Hypocalcemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 31: Line 31:
==== Hormone regulation  ====
==== Hormone regulation  ====
* Parathyroid hormone (PTH) and vitamin D play a important role in regulating serum calcium.<ref name="pmid19923405">{{cite journal |vauthors=Riccardi D, Brown EM |title=Physiology and pathophysiology of the calcium-sensing receptor in the kidney |journal=Am. J. Physiol. Renal Physiol. |volume=298 |issue=3 |pages=F485–99 |date=March 2010 |pmid=19923405 |pmc=2838589 |doi=10.1152/ajprenal.00608.2009 |url=}}</ref>
* Parathyroid hormone (PTH) and vitamin D play a important role in regulating serum calcium.<ref name="pmid19923405">{{cite journal |vauthors=Riccardi D, Brown EM |title=Physiology and pathophysiology of the calcium-sensing receptor in the kidney |journal=Am. J. Physiol. Renal Physiol. |volume=298 |issue=3 |pages=F485–99 |date=March 2010 |pmid=19923405 |pmc=2838589 |doi=10.1152/ajprenal.00608.2009 |url=}}</ref>
* Calcium by itself controls to regulate its own serum levels via a calcium-sensing receptor (CaSR) in the parathyroid gland to inhibit parathyroid hormone (PTH) secretion and on a CaSR in the loop of Henle of the kidney to stimulate renal calcium excretion.<ref name="pmid14730506">{{cite journal |vauthors=Goodman WG |title=Calcium-sensing receptors |journal=Semin. Nephrol. |volume=24 |issue=1 |pages=17–24 |date=January 2004 |pmid=14730506 |doi= |url=}}</ref>
* Calcium by itself controls to regulate its own serum levels via a calcium-sensing receptor (CaSR) in the parathyroid gland to inhibit parathyroid hormone (PTH) secretion and on a CaSR in the loop of Henle of the kidney to stimulate renal calcium excretion.<ref name="pmid14730506">{{cite journal |vauthors=Goodman WG |title=Calcium-sensing receptors |journal=Semin. Nephrol. |volume=24 |issue=1 |pages=17–24 |date=January 2004 |pmid=14730506 |doi= |url=}}</ref><ref name="pmid12815330">{{cite journal |vauthors=Quarles LD |title=Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues |journal=Curr. Opin. Nephrol. Hypertens. |volume=12 |issue=4 |pages=349–55 |date=July 2003 |pmid=12815330 |doi=10.1097/01.mnh.0000079682.89474.80 |url=}}</ref>


===Alkalosis===
===Alkalosis===

Revision as of 20:43, 19 June 2018

https://https://www.youtube.com/watch?v=KWZrSYo7xuk%7C350}}

Hypocalcemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypocalcemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypocalcemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hypocalcemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypocalcemia pathophysiology

CDC on Hypocalcemia pathophysiology

Hypocalcemia pathophysiology in the news

Blogs on Hypocalcemia pathophysiology

Directions to Hospitals Treating Hypocalcemia

Risk calculators and risk factors for Hypocalcemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vamsikrishna Gunnam M.B.B.S [2]

Overview

Hypocalcemia may develop in disorders associated with insufficient parathyroid hormone or vitamin D production or resistance to hormonal activities. Perturbations of calcium homeostasis can be caused by environmental factors or occur as a result of genetic mutations in the calcium-sensing receptor (as in type 1 autosomal dominant hypocalcemia), Gs α subunit (as in type 1A and 1B pseudohypoparathyroidism), vitamin D hydroxylase (as in type 1 vitamin D-dependent rickets , and calcitriol receptor (as in type 2 vitamin D-dependent rickets).

Pathophysiology

Physiology

The normal physiology of Hypocalcemia can be understood as follows:

  • The normal concentrations of calcium in the body is maintained within the narrow range and that is required for the minimal activity of the many extra- and intracellular processes calcium regulates. 
  • Calcium transport within the blood is mainly bound to plasma proteins like albumin (45%), phosphate and citrate(15%) and ionized state(40%).
  • Only the ionized form of calcium is active but most laboratories show report of total serum calcium concentrations.
  • The normal concentration of calcium ranges between 8.5 and 10.5 mg/dL.
  • The normal range of ionized calcium in the plasma is 4.65 to 5.25 mg/dL.

Pathogenesis

  • It is understood that Hypocalcemia is the result caused by the following

Hypoalbuminemia

  • When there is a fluctuation in the protein concentrations especially the one protein which is albumin,total calcium levels in the blood may change.
  • Whereas the levels of ionized calcium(free form) remains mostly constant, because it is hormonally regulated.
  • So that the total serum calcium levels may not accurately reflect the physiologically important ionized calcium concentration.

Hormone regulation 

  • Parathyroid hormone (PTH) and vitamin D play a important role in regulating serum calcium.[1]
  • Calcium by itself controls to regulate its own serum levels via a calcium-sensing receptor (CaSR) in the parathyroid gland to inhibit parathyroid hormone (PTH) secretion and on a CaSR in the loop of Henle of the kidney to stimulate renal calcium excretion.[2][3]

Alkalosis

In alkalosis, hydrogen ions dissociate from the negatively charged albumin, which allows for increased calcium binding and leads to a decreased concentration of free calcium.

For an increase in pH of 0.1 unit, there is an approximately 0.05 mmol/L (0.1 mEq/L) fall in the serum level of ionized calcium.

Respiratory Alkalosis

Reduced ionized calcium concentration and hypocapnia associated with hyperventilation may contribute to symptoms of vasoconstriction including lightheadedness, fainting, and parasthesia.

Globulin Binding

Calcium binding to globulin is relatively small (1.0 g of globulin binds 0.2–0.3 mg of calcium) and generally does not influence the total serum calcium concentration.[4]

References

  1. Riccardi D, Brown EM (March 2010). "Physiology and pathophysiology of the calcium-sensing receptor in the kidney". Am. J. Physiol. Renal Physiol. 298 (3): F485–99. doi:10.1152/ajprenal.00608.2009. PMC 2838589. PMID 19923405.
  2. Goodman WG (January 2004). "Calcium-sensing receptors". Semin. Nephrol. 24 (1): 17–24. PMID 14730506.
  3. Quarles LD (July 2003). "Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues". Curr. Opin. Nephrol. Hypertens. 12 (4): 349–55. doi:10.1097/01.mnh.0000079682.89474.80. PMID 12815330.
  4. Taal, Maarten (2012). Brenner & Rector's the kidney. Philadelphia, PA: Elsevier/Saunders. ISBN 978-1416061939.

Template:WS Template:WH