Thyroid nodule pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 260: Line 260:
Diagnostic speciemen feature: the presence of at least six follicular cell groups, each containing 10–15 cells derived from at least two aspirates of a nodule<ref name="pmid4071393">{{cite journal |vauthors=Walfish PG, Strawbridge HT, Rosen IB |title=Management implications from routine needle biopsy of hyperfunctioning thyroid nodules |journal=Surgery |volume=98 |issue=6 |pages=1179–88 |year=1985 |pmid=4071393 |doi= |url=}}</ref><ref name="pmid19888858">{{cite journal |vauthors=Cibas ES, Ali SZ |title=The Bethesda System for Reporting Thyroid Cytopathology |journal=Thyroid |volume=19 |issue=11 |pages=1159–65 |year=2009 |pmid=19888858 |doi=10.1089/thy.2009.0274 |url=}}</ref><ref name="pmid27078145">{{cite journal |vauthors=Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan A, Kakudo K, Giordano TJ, Alves VA, Khanafshar E, Asa SL, El-Naggar AK, Gooding WE, Hodak SP, Lloyd RV, Maytal G, Mete O, Nikiforova MN, Nosé V, Papotti M, Poller DN, Sadow PM, Tischler AS, Tuttle RM, Wall KB, LiVolsi VA, Randolph GW, Ghossein RA |title=Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors |journal=JAMA Oncol |volume=2 |issue=8 |pages=1023–9 |year=2016 |pmid=27078145 |pmc=5539411 |doi=10.1001/jamaoncol.2016.0386 |url=}}</ref><ref name="pmid19888858">{{cite journal |vauthors=Cibas ES, Ali SZ |title=The Bethesda System for Reporting Thyroid Cytopathology |journal=Thyroid |volume=19 |issue=11 |pages=1159–65 |year=2009 |pmid=19888858 |doi=10.1089/thy.2009.0274 |url=}}</ref>
Diagnostic speciemen feature: the presence of at least six follicular cell groups, each containing 10–15 cells derived from at least two aspirates of a nodule<ref name="pmid4071393">{{cite journal |vauthors=Walfish PG, Strawbridge HT, Rosen IB |title=Management implications from routine needle biopsy of hyperfunctioning thyroid nodules |journal=Surgery |volume=98 |issue=6 |pages=1179–88 |year=1985 |pmid=4071393 |doi= |url=}}</ref><ref name="pmid19888858">{{cite journal |vauthors=Cibas ES, Ali SZ |title=The Bethesda System for Reporting Thyroid Cytopathology |journal=Thyroid |volume=19 |issue=11 |pages=1159–65 |year=2009 |pmid=19888858 |doi=10.1089/thy.2009.0274 |url=}}</ref><ref name="pmid27078145">{{cite journal |vauthors=Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan A, Kakudo K, Giordano TJ, Alves VA, Khanafshar E, Asa SL, El-Naggar AK, Gooding WE, Hodak SP, Lloyd RV, Maytal G, Mete O, Nikiforova MN, Nosé V, Papotti M, Poller DN, Sadow PM, Tischler AS, Tuttle RM, Wall KB, LiVolsi VA, Randolph GW, Ghossein RA |title=Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors |journal=JAMA Oncol |volume=2 |issue=8 |pages=1023–9 |year=2016 |pmid=27078145 |pmc=5539411 |doi=10.1001/jamaoncol.2016.0386 |url=}}</ref><ref name="pmid19888858">{{cite journal |vauthors=Cibas ES, Ali SZ |title=The Bethesda System for Reporting Thyroid Cytopathology |journal=Thyroid |volume=19 |issue=11 |pages=1159–65 |year=2009 |pmid=19888858 |doi=10.1089/thy.2009.0274 |url=}}</ref>
{| class="wikitable"
{| class="wikitable"
! colspan="2" rowspan="2" |[[Cytology]] classification
! colspan="2" rowspan="2" align="center" style="background:#4479BA; color: #FFFFFF;" + |[[Cytology]] classification
! rowspan="2" |Also referred to as:
! rowspan="2" align="center" style="background:#4479BA; color: #FFFFFF;" + |Also referred to as:
! colspan="2" |Efficient diagnosis
! colspan="2" align="center" style="background:#4479BA; color: #FFFFFF;" + |Efficient diagnosis
! rowspan="2" |May be seen in:
! rowspan="2" align="center" style="background:#4479BA; color: #FFFFFF;" + |May be seen in:
! rowspan="2" |FNA cytology
! rowspan="2" align="center" style="background:#4479BA; color: #FFFFFF;" + |FNA cytology
|-
|-
!<small>FNA</small>
! align="center" style="background:#4479BA; color: #FFFFFF;" + |<small>FNA</small>
!<small><small><small>Surgical biopsy</small></small></small>
! align="center" style="background:#4479BA; color: #FFFFFF;" + |<small><small><small>Surgical biopsy</small></small></small>
|-
|-
! rowspan="5" |Follicular lesions 
! rowspan="5" |Follicular lesions 

Revision as of 16:43, 25 October 2017


Thyroid nodule Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thyroid nodule from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thyroid nodule pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thyroid nodule pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thyroid nodule pathophysiology

CDC on Thyroid nodule pathophysiology

Thyroid nodule pathophysiology in the news

Blogs on Thyroid nodule pathophysiology

Directions to Hospitals Treating Thyroid nodule

Risk calculators and risk factors for Thyroid nodule pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Thyroid nodules may arise from different cells in the thyroid parenchyma. The pathogenesis of developing a thyroid nodule may differ based on the type of the nodule, and whether it is malignant or benign. Basically thyroid nodules may develop secondary to hyperplasia, mutations and resultant carcinoma, excess colloid accumulation, or frominflammation of thyroid tissue. Genetic mutation is considered as one of the most important mechanisms of developing thyroid nodules, especially neoplastic thyroid nodules. Most of these mutations occur as somatic mutations, while some may exhibit familial inheritance. The most important variety of familial thyroid cancers are caused by genetic mutations, and are called familial non-medullary thyroid cancer (FNMTC). Other important genes related to thyroid nodule formation include, N&H ras, RET, Gsp, C-MET, TRK, EGF / EGF-R, and P53.

Pathogenesis

A summary of thyroid nodule pathophysiology is presented in the slides below: [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][6][19][20][21][22][23][24][25][26][27][28][29][30][31]

(a) Hyperplastic nodules

1. TSH role in thyroid nodule formation

2. Thyroid overgrowth stimulants:

Thyroid normally has a low proliferative activity, although it can start proliferation rapidly in response to certain stimulants. Stimulants mainly act through TSH mediated activity and production. The following stimulants appear to have the most important role in pathogenesis of hyperplastic nodules:[32][33]

3. Hyperplasia development phase:
4. Neoplasia development phase:
  • Each follicle is composed of different clones of cells (polyclonal), but during nodule formation they replicate in a simultaneous and coordinated manner, so each follicle of the nodule reproduces the same heterogeneity of the mother follicle.
  • When a neoplasm arises in the nodule, then the neoplastic follicle shows a monoclonal pattern, suggesting that cancer arises from a single cell
  • Activation of oncogenes is considered the underlying event leading to uncontrolled cell growth.

(b) Neoplastic nodules

Papillary thyroid carcinoma

Abbrevaitions:

ERK: extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinase

(c) Colloid and cystic nodules

1. Colloid nodules

  • The colloid nodules consist of colloid droplets and thyroglobulin vesicles.
  • Thyroid gland keeps a balance between colloid and thyroglobulin production by regulating the secretion of thyroglobulin into colloid and reabsorption of colloid into thyroid follicular cells. This regulation is maintained by macro-pinocytosis (pseudopods) and micro-pinocytosis (microvilli).
  • Any imbalance between secretion and reabsorption of thyroglobulin leads to a disruption of the equilibrium, and produces a colloid appeared thyroid nodule. These nodules may also be produced as a defect of intraluminal thyroglobulin reabsorption. 

2. Iodine related nodules pathogenesis:

Iodine excess can lead to colloid nodules in thyroid gland, leading to a colloid goitre:

Another mechanism that may lead to colloid goitre formation is loss of thyroglobulin packaging ability, that may lead to an enormous enlargement of the follicles and flattening of the epithelium.

3. Cystic thyroid nodules

Cystic thyroid nodules may be classified into the following types:

(d) Thyroiditic nodule

Nodular lymphocytic thyroiditis almost always present in combination with other thyroiditic diseases. They can also present as a part of infection. It has been shown that the ability of super-antigens (SAgs) to activate the immune system may play a role in the course of autoimmune disorders. In most of these cases, the mechanism of nodular lesion is the same as the mechanism of the main disease, implying that the thyroid nodule is a part of normal disease pattern. Many of these nodules are not identifiable based on physical exam, and are detected during thyroid scintigraphy. The most important thyroiditic diseases that may present as lymphocytic nodular thyroid are:

Genetics

Genetic mutation is considered as one of the most important mechanisms of developing thyroid nodules, especially neoplastic thyroid nodules. Most of these mutations occur as somatic mutations, while some may occur in a familial order. The most important category of familial thyroid cancers are due to genetic mutations, and are called familial non-medullary thyroid cancer (FNMTC), with the following features:

The most important genetic mutations associated with thyroid neoplasia development

Oncogenes and growth factors Gene mechanism Mutation effect Neoplasia
N&H ras
RET
  • Encodes a receptor for glial-derived neurotrophic GF
  • Fusion proteins with constitutive thyrosine kinase activities
  • Dimerization of RET thyrosine kinase receptors (TRK)
Gsp
  • Ribosylated GS-α at arginine 201
  • Hot adenomas
C-MET (α and β subunit)
  • Increased receptors for HGF/SF
  • Enhancement of receptor kinase activity
TRK
  • Receptor for nerve growth factor
  • Mitogen activated TK cascade
EGF / EGF-R
P53
  • Lack of activation of p21/Waf l gene expression
  • Loss of regulation at the critical G1 to S phase

Associated conditions

Preoperative serum TSH is an independent risk factor for predicting malignancy in a thyroid nodule, and is associated with:[42][43]

Gross pathology

Microscopic pathology

Diagnostic speciemen feature: the presence of at least six follicular cell groups, each containing 10–15 cells derived from at least two aspirates of a nodule[44][45][46][45]

Cytology classification Also referred to as: Efficient diagnosis May be seen in: FNA cytology
FNA Surgical biopsy
Follicular lesions  Benign (macrofollicular) +
  • May have areas of cystic degeneration with cellular debris and hemosiderin-laden macrophages
  • Cellular characteristics:
    • Small and flat
    • Uniform in size
    • Non-crowded
    • Smeared colloid is seen in the background
    • Follicle size may vary, with a few microfollicles interspersed among the macrofollicles, especially if the sample was obtained from an area close to the capsule of the lesion
  • Colloid:
    • May smear across the slide or occasionally aggregated into droplets due to disruption of follicles during FNA
    • Stains blue on a Papanicolaou stain
    • May be abundant in the background of macrofollicular lesions
Follicular neoplasm/microfollicular  +
  • Well-developed microfollicles
  • Crowding of cells
    • May form clusters and clumps
  • Scant colloid
  • Varying nuclear atypia
  • Varying cellular pleomorphism
  • Follicular carcinoma:
    • Focal microscopic invasion
  • Cellular or trabecular adenomas:
    • Lesions with less definite or no follicle formation
    • May show vascular or capsule invasion
Follicular lesion of undetermined significance (FLUS) +
  • Commonly, especially in nodular goiters
  • FLUS:
    • The lesion has approximately equal number of macrofollicular fragments and microfollicles
  • AUS:
  • Mostly due to compromised speciemens:
    • Poor fixation or obscuring blood (FLUS)
Atypia of undetermined significance (AUS)
Hürthle cells  +
Papillary cancer
  • The follicular variant of papillary cancer
+ Epithelioid giant cells

Psammoma bodies

Medullary cancer  +
  • Medullary cancer
Anaplastic thyroid cancer +


Neoplastic thyroid nodules subclassification microscopic pathology:

Neoplasm Subclass Features
Follicular thyroid lesions Minimally invasive follicular carcinoma
  • Only invasion of the capsule of the tumor without vascular invasion
Widely invasive follicular carcinoma
  • Extensive invasion of the tumor capsule
  • A multinodular tumor without a well-defined capsule invading the normal thyroid surrounding the tumor
  • Extensive vascular invasion (>4 foci of angioinvasion)
Encapsulated follicular variant of papillary thyroid cancer
  • Minor vascular invasion (≤4 foci of angioinvasion within the tumor or capsule of the tumor) with or without capsular invasion
Infiltrative variant of papillary thyroid cancer
Papillary thyroid cancer Tall cell variant
Insular varient
Columnar variant
  • Elongated cells with palisading nuclei
Hürthle or oxyphilic variant
Clear cell variant
Diffuse sclerosing variant
Cribriform morular variant
Hobnail variant
  • Multifocal with variably sized complex papillary structures lined by cells
  • Cells with increased nuclear to cytoplasmatic ratios
  • Apically placed nuclei that lead to a surface bulge (hobnail appearance)
    19956062

References

  1. Aozasa K, Inoue A, Katagiri S, Matsuzuka F, Katayama S, Yonezawa T (1986). "Plasmacytoma and follicular lymphoma in a case of Hashimoto's thyroiditis". Histopathology. 10 (7): 735–40. PMID 3755697.
  2. Bastomsky CH (1977). "Enhanced thyroxine metabolism and high uptake goiters in rats after a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin". Endocrinology. 101 (1): 292–6. doi:10.1210/endo-101-1-292. PMID 862558.
  3. Brix K, Lemansky P, Herzog V (1996). "Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells". Endocrinology. 137 (5): 1963–74. doi:10.1210/endo.137.5.8612537. PMID 8612537.
  4. Burch HB (1995). "Evaluation and management of the solid thyroid nodule". Endocrinol. Metab. Clin. North Am. 24 (4): 663–710. PMID 8608777.
  5. Coclet J, Foureau F, Ketelbant P, Galand P, Dumont JE (1989). "Cell population kinetics in dog and human adult thyroid". Clin. Endocrinol. (Oxf). 31 (6): 655–65. PMID 2627756.
  6. 6.0 6.1 de los Santos ET, Keyhani-Rofagha S, Cunningham JJ, Mazzaferri EL (1990). "Cystic thyroid nodules. The dilemma of malignant lesions". Arch. Intern. Med. 150 (7): 1422–7. PMID 2196027.
  7. Di Carlo A, Mariano A, Pisano G, Parmeggiani U, Beguinot L, Macchia V (1990). "Epidermal growth factor receptor and thyrotropin response in human thyroid tissues". J. Endocrinol. Invest. 13 (4): 293–9. doi:10.1007/BF03349565. PMID 2164546.
  8. Dumont JE, Maenhaut C, Pirson I, Baptist M, Roger PP (1991). "Growth factors controlling the thyroid gland". Baillieres Clin. Endocrinol. Metab. 5 (4): 727–54. PMID 1661579.
  9. Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J, Schvartz C, Delisle MJ, Decoulx M, Orgiazzi J, Dumont J (1994). "Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism". Nat. Genet. 7 (3): 396–401. doi:10.1038/ng0794-396. PMID 7920658.
  10. Ericsson UB, Lindgärde F (1991). "Effects of cigarette smoking on thyroid function and the prevalence of goitre, thyrotoxicosis and autoimmune thyroiditis". J. Intern. Med. 229 (1): 67–71. PMID 1995765.
  11. Farid NR, Shi Y, Zou M (1994). "Molecular basis of thyroid cancer". Endocr. Rev. 15 (2): 202–32. doi:10.1210/edrv-15-2-202. PMID 8026388.
  12. Liekens S, De Clercq E, Neyts J (2001). "Angiogenesis: regulators and clinical applications". Biochem. Pharmacol. 61 (3): 253–70. PMID 11172729.
  13. Gaitan E, Cooksey RC, Legan J, Lindsay RH (1995). "Antithyroid effects in vivo and in vitro of vitexin: a C-glucosylflavone in millet". J. Clin. Endocrinol. Metab. 80 (4): 1144–7. doi:10.1210/jcem.80.4.7714083. PMID 7714083.
  14. Gaskin D, Parai SK, Parai MR (1992). "Hashimoto's thyroiditis with medullary carcinoma". Can J Surg. 35 (5): 528–30. PMID 1356609.
  15. Gerber H, Huber G, Peter HJ, Kämpf J, Lemarchand-Beraud T, Fragu P, Stocker R (1994). "Transformation of normal thyroids into colloid goiters in rats and mice by diphenylthiohydantoin". Endocrinology. 135 (6): 2688–99. doi:10.1210/endo.135.6.7988459. PMID 7988459.
  16. Wang CC, Friedman L, Kennedy GC, Wang H, Kebebew E, Steward DL, Zeiger MA, Westra WH, Wang Y, Khanafshar E, Fellegara G, Rosai J, Livolsi V, Lanman RB (2011). "A large multicenter correlation study of thyroid nodule cytopathology and histopathology". Thyroid. 21 (3): 243–51. doi:10.1089/thy.2010.0243. PMC 3698689. PMID 21190442.
  17. Gharib H (1997). "Changing concepts in the diagnosis and management of thyroid nodules". Endocrinol. Metab. Clin. North Am. 26 (4): 777–800. PMID 9429860.
  18. Giordano C, Stassi G, De Maria R, Todaro M, Richiusa P, Papoff G, Ruberti G, Bagnasco M, Testi R, Galluzzo A (1997). "Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis". Science. 275 (5302): 960–3. PMID 9020075.
  19. Greenspan FS (1991). "The problem of the nodular goiter". Med. Clin. North Am. 75 (1): 195–209. PMID 1987443.
  20. Isaacson PG, Androulakis-Papachristou A, Diss TC, Pan L, Wright DH (1992). "Follicular colonization in thyroid lymphoma". Am. J. Pathol. 141 (1): 43–52. PMC 1886561. PMID 1632470.
  21. Ledent C, Parmentier M, Maenhaut C, Taton M, Pirson I, Lamy F, Roger P, Dumont JE (1991). "The TSH cyclic AMP cascade in the control of thyroid cell proliferation: the story of a concept". Thyroidology. 3 (3): 97–101. PMID 1726932.
  22. Ledent C, Dumont JE, Vassart G, Parmentier M (1992). "Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism". EMBO J. 11 (2): 537–42. PMC 556484. PMID 1371462.
  23. Livolsi VA, Merino MJ (1981). "Histopathologic differential diagnosis of the thyroid". Pathol Annu. 16 (Pt 2): 357–406. PMID 7036066.
  24. Ludgate M, Jasani B (1997). "Apoptosis in autoimmune and non-autoimmune thyroid disease". J. Pathol. 182 (2): 123–4. doi:10.1002/(SICI)1096-9896(199706)182:2<123::AID-PATH832>3.0.CO;2-F. PMID 9274519.
  25. Maceri DR, Sullivan MJ, McClatchney KD (1986). "Autoimmune thyroiditis: pathophysiology and relationship to thyroid cancer". Laryngoscope. 96 (1): 82–6. PMID 3484533.
  26. Moriuchi A, Yokoyama S, Kashima K, Andoh T, Nakayama I, Noguchi S (1992). "Localized primary amyloid tumor of the thyroid developing in the course of Hashimoto's thyroiditis". Acta Pathol. Jpn. 42 (3): 210–6. PMID 1570743.
  27. McKee RF, Krukowski ZH, Matheson NA (1993). "Thyroid neoplasia coexistent with chronic lymphocytic thyroiditis". Br J Surg. 80 (10): 1303–4. PMID 8242306.
  28. Ott RA, McCall AR, McHenry C, Jarosz H, Armin A, Lawrence AM, Paloyan E (1987). "The incidence of thyroid carcinoma in Hashimoto's thyroiditis". Am Surg. 53 (8): 442–5. PMID 3605864.
  29. Paynter OE, Burin GJ, Jaeger RB, Gregorio CA (1988). "Goitrogens and thyroid follicular cell neoplasia: evidence for a threshold process". Regul. Toxicol. Pharmacol. 8 (1): 102–19. PMID 3285378.
  30. Berndorfer U, Wilms H, Herzog V (1996). "Multimerization of thyroglobulin (TG) during extracellular storage: isolation of highly cross-linked TG from human thyroids". J. Clin. Endocrinol. Metab. 81 (5): 1918–26. doi:10.1210/jcem.81.5.8626858. PMID 8626858.
  31. Bialas P, Marks S, Dekker A, Field JB (1976). "Hashimoto's thyroiditis presenting as a solitary functioning thyroid nodule". J. Clin. Endocrinol. Metab. 43 (6): 1365–9. doi:10.1210/jcem-43-6-1365. PMID 1036742.
  32. Gaitan E, Lindsay RH, Reichert RD, Ingbar SH, Cooksey RC, Legan J, Meydrech EF, Hill J, Kubota K (1989). "Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones". J. Clin. Endocrinol. Metab. 68 (4): 707–14. doi:10.1210/jcem-68-4-707. PMID 2921306.
  33. Gaitan E (1990). "Goitrogens in food and water". Annu. Rev. Nutr. 10: 21–39. doi:10.1146/annurev.nu.10.070190.000321. PMID 1696490.
  34. Taccaliti A, Boscaro M (2009). "Genetic mutations in thyroid carcinoma". Minerva Endocrinol. 34 (1): 11–28. PMID 19209125.
  35. Vecchio G, Santoro M (2000). "Oncogenes and thyroid cancer". Clin. Chem. Lab. Med. 38 (2): 113–6. doi:10.1515/CCLM.2000.017. PMID 10834397.
  36. Fusco A, Santoro M, Grieco M, Carlomagno F, Dathan N, Fabien N, Berlingieri MT, Li Z, De Franciscis V, Salvatore D (1995). "RET/PTC activation in human thyroid carcinomas". J. Endocrinol. Invest. 18 (2): 127–9. doi:10.1007/BF03349720. PMID 7629379.
  37. Fugazzola L, Pierotti MA, Vigano E, Pacini F, Vorontsova TV, Bongarzone I (1996). "Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes, in a post-Chernobyl papillary thyroid cancer". Oncogene. 13 (5): 1093–7. PMID 8806699.
  38. Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, van Amstel HK, Lips CJ, Nishisho I, Takai SI, Marsh DJ, Robinson BG, Frank-Raue K, Raue F, Xue F, Noll WW, Romei C, Pacini F, Fink M, Niederle B, Zedenius J, Nordenskjöld M, Komminoth P, Hendy GN, Mulligan LM (1996). "The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis". JAMA. 276 (19): 1575–9. PMID 8918855.
  39. Goretzki PE, Simon D, Röher HD (1992). "G-protein mutations in thyroid tumors". Exp. Clin. Endocrinol. 100 (1–2): 14–6. doi:10.1055/s-0029-1211167. PMID 1468509.
  40. Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, Hadari YR, Schlessinger J, Lax I (2001). "Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade". Mol. Cell. Biol. 21 (13): 4177–87. doi:10.1128/MCB.21.13.4177-4187.2001. PMC 87079. PMID 11390647.
  41. Ciampi R, Nikiforov YE (2007). "RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis". Endocrinology. 148 (3): 936–41. doi:10.1210/en.2006-0921. PMID 16946010.
  42. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H (2008). "Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage". J. Clin. Endocrinol. Metab. 93 (3): 809–14. doi:10.1210/jc.2007-2215. PMC 2266959. PMID 18160464.
  43. McLeod DS, Cooper DS, Ladenson PW, Ain KB, Brierley JD, Fein HG, Haugen BR, Jonklaas J, Magner J, Ross DS, Skarulis MC, Steward DL, Maxon HR, Sherman SI (2014). "Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis". Thyroid. 24 (1): 35–42. doi:10.1089/thy.2013.0062. PMC 3887423. PMID 23731273.
  44. Walfish PG, Strawbridge HT, Rosen IB (1985). "Management implications from routine needle biopsy of hyperfunctioning thyroid nodules". Surgery. 98 (6): 1179–88. PMID 4071393.
  45. 45.0 45.1 Cibas ES, Ali SZ (2009). "The Bethesda System for Reporting Thyroid Cytopathology". Thyroid. 19 (11): 1159–65. doi:10.1089/thy.2009.0274. PMID 19888858.
  46. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan A, Kakudo K, Giordano TJ, Alves VA, Khanafshar E, Asa SL, El-Naggar AK, Gooding WE, Hodak SP, Lloyd RV, Maytal G, Mete O, Nikiforova MN, Nosé V, Papotti M, Poller DN, Sadow PM, Tischler AS, Tuttle RM, Wall KB, LiVolsi VA, Randolph GW, Ghossein RA (2016). "Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors". JAMA Oncol. 2 (8): 1023–9. doi:10.1001/jamaoncol.2016.0386. PMC 5539411. PMID 27078145.

Template:WH Template:WS