}
* {{cite journal |vauthors=Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K | title = Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase | journal = Genes Cells | volume = 9 | issue = 2 | pages = 105–20 |date=February 2004 | pmid = 15009096 | doi = 10.1111/j.1365-2443.2004.00705.x }}
* {{cite journal |vauthors=Matuliene J, Kuriyama R | title = Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1 | journal = Mol. Biol. Cell | volume = 15 | issue = 7 | pages = 3083–94 |date=July 2004 | pmid = 15075367 | pmc = 452566 | doi = 10.1091/mbc.E03-12-0888 }}
* {{cite journal |vauthors=Liu X, Zhou T, Kuriyama R, Erikson RL | title = Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1 | journal = J. Cell Sci. | volume = 117 | issue = Pt 15 | pages = 3233–46 |date=July 2004 | pmid = 15199097 | doi = 10.1242/jcs.01173 }}
* {{cite journal |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP | title = Large-scale characterization of HeLa cell nuclear phosphoproteins | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 101 | issue = 33 | pages = 12130–5 |date=August 2004 | pmid = 15302935 | pmc = 514446 | doi = 10.1073/pnas.0404720101 }}
* {{cite journal |vauthors=Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T | title = Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization | journal = Curr. Biol. | volume = 14 | issue = 16 | pages = 1436–50 |date=August 2004 | pmid = 15324660 | doi = 10.1016/j.cub.2004.07.051}}
* {{cite journal |vauthors=Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ | title = Immunoaffinity profiling of tyrosine phosphorylation in cancer cells | journal = Nat. Biotechnol. | volume = 23 | issue = 1 | pages = 94–101 |date=January 2005 | pmid = 15592455 | doi = 10.1038/nbt1046 }}
* {{cite journal |vauthors=Benzinger A, Muster N, Koch HB, Yates JR, Hermeking H | title = Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer | journal = Mol. Cell. Proteomics | volume = 4 | issue = 6 | pages = 785–95 |date=June 2005 | pmid = 15778465 | doi = 10.1074/mcp.M500021-MCP200 }}
* {{cite journal |vauthors=Zhu C, Bossy-Wetzel E, Jiang W | title = Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells | journal = Biochem. J. | volume = 389 | issue = Pt 2 | pages = 373–81 |date=July 2005 | pmid = 15796717 | pmc = 1175114 | doi = 10.1042/BJ20050097 }}
{{refend}}
{{refend}}


{{protein-stub}}
== External links ==
{{WikiDoc Sources}}
* {{cite web|last=Baas|first=Peter|title=Peter Baas Lab|url=http://neurobio.mcphu.edu/BaasWeb/|work=Research Lab}}
* {{cite web|last=Kuriyama|first=Ryoko|title=Ryoko Kuriyama Lab|url=http://www.cbs.umn.edu/gcd/faculty/ryokokuriyama|work=Research Lab}}
* {{cite web|last=Glotzer|first=Michael|title=Michael Glotzer Lab|url=http://mgcb.uchicago.edu/faculty/glotzer/|work=Research Lab}}
* {{cite web|last=Mishima|first=Masanori|title=Masanori Mishima|url=http://mechanochemistry.org/mishima/index.php|work=Research Lab}}
* {{cite web|last=Barr|first=Francis|title=Francis Barr Lab|url=http://www.bioch.ox.ac.uk/aspsite/index.asp?pageid=824&site=mitosis|work=Research Lab}}

Latest revision as of 12:42, 9 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Kinesin-like protein KIF23 is a protein that in humans is encoded by the KIF23 gene.[1][2]

Function

In cell division

KIF23 (also known as Kinesin-6, CHO1/MKLP1, C. elegans ZEN-4 and Drosophila Pavarotti) is a member of kinesin-like protein family. This family includes microtubule-dependent molecular motors that transport organelles within cells and move chromosomes during cell division. This protein has been shown to cross-bridge antiparallel microtubules and drive microtubule movement in vitro. Alternate splicing of this gene results in two transcript variants encoding two different isoforms, better known as CHO1, the larger isoform and MKLP1, the smaller isoform.[2] KIF23 is a plus-end directed motor protein expressed in mitosis, involved in the formation of the cleavage furrow in late anaphase and in cytokinesis.[1][3][4] KIF23 is part of the centralspindlin complex that includes PRC1, Aurora B and 14-3-3 which cluster together at the spindle midzone to enable anaphase in dividing cells.[5][6][7]

In neurons

In neuronal development KIF23 is involved in the transport of minus-end distal microtubules into dendrites and is expressed exclusively in cell bodies and dendrites.[8][9][10][11][12] Knockdown of KIF23 by antisense oligonucleotides and by siRNA both cause a significant increase in axon length and a decrease in dendritic phenotype in neuroblastoma cells and in rat neurons.[10][11][13] In differentiating neurons, KIF23 restricts the movement of short microtubules into axons by acting as a "brake" against the driving forces of cytoplasmic dynein. As neurons mature, KIF23 drives minus-end distal microtubules into nascent dendrites contributing to the multi-polar orientation of dendritic microtubules and the formation of their short, fat, tapering morphology.[13]

File:Kinesin-6 and Kinesin-12.jpg
Model for co-regulation of microtubule polarity in axons and dendrites by different mitotic kinesins. During axonal differentiation, forces generated by cytoplasmic dynein drive plus-end-distal microtubules into the axon and nascent dendrites (not shown). (A) Forces generated by kinesin-6 at the cell body oppose the forces generated by cytoplasmic dynein, restricting the transport of plus-end-distal microtubules into the axon. As the neuron matures, kinesin-6 fuels the transport of short microtubules with their minus-end distal into all of the processes except the one designated to remain the axon, thus causing the other processes to differentiate into dendrites. (B) Forces generated by kinesin-12 behave similarly to kinesin-6 with regard to introducing minus-end-distal microtubules into the dendrite, but kinesin-12 is also present in the axon and growth cone, pushing plus-end-distal microtubules back toward the cell body. As a result, kinesin-12 behaves like kinesin-6 with regard to dendrites but produces effects more like kinesin-5 with regard to the axon.

Interactions

KIF23 has been shown to interact with:

Mutation and diseases

KIF23 has been implicated in the formation and proliferation of GL261 gliomas in mouse.[19]

References

  1. 1.0 1.1 Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (Nov 1992). "A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles". Nature. 359 (6395): 543–7. doi:10.1038/359543a0. PMID 1406973.
  2. 2.0 2.1 "Entrez Gene: KIF23 kinesin family member 23".
  3. Hutterer A, Glotzer M, Mishima M (December 2009). "Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody". Curr. Biol. 19 (23): 2043–9. doi:10.1016/j.cub.2009.10.050. PMC 3349232. PMID 19962307.
  4. Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH (May 2010). "Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone". Semin. Cell Dev. Biol. 21 (3): 290–9. doi:10.1016/j.semcdb.2010.01.017. PMC 3951275. PMID 20109573.
  5. Neef R, Klein UR, Kopajtich R, Barr FA (February 2006). "Cooperation between mitotic kinesins controls the late stages of cytokinesis". Curr. Biol. 16 (3): 301–7. doi:10.1016/j.cub.2005.12.030. PMID 16461284.
  6. 6.0 6.1 Douglas ME, Davies T, Joseph N, Mishima M (May 2010). "Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis". Curr. Biol. 20 (10): 927–33. doi:10.1016/j.cub.2010.03.055. PMC 3348768. PMID 20451386.
  7. Glotzer M (January 2009). "The 3Ms of central spindle assembly: microtubules, motors and MAPs". Nat. Rev. Mol. Cell Biol. 10 (1): 9–20. doi:10.1038/nrm2609. PMC 2789570. PMID 19197328.
  8. Sharp DJ, Kuriyama R, Essner R, Baas PW (October 1997). "Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation". J. Cell Sci. 110 (19): 2373–80. PMID 9410876.
  9. Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW (August 1997). "Identification of a microtubule-associated motor protein essential for dendritic differentiation". J. Cell Biol. 138 (4): 833–43. doi:10.1083/jcb.138.4.833. PMC 2138050. PMID 9265650.
  10. 10.0 10.1 Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW (February 1997). "Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells". J. Cell Biol. 136 (3): 659–68. doi:10.1083/jcb.136.3.659. PMC 2134303. PMID 9024695.
  11. 11.0 11.1 Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (August 2000). "Depletion of a microtubule-associated motor protein induces the loss of dendritic identity". J. Neurosci. 20 (15): 5782–91. PMID 10908619.
  12. Xu X, He C, Zhang Z, Chen Y (February 2006). "MKLP1 requires specific domains for its dendritic targeting". J. Cell Sci. 119 (Pt 3): 452–8. doi:10.1242/jcs.02750. PMID 16418225.
  13. 13.0 13.1 Lin S, Liu M, Mozgova OI, Yu W, Baas PW (October 2012). "Mitotic motors coregulate microtubule patterns in axons and dendrites". J. Neurosci. 32 (40): 14033–49. doi:10.1523/JNEUROSCI.3070-12.2012. PMC 3482493. PMID 23035110.
  14. Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (October 1999). "Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion". Cell Motil. Cytoskeleton. 44 (2): 119–32. doi:10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C. PMID 10506747.
  15. Guse A, Mishima M, Glotzer M (April 2005). "Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis". Curr. Biol. 15 (8): 778–86. doi:10.1016/j.cub.2005.03.041. PMID 15854913.
  16. Li J, Wang J, Jiao H, Liao J, Xu X (March 2010). "Cytokinesis and cancer: Polo loves ROCK'n' Rho(A)". J Genet Genomics. 37 (3): 159–72. doi:10.1016/S1673-8527(09)60034-5. PMID 20347825.
  17. Pohl C, Jentsch S (March 2008). "Final stages of cytokinesis and midbody ring formation are controlled by BRUCE". Cell. 132 (5): 832–45. doi:10.1016/j.cell.2008.01.012. PMID 18329369.
  18. Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (August 2004). "Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation". EMBO J. 23 (16): 3237–48. doi:10.1038/sj.emboj.7600347. PMC 514520. PMID 15297875.
  19. Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M (February 2012). "Downregulation of KIF23 suppresses glioma proliferation". J. Neurooncol. 106 (3): 519–29. doi:10.1007/s11060-011-0706-2. PMID 21904957.

Further reading

External links