Hyponatremia natural history, complications and prognosis: Difference between revisions
Line 81: | Line 81: | ||
* Malnutrition | * Malnutrition | ||
* Advanced liver disease | * Advanced liver disease | ||
===Prognosis=== | |||
* '''Asymptomatic hyponatremia in:''' | |||
** Adults is associated with attention and gait deficit, falls and fractures, and increased mortality in patients with pneumonia, heart failure and liver disease <ref>{{Cite journal|year=2006|title=Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits|journal=[[The American journal of medicine]]|volume=119|issue=1|pages=71|doi=10.1016/j.amjmed.2005.09.026|pmid=16431193|author=[[Benoit Renneboog]], [[Wim Musch]], [[Xavier Vandemergel]], [[Mario U. Manto]] & [[Guy Decaux]]|month=January}}</ref>. | |||
** Preterm neonates is associated with poor development and growth, cerebral palsy, sensorineural hearing loss, and intracranial hemorrhage, increased perinatal mortality in neonates who suffered perinatal asphyxia and increased sodium intake in later life <ref>{{Cite journal | |||
| author = [[N. A. Mir]], [[A. M. Faquih]] & [[M. Legnain]] | |||
| title = Perinatal risk factors in birth asphyxia: relationship of obstetric and neonatal complications to neonatal mortality in 16,365 consecutive live births | |||
| | | journal = [[Asia-Oceania journal of obstetrics and gynaecology]] | ||
| | | volume = 15 | ||
| | | issue = 4 | ||
| | | pages = 351–357 | ||
| | | year = 1989 | ||
| | | month = December | ||
| | | pmid = 2624578 | ||
}}</ref> <ref>{{Cite journal | |||
| | | author = [[T. Ertl]], [[K. Hadzsiev]], [[O. Vincze]], [[J. Pytel]], [[I. Szabo]] & [[E. Sulyok]] | ||
}}</ref> | | title = Hyponatremia and sensorineural hearing loss in preterm infants | ||
| journal = [[Biology of the neonate]] | |||
| volume = 79 | |||
| issue = 2 | |||
| pages = 109–112 | |||
| year = 2001 | |||
| month = February | |||
| doi = 10.1159/000047076 | |||
| pmid = 11223652 | |||
}}</ref>. | |||
*Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%. | *Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%. | ||
*Depending on the extent of the [tumor/disease progression/etc.] at the time of diagnosis, the prognosis may vary. However, the prognosis is generally regarded as poor/good/excellent. | *Depending on the extent of the [tumor/disease progression/etc.] at the time of diagnosis, the prognosis may vary. However, the prognosis is generally regarded as poor/good/excellent. |
Revision as of 16:00, 31 May 2018
Hyponatremia Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Hyponatremia natural history, complications and prognosis On the Web |
American Roentgen Ray Society Images of Hyponatremia natural history, complications and prognosis |
FDA on Hyponatremia natural history, complications and prognosis |
CDC on Hyponatremia natural history, complications and prognosis |
Hyponatremia natural history, complications and prognosis in the news |
Blogs on Hyponatremia natural history, complications and prognosis |
Risk calculators and risk factors for Hyponatremia natural history, complications and prognosis |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Saeedeh Kowsarnia M.D.[2]
Overview
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Natural History, Complications, and Prognosis
Natural History
- acute hyponatraemia, the main pathological consequence is the development of cerebral edema, which leads to raised intracranial pressure with the risk of cerebral herniation,hypoxia and even death [1].
- The symptoms of (disease name) usually develop in the first/ second/ third decade of life, and start with symptoms such as ___.
- The symptoms of (disease name) typically develop ___ years after exposure to ___.
- If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
Complications
Hyponatremic Encephalopathy [2]:Early symptoms of hyponatremia from any cause may include apathy, weakness, muscular cramps, nausea, vomiting, and headache. More advanced clinical manifestations include impaired response to verbal and painful stimuli, hallucinations, urinary incontinence, and pulmonary edema. As edema worsens, clinical manifestations of hyponatremia are related to the degree of increased intracranial pressure and brain herniation. These manifestations may include decorticate posturing, hypothermia and hyperthermia, central diabetes insipidus, seizures, respiratory arrest, coma, permanent brain damage, and death .
Stage | Clinical manifestation of hyponatremic encephalopathy |
---|---|
Early | Anorexia, headache, nausea, vomiting, muscule cramps, weakness, confusion, altered consciousness, agitation, gait disturbances |
Advanced | Impaired response to verbal stimuli, impaired response to painful stimuli, bizarre (inappropriate) behavior, hallucinations (auditory or visual), asterixis, obtundation, incontinence (urinary or fecal), respiratory insufficiency |
Severe | Decorticate and/or decerebrate posturing, bradycardia, hyper- or hypotension, altered temperature regulation (hypo- or hyperthermia), anisocornea, papilledema, dilated pupils, seizure activity (usually grand mal), cardiac arrhythmias, myocardial ischemia, respiratory arrest, coma, polyuria (secondary to central diabetes insipidus) |
Brain herniation :In acute hyponatremia, if the brain adaptation to hyponatremia is impaired especially solute excretion of brain cells to achieve osmotic equilibrium, it causes brain cells swelling, increased intracranial pressure, cerebral edema, and eventual tentorial herniation [3].
Osmotic Demyelination :Hyponatremia, serum sodium < 135 mEq/L, causes brain edema due to shift of water from extracellular in to the brain cells. In the next 24 to 48 hours, brain starts to compensate by excreting solutes and water. If serum sodium is corrected too rapidly, brain cells do not have time to replace the solutes which results in dehydration of the brain cells named osmotic demyelination syndrome [4].
Signs and symptoms of ODS |
---|
|
Risk of developing Osmotic Demyelination Syndrome:
- Serum sodium concentration ≤105 mmol/L
- Hypokalemia
- Alcoholism
- Malnutrition
- Advanced liver disease
Prognosis
- Asymptomatic hyponatremia in:
- Adults is associated with attention and gait deficit, falls and fractures, and increased mortality in patients with pneumonia, heart failure and liver disease [5].
- Preterm neonates is associated with poor development and growth, cerebral palsy, sensorineural hearing loss, and intracranial hemorrhage, increased perinatal mortality in neonates who suffered perinatal asphyxia and increased sodium intake in later life [6] [7].
- Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
- Depending on the extent of the [tumor/disease progression/etc.] at the time of diagnosis, the prognosis may vary. However, the prognosis is generally regarded as poor/good/excellent.
- The presence of [characteristic of disease] is associated with a particularly [good/poor] prognosis among patients with [disease/malignancy].
- [Subtype of disease/malignancy] is associated with the most favorable prognosis.
- The prognosis varies with the [characteristic] of tumor; [subtype of disease/malignancy] have the most favorable prognosis.
References
- ↑ S. J. Ellis (1995). "Severe hyponatraemia: complications and treatment". QJM : monthly journal of the Association of Physicians. 88 (12): 905–909. PMID 8593551. Unknown parameter
|month=
ignored (help) - ↑ Moritz, Michael L.; Ayus, Juan Carlos (2009). "New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children". Pediatric Nephrology. 25 (7): 1225–1238. doi:10.1007/s00467-009-1323-6. ISSN 0931-041X.
- ↑ A. I. Arieff, F. Llach & S. G. Massry (1976). "Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes". Medicine. 55 (2): 121–129. PMID 1256311. Unknown parameter
|month=
ignored (help) - ↑ King, Joshua D.; Rosner, Mitchell H. (2010). "Osmotic Demyelination Syndrome". The American Journal of the Medical Sciences. 339 (6): 561–567. doi:10.1097/MAJ.0b013e3181d3cd78. ISSN 0002-9629.
- ↑ Benoit Renneboog, Wim Musch, Xavier Vandemergel, Mario U. Manto & Guy Decaux (2006). "Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits". The American journal of medicine. 119 (1): 71. doi:10.1016/j.amjmed.2005.09.026. PMID 16431193. Unknown parameter
|month=
ignored (help) - ↑ N. A. Mir, A. M. Faquih & M. Legnain (1989). "Perinatal risk factors in birth asphyxia: relationship of obstetric and neonatal complications to neonatal mortality in 16,365 consecutive live births". Asia-Oceania journal of obstetrics and gynaecology. 15 (4): 351–357. PMID 2624578. Unknown parameter
|month=
ignored (help) - ↑ T. Ertl, K. Hadzsiev, O. Vincze, J. Pytel, I. Szabo & E. Sulyok (2001). "Hyponatremia and sensorineural hearing loss in preterm infants". Biology of the neonate. 79 (2): 109–112. doi:10.1159/000047076. PMID 11223652. Unknown parameter
|month=
ignored (help)