Hypoaldosteronism pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 38: Line 38:
* Renal disorders: Chronic renal failure and diabetic nephropathy
* Renal disorders: Chronic renal failure and diabetic nephropathy
* Drugs inhibiting aldosterone effect: NSAID, spironolactone, and triamterene
* Drugs inhibiting aldosterone effect: NSAID, spironolactone, and triamterene
===Adrenal insufficiency===
Primary adrenal insufficiency or Addison's disease occurs when the adrenal glands do not produce sufficient cortisol and aldosterone. The cause of adrenal insufficiency
can be:
* Adrenal dysgenesis: In adrenal dysgenesis the adrenal gland is not formed adequately during development. It can be due to
** [[genetic mutation|Mutations]] to the ''SF1'' [[transcription factor]], [[X-linked adrenal hypoplasia congenita|congenital adrenal hypoplasia]] (AHC) due to ''DAX-1'' gene mutations
**Mutations to the [[ACTH receptor]] gene (or related genes, such as in the [[Triple A syndrome|Triple A]] or Allgrove syndrome)
**''DAX-1'' mutations may cluster in a syndrome with [[glycerol kinase]] deficiency with a number of other symptoms when ''DAX-1'' is deleted together with a number of other genes.
* Impaired steroidogenesis: In impaired steroidogenesis the adrenal gland is present but is biochemically unable to produce mineralocorticoid and glucocorticoid. It can be due to
**Defect in cholesterol synthesis seen in conditions such as [[Smith-Lemli-Opitz syndrome]] and [[abetalipoproteinemia]]
**Enzyme deficiencies such as [[Congenital adrenal hyperplasia due to 21-hydroxylase deficiency|21-hydroxylase]], [[Congenital adrenal hyperplasia due to 17 alpha-hydroxylase deficiency|17α-hydroxylase]], [[Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency|11β-hydroxylase]], and [[Congenital adrenal hyperplasia due to 3 beta-hydroxysteroid dehydrogenase deficiency|3β-hydroxysteroid dehydrogenase]]
* Adrenal destruction (disease processes leading to the gland being damaged)


===Isolated Hypoaldosteronism===
===Isolated Hypoaldosteronism===

Revision as of 16:45, 15 August 2017

Hypoaldosteronism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypoaldosteronism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypoaldosteronism pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hypoaldosteronism pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypoaldosteronism pathophysiology

CDC on Hypoaldosteronism pathophysiology

Hypoaldosteronism pathophysiology in the news

Blogs on Hypoaldosteronism pathophysiology

Directions to Hospitals Treating Hypoaldosteronism

Risk calculators and risk factors for Hypoaldosteronism pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR


[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Pathophysiology

Hypoaldosteronism is defined as decreased levels of the hormone aldosterone (Normal range: 1-21 ng/dL). Hypoaldosteronism from decreased aldosterone synthesis can be due to :

  • Adrenal Insufficiency: Primary or secondary
  • Enzyme deficiency: Aldosterone synthase, 21 hydroxylase, and 11B hydroxylase
  • Renal disorders: Chronic renal failure and diabetic nephropathy
  • Drugs inhibiting aldosterone effect: NSAID, spironolactone, and triamterene

Adrenal insufficiency

Primary adrenal insufficiency or Addison's disease occurs when the adrenal glands do not produce sufficient cortisol and aldosterone. The cause of adrenal insufficiency can be:

  • Adrenal dysgenesis: In adrenal dysgenesis the adrenal gland is not formed adequately during development. It can be due to

Isolated Hypoaldosteronism

In isolated hypoaldosteronism, there is selective deficiency of aldosterone with normal cortisol production. Isolated hypoaldosteronism may result from dysfunction of zona glomerulosa or enzyme deficiencies. Enzyme deficiency such as aldosterone synthase results from mutation in genes encoding for aldosterone synthase.

Secondary Isolated Hypoaldosteronism

Hyperreninemic hypoaldosteronism is seen in patients with severe illness such as sepsis, malignancy, heart failure, and liver cirrhosis. During these stress inducing conditions, there occurs increased level of ACTH and cortisol. Under normal conditions, continuous ACTH secretion for > 96 hours leads to suppression of aldosterone synthase activity. Thus, chronically ill patients with prolonged ACTH secretion (>96 hours) have impaired aldosterone synthase activity and decreased levels of aldosterone. In response, the kidneys via its neurohormonal regulation leads to increased levels of renin and hence the term hyperreninemic hypoaldosteronism. In addition, cytokine release from chronic illness and increased levels of atrial natriuretic peptide (in patients with heart failure) also have an inhibitory effect on zona glomerulosa. [1][2][3]

Pathophysiology

Pathogenesis

  • The exact pathogenesis of [disease name] is not fully understood.

OR

  • It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
  • [Pathogen name] is usually transmitted via the [transmission route] route to the human host.
  • Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
  • [Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
  • The progression to [disease name] usually involves the [molecular pathway].
  • The pathophysiology of [disease/malignancy] depends on the histological subtype.

Genetics

  • Gene involved in the pathogenesis of hypoaldosteronism include mutation in CYP11B2 gene, which is located on chromosome 8q24.
  • Mutation in CYP11B2 gene is transmitted in autosomal recessive pattern.
  • The CYP11B2 gene encodes for the enzyme aldosterone synthase (previously known as corticosterone methyloxidase).
  • Aldosterone synthase catalyses the conversion of 11 Deoxycorticosterone to aldosterone
 
 
 
11 Deoxycorticosterone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corticosterone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18 Hydroxycorticosterone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aldosterone
 
 
 
  • Mutations in CYP11B2 can lead to:
    • Type 1 aldosterone synthase deficiency: Patients have normal to decreased levels of 18-hydroxycorticosterone and undetectable levels of aldosterone.
    • Type 2 aldosterone synthase deficiency: Patients have increased levels of 18-hydroxycorticosterone and normal to decreased levels of aldosterone.
  • Aldosterone synthase is a member of the cytochrome P450 family of enzymes.

Associated Conditions

Gross Pathology

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

  1. Kater CE, Biglieri EG, Brust N, Chang B, Hirai J (1982). "Regulation of the mineralocorticoid hormones in adrenocortical disorders with adrenocorticotropin excess". Clin Exp Hypertens A. 4 (9–10): 1749–58. PMID 6291814.
  2. Aguilera G, Fujita K, Catt KJ (1981). "Mechanisms of inhibition of aldosterone secretion by adrenocorticotropin". Endocrinology. 108 (2): 522–8. doi:10.1210/endo-108-2-522. PMID 6256154.
  3. Singer DR, Shirley DG, Markandu ND, Miller MA, Buckley MG, Sugden AL, Sagnella GA, MacGregor GA (1991). "How important are suppression of aldosterone and stimulation of atrial natriuretic peptide secretion in the natriuretic response to an acute sodium load in man?". Clin. Sci. 80 (4): 293–9. PMID 1851063.

Template:WH Template:WS