Pulseless electrical activity epidemiology and demographics: Difference between revisions

Jump to navigation Jump to search
Karol Gema Hernandez (talk | contribs)
No edit summary
 
(8 intermediate revisions by 2 users not shown)
Line 6: Line 6:
|}
|}
{{Pulseless electrical activity}}
{{Pulseless electrical activity}}
{{CMG}}; {{AE}} {{Karol Hernández, MD}}
{{CMG}}; {{AE}} {{KGH}}
==Overview==
Over the last three decades, the incidence of PEA has increased in parallel to a decrease in the incidence of [[VF]] and [[VT]].<ref name="pmid24297818">{{cite journal| author=Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM et al.| title=Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. | journal=Circulation | year= 2013 | volume= 128 | issue= 23 | pages= 2532-41 | pmid=24297818 | doi=10.1161/CIRCULATIONAHA.113.004490 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24297818  }} </ref>  There is a slight female preponderance of PEA.  In addition, PEA is associated with increased age and black race.<ref name="pmid8341333">{{cite journal| author=Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW et al.| title=Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project. | journal=N Engl J Med | year= 1993 | volume= 329 | issue= 9 | pages= 600-6 | pmid=8341333 | doi=10.1056/NEJM199308263290902 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8341333  }} </ref><ref name="pmid9546017">{{cite journal| author=Chu K, Swor R, Jackson R, Domeier R, Sadler E, Basse E et al.| title=Race and survival after out-of-hospital cardiac arrest in a suburban community. | journal=Ann Emerg Med | year= 1998 | volume= 31 | issue= 4 | pages= 478-82 | pmid=9546017 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9546017  }} </ref>
 
==Epidemiology and Demographics==
==Epidemiology and Demographics==
PEA accounts for approximately 20% of out of hospital cardiac arrests, and accounts for about a third of inhospital cardiac arrests. <ref name="pmid16391216">{{cite journal | author = Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA | title = First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults | journal = JAMA : the Journal of the American Medical Association | volume = 295 | issue = 1 | pages = 50–7 | year = 2006 | month = January | pmid = 16391216 | doi = 10.1001/jama.295.1.50 | url = http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.295.1.50 | issn = | accessdate = 2012-09-16}}</ref> PEA is responsible for 10% of in-hospital deaths.<ref name="pmid831417">{{cite journal | author = Raizes G, Wagner GS, Hackel DB | title = Instantaneous nonarrhythmic cardiac death in acute myocardial infarction | journal = The American Journal of Cardiology | volume = 39 | issue = 1 | pages = 1–6 | year = 1977 | month = January | pmid = 831417 | doi = | url = http://linkinghub.elsevier.com/retrieve/pii/S0002-9149(77)80002-7 | issn = | accessdate = 2012-09-16}}</ref>
* The incidence of [[SCA]] ranges between 300,000 to 370,000 cases per year, 50% of which are due to PEA.<ref name="pmid24297818">{{cite journal| author=Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM et al.| title=Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. | journal=Circulation | year= 2013 | volume= 128 | issue= 23 | pages= 2532-41 | pmid=24297818 | doi=10.1161/CIRCULATIONAHA.113.004490 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24297818  }} </ref><ref name="pmid22406930">{{cite journal |vauthors=Teodorescu C, Reinier K, Uy-Evanado A, Ayala J, Mariani R, Wittwer L, Gunson K, Jui J, Chugh SS |title=Survival advantage from ventricular fibrillation and pulseless electrical activity in women compared to men: the Oregon Sudden Unexpected Death Study |journal=J Interv Card Electrophysiol |volume=34 |issue=3 |pages=219–25 |date=September 2012 |pmid=22406930 |pmc=3627722 |doi=10.1007/s10840-012-9669-2 |url=}}</ref>
According to Myerburg et al <ref name="pmid24297818">{{cite journal| author=Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM et al.| title=Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. | journal=Circulation | year= 2013 | volume= 128 | issue= 23 | pages= 2532-41 | pmid=24297818 | doi=10.1161/CIRCULATIONAHA.113.004490 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24297818  }} </ref> SCA incidence is approximately of 300,000 to 370,000 cases per year, and represents 50% of the causes of cardiovascular mortality. Half of the cases of SCA are the first clinical manifestation of an undiagnosed cardiac disease. Also, half of the cases of SCA are due to PEA.
 
===Age===
* PEA accounts for approximately 20% of out-hospital cardiac arrests and for a third of the in-hospital cardiac arrests.<ref name="pmid16391216">{{cite journal | author = Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA | title = First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults | journal = JAMA : the Journal of the American Medical Association | volume = 295 | issue = 1 | pages = 50–7 | year = 2006 | month = January | pmid = 16391216 | doi = 10.1001/jama.295.1.50 | url = http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.295.1.50 | issn = | accessdate = 2012-09-16}}</ref> PEA is responsible for 10% of in-hospital deaths.<ref name="pmid831417">{{cite journal | author = Raizes G, Wagner GS, Hackel DB | title = Instantaneous nonarrhythmic cardiac death in acute myocardial infarction | journal = The American Journal of Cardiology | volume = 39 | issue = 1 | pages = 1–6 | year = 1977 | month = January | pmid = 831417 | doi = | url = http://linkinghub.elsevier.com/retrieve/pii/S0002-9149(77)80002-7 | issn = | accessdate = 2012-09-16}}</ref>
Patients with PEA tend to be older.
 
===Gender===
* The decrease in the prevalence of [[VF]] and [[VT]] has been accompanied by a parallel relative increase in the incidence of PEA among patients with SCA.<ref name="pmid24297818">{{cite journal| author=Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM et al.| title=Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. | journal=Circulation | year= 2013 | volume= 128 | issue= 23 | pages= 2532-41 | pmid=24297818 | doi=10.1161/CIRCULATIONAHA.113.004490 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24297818  }} </ref> In fact, following adequate management of [[VF]] and [[VT]], the prevalence of VT/VF has dropped by 20% while the prevalence of PEA increased by 11% between 1979 and 2000.<ref name="pmid21060069">{{cite journal| author=Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al.| title=Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. | journal=Circulation | year= 2010 | volume= 122 | issue= 21 | pages= 2116-22 | pmid=21060069 | doi=10.1161/CIRCULATIONAHA.110.966333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21060069 }} </ref>
There is a slight female preponderance of PEA. It is unclear if this is mediated by a direct influence of gender on the pathophysiology, or if female gender is a confounder.
===Race===
Teodorescu et al suggest that black race is strongly correlated with the presentation of PEA. There were also other authors suggesting racial differences between survival. <ref name="pmid8341333">{{cite journal| author=Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW et al.| title=Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project. | journal=N Engl J Med | year= 1993 | volume= 329 | issue= 9 | pages= 600-6 | pmid=8341333 | doi=10.1056/NEJM199308263290902 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8341333  }} </ref> <ref name="pmid9546017">{{cite journal| author=Chu K, Swor R, Jackson R, Domeier R, Sadler E, Basse E et al.| title=Race and survival after out-of-hospital cardiac arrest in a suburban community. | journal=Ann Emerg Med | year= 1998 | volume= 31 | issue= 4 | pages= 478-82 | pmid=9546017 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9546017 }} </ref>.


===Epidemiological Patterns===
* There is a slight female preponderance of PEA.  In addition, PEA is associated with increased age and black race.<ref name="pmid8341333">{{cite journal| author=Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW et al.| title=Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project. | journal=N Engl J Med | year= 1993 | volume= 329 | issue= 9 | pages= 600-6 | pmid=8341333 | doi=10.1056/NEJM199308263290902 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8341333 }} </ref><ref name="pmid9546017">{{cite journal| author=Chu K, Swor R, Jackson R, Domeier R, Sadler E, Basse E et al.| title=Race and survival after out-of-hospital cardiac arrest in a suburban community. | journal=Ann Emerg Med | year= 1998 | volume= 31 | issue= 4 | pages= 478-82 | pmid=9546017 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9546017 }} </ref>
As demonstrated by the workshop made by Myerburg et al <ref name="pmid24297818">{{cite journal| author=Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM et al.| title=Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. | journal=Circulation | year= 2013 | volume= 128 | issue= 23 | pages= 2532-41 | pmid=24297818 | doi=10.1161/CIRCULATIONAHA.113.004490 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24297818 }} </ref>, there has been a decrease of VT/VF as the cause of sudden cardiac arrest, from 70% to 20%- 25%. There was a decrease of 20% of the incidence of VT/VF from 1979-1980 to 1999-2000, supported by observations made by he Seattle study in 2002. In this same study, PEA incidence showed an increase in prevalence of 11%.  Teodorescu et all suggest that one of the causes for the decrease in VF/VT prevalence are due to the strategies against CAD and hyperlipidemia that were taken <ref name="pmid21060069">{{cite journal| author=Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al.| title=Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. | journal=Circulation | year= 2010 | volume= 122 | issue= 21 | pages= 2116-22 | pmid=21060069 | doi=10.1161/CIRCULATIONAHA.110.966333 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21060069 }} </ref>. Therefore, they hypothesize that the increased incidence of PEA can be explained by a high prevalence of comorbidities or extra cardiac conditions in these patients.


==References==
==References==

Latest revision as of 19:42, 14 April 2020



Resident
Survival
Guide

Pulseless electrical activity Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulseless Electrical Activity from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pulseless electrical activity epidemiology and demographics On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pulseless electrical activity epidemiology and demographics

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulseless electrical activity epidemiology and demographics

CDC on Pulseless electrical activity epidemiology and demographics

Pulseless electrical activity epidemiology and demographics in the news

Blogs on Pulseless electrical activity epidemiology and demographics

Directions to Hospitals Treating Pulseless electrical activity

Risk calculators and risk factors for Pulseless electrical activity epidemiology and demographics

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Karol Gema Hernandez, M.D. [2]

Overview

Over the last three decades, the incidence of PEA has increased in parallel to a decrease in the incidence of VF and VT.[1] There is a slight female preponderance of PEA. In addition, PEA is associated with increased age and black race.[2][3]

Epidemiology and Demographics

  • The incidence of SCA ranges between 300,000 to 370,000 cases per year, 50% of which are due to PEA.[1][4]
  • PEA accounts for approximately 20% of out-hospital cardiac arrests and for a third of the in-hospital cardiac arrests.[5] PEA is responsible for 10% of in-hospital deaths.[6]
  • The decrease in the prevalence of VF and VT has been accompanied by a parallel relative increase in the incidence of PEA among patients with SCA.[1] In fact, following adequate management of VF and VT, the prevalence of VT/VF has dropped by 20% while the prevalence of PEA increased by 11% between 1979 and 2000.[7]
  • There is a slight female preponderance of PEA. In addition, PEA is associated with increased age and black race.[2][3]

References

  1. 1.0 1.1 1.2 Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM; et al. (2013). "Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop". Circulation. 128 (23): 2532–41. doi:10.1161/CIRCULATIONAHA.113.004490. PMID 24297818.
  2. 2.0 2.1 Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW; et al. (1993). "Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project". N Engl J Med. 329 (9): 600–6. doi:10.1056/NEJM199308263290902. PMID 8341333.
  3. 3.0 3.1 Chu K, Swor R, Jackson R, Domeier R, Sadler E, Basse E; et al. (1998). "Race and survival after out-of-hospital cardiac arrest in a suburban community". Ann Emerg Med. 31 (4): 478–82. PMID 9546017.
  4. Teodorescu C, Reinier K, Uy-Evanado A, Ayala J, Mariani R, Wittwer L, Gunson K, Jui J, Chugh SS (September 2012). "Survival advantage from ventricular fibrillation and pulseless electrical activity in women compared to men: the Oregon Sudden Unexpected Death Study". J Interv Card Electrophysiol. 34 (3): 219–25. doi:10.1007/s10840-012-9669-2. PMC 3627722. PMID 22406930.
  5. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA (2006). "First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults". JAMA : the Journal of the American Medical Association. 295 (1): 50–7. doi:10.1001/jama.295.1.50. PMID 16391216. Retrieved 2012-09-16. Unknown parameter |month= ignored (help)
  6. Raizes G, Wagner GS, Hackel DB (1977). "Instantaneous nonarrhythmic cardiac death in acute myocardial infarction". The American Journal of Cardiology. 39 (1): 1–6. PMID 831417. Retrieved 2012-09-16. Unknown parameter |month= ignored (help)
  7. Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R; et al. (2010). "Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study". Circulation. 122 (21): 2116–22. doi:10.1161/CIRCULATIONAHA.110.966333. PMID 21060069.

Template:WH Template:WS