Immunodeficiency affecting cellular and humoral Immunity: Difference between revisions
Jump to navigation
Jump to search
Line 474: | Line 474: | ||
*CD8 deficiency is autosomal recessive familial condition. | *CD8 deficiency is autosomal recessive familial condition. | ||
*Single mutation in the CD8α gene that is due to missense mutation (gly90-->ser) in both alleles of the immunoglobulin domain of the CD8 alpha gene<ref name="pmid11435463">{{cite journal |vauthors=de la Calle-Martin O, Hernandez M, Ordi J, Casamitjana N, Arostegui JI, Caragol I, Ferrando M, Labrador M, Rodriguez-Sanchez JL, Espanol T |title=Familial CD8 deficiency due to a mutation in the CD8 alpha gene |journal=J. Clin. Invest. |volume=108 |issue=1 |pages=117–23 |date=July 2001 |pmid=11435463 |pmc=209336 |doi=10.1172/JCI10993 |url=}}</ref> | *Single mutation in the CD8α gene that is due to missense mutation (gly90-->ser) in both alleles of the immunoglobulin domain of the CD8 alpha gene<ref name="pmid11435463">{{cite journal |vauthors=de la Calle-Martin O, Hernandez M, Ordi J, Casamitjana N, Arostegui JI, Caragol I, Ferrando M, Labrador M, Rodriguez-Sanchez JL, Espanol T |title=Familial CD8 deficiency due to a mutation in the CD8 alpha gene |journal=J. Clin. Invest. |volume=108 |issue=1 |pages=117–23 |date=July 2001 |pmid=11435463 |pmc=209336 |doi=10.1172/JCI10993 |url=}}</ref> | ||
==ZAP70 deficiency== | |||
* | |||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} |
Revision as of 19:17, 8 November 2018
Immunodeficiency Main Page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Zahir Ali Shaikh, MD[3], Anmol Pitliya, M.B.B.S. M.D.[4], Syed Musadiq Ali M.B.B.S.[5]
Overview
Classification
Immunodeficiency affecting cellular and humoral immunity | |||||||||||||||||
Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia | Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency | ||||||||||||||||
Severe Combined Immunodeficiency (SCID)
Severe combined immunodeficiencies SCID, defined by CD3 T cell lymphopenia | |||||||||||||||||||||||||||||||||||||||||||||||||||||
CD19 NL: SCID T-ve B+ve | CD19 ↓: SCID T-ve B-ve | ||||||||||||||||||||||||||||||||||||||||||||||||||||
SCID T-ve B+ve NK-ve | SCID T-ve B+ve NK+ve | SCID T-ve B-ve NK-ve | SCID T-ve B-ve NK+ve | ||||||||||||||||||||||||||||||||||||||||||||||||||
yc deficiency | IL7Ra . | ADA def | Microcephaly present | Microcephaly absent | |||||||||||||||||||||||||||||||||||||||||||||||||
JAK-3 def | CD3D, CD3E, CD247 | Reticular dysgenesis | DNA Ligase IV def | RAG1/2 def | |||||||||||||||||||||||||||||||||||||||||||||||||
CD45 def | XLF def | DCLRE1C def | |||||||||||||||||||||||||||||||||||||||||||||||||||
Coronin-1A def | DNA PKcs def | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Winged helix def | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency
Combined immunodeficiencies generally less pronounced than severe combined immunodeficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low CD4: MHC II Expression? | Low CD8 | Low B Cells | Ig: Often Normal | Ig Low | Normal Ig but Low Specific Antibody Response | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Absent: MHCII Deficiency | CD8 def: | DOCK8 def: | CD3Y def: | DOCK2 def: | IL2IR Def: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Present: MAGT 1 Def:,LCK Def:, UNC119 Def: | ZAP70 def: | MST1 def: | RHOH def: | CARDII def:(LOF) | MALT1 Def: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MHC1 def: | IL21 def: | TCR alpha def: | BCL10 def: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NIK def: | BCL11B def: | IKBKB Def: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Moesin def: | OX40 def: | ICOS def: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LAT def | TFRC def: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
RelB def: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CD40 ligand def:(CD154) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
γc (IL-2Rγ) deficiency
- X-linked transmission.
- It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG).
- Patients present with repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.[1]
- HSCT is the mainstay of treatment.[2]
JAK-3 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the Janus kinase-3 gene on chromosome 19.
- It has a similar presentation to X-linked SCID as above.[3]
- HSCT is the mainstay of treatment.[4]
IL7a
- Autosomal recessive (AR) transmission
- It is caused by homozygous or compound heterozygous mutation in the interleukin-7 receptor gene on chromosome 5.[5]
- It has a similar presentation to X-linked SCID as above[6]
CD3D
- Autosomal recessive (AR) transmission
- It is caused by mutation in the delta chain of the T3 T-cell antigen (OKT3) on chromosome 11.[7]
- Patients present with recurrent infections and failure to thrive.
- HSCT is the mainstay of treatment. [8]
CD3E
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the epsilon gene of T3 T-cell antigen on chromosome 11.[9]
CD247
- Autosomal recessive (AR) transmission.
- It is caused by homozygous mutation in the CD247 (CD3Z) gene on chromosome 1.[10]
CD45 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the CD45 gene on chromosome 1.[11]
Coronin-1A deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the CORO1A gene (which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on chromosome 16.[12]
Winged helix deficiency/Nude SCID
- Autosomal recessive (AR) transmission.
- It is caused by a mutation in the FOXN1 gene (a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. [13][14]
- Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.[15]CNS defects have also been reported which include anencephaly and spina bifida.[16]
- Initial management includes immediate referral to a specialist center in suspected patients and providing supportive care until a definitive diagnosis reached.[17]
- Prophylaxis and early treatment of infections is also an important step in management.[18]
ADA deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the adenosine deaminase gene (ADA) on chromosome 20.
- Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, nystagmus, sensorineural deafness and cognitive defects, and also hepatic dysfucnction.[19][20][21]
- Treatment options include:
- Enzyme replacement therapy: Pegademase bovine (PEG-ADA) is used as the replacement therapy.[22]
- Bone marrow transplantation.[23]
Reticular dysgenesis
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1.
- Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss.
- Bone marrow transplant is the treatment of choice.[24]
DNA Ligase IV deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13.
- Patients show unusual facial features, microcephaly, developmental delay, pancytopenia, and various skin abnormalities.[25]
CERNUNNOS/XLF deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutations in the NHEJ1 gene on chromosome 2.
- It is characterized by microcephaly, growth retardation and sensitivity to ionizing radiation.[26]
DNA PKcs deficiency
- Autosomal recessive (AR) transmission.
- It is caused by a mutation in the PRKDC gene on chromosome 8.[27]
RAG 1/2 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutations in the RAG1 and RAG2 genes on chromosome 11.[28]
- Patients present with persistent diarrhea, candidiasis, lung infections, fever, and opportunistic infections.[29]
DCLRE1C deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the gene encoding Artemis in chromosome 10.[30]
Combined Immunodeficiencies Generally Less Pronounced than Severe Combined Immunodeficiency
MHC II Deficiency
- MHC class II deficiency, called as the bare lymphocyte syndrome type II.
- a rare autosomal recessive disorder.
- Lack of constitutive and inducible MHC class II expression in all cell types and tissues.[31]
MAGT 1 Def:,LCK Def:, UNC119 Def:
- Magnesium transporter gene (MAGT1) deficiency, T-cell tyrosine kinase Lck deficiency and Signaling adaptor protein Uncoordinated 119 (Unc119) deficiency related with a condition called Idiopathic CD4 lymphopenia. [32]
- MAGT1 deficiency stops the Mg(2+) influx, which impairs responses to antigen receptor engagement and successive steps like activation of phospholipase Cγ1 and Ca(2+) influx in T cells but not B cells.[33]
- Lck is vital for both CD4 and CD8 T-cell development and function. LCK deficiency decrease T cell proliferation.[34]
- Unc119 is necessary for activation of T-cell tyrosine kinase Lck. Unc119-deficiency reduce the activity of LCK and decrease interleukin 2 production and cellular proliferation.[35]
CD8 deficiency
- CD8 glycoproteins play vital role in both the maturation and function of MHC class I-restricted T lymphocytes.
- CD8 deficiency is autosomal recessive familial condition.
- Single mutation in the CD8α gene that is due to missense mutation (gly90-->ser) in both alleles of the immunoglobulin domain of the CD8 alpha gene[36]
ZAP70 deficiency
References
- ↑ W. H. HITZIG & H. WILLI (1961). "[Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")]". Schweizerische medizinische Wochenschrift. 91: 1625–1633. PMID 13907792. Unknown parameter
|month=
ignored (help) - ↑ Fred S. Rosen (2002). "Successful gene therapy for severe combined immunodeficiency". The New England journal of medicine. 346 (16): 1241–1243. doi:10.1056/NEJM200204183461612. PMID 11961154. Unknown parameter
|month=
ignored (help) - ↑ F. Candotti, S. A. Oakes, J. A. Johnston, S. Giliani, R. F. Schumacher, P. Mella, M. Fiorini, A. G. Ugazio, R. Badolato, L. D. Notarangelo, F. Bozzi, P. Macchi, D. Strina, P. Vezzoni, R. M. Blaese, J. J. O'Shea & A. Villa (1997). "Structural and functional basis for JAK3-deficient severe combined immunodeficiency". Blood. 90 (10): 3996–4003. PMID 9354668. Unknown parameter
|month=
ignored (help) - ↑ Joseph L. Roberts, Andrea Lengi, Stephanie M. Brown, Min Chen, Yong-Jie Zhou, John J. O'Shea & Rebecca H. Buckley (2004). "Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation". Blood. 103 (6): 2009–2018. doi:10.1182/blood-2003-06-2104. PMID 14615376. Unknown parameter
|month=
ignored (help) - ↑ A. Puel, S. F. Ziegler, R. H. Buckley & W. J. Leonard (1998). "Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency". Nature genetics. 20 (4): 394–397. doi:10.1038/3877. PMID 9843216. Unknown parameter
|month=
ignored (help) - ↑ C. M. Roifman, J. Zhang, D. Chitayat & N. Sharfe (2000). "A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency". Blood. 96 (8): 2803–2807. PMID 11023514. Unknown parameter
|month=
ignored (help) - ↑ P. van den Elsen, G. Bruns, D. S. Gerhard, D. Pravtcheva, C. Jones, D. Housman, F. A. Ruddle, S. Orkin & C. Terhorst (1985). "Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9". Proceedings of the National Academy of Sciences of the United States of America. 82 (9): 2920–2924. PMID 3857625. Unknown parameter
|month=
ignored (help) - ↑ Grace P. Yu, Kari C. Nadeau, David R. Berk, Genevieve de Saint Basile, Nathalie Lambert, Perrine Knapnougel, Joseph Roberts, Kristina Kavanau, Elizabeth Dunn, E. Richard Stiehm, David B. Lewis, Dale T. Umetsu, Jennifer M. Puck & Morton J. Cowan (2011). "Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID". Pediatric transplantation. 15 (7): 733–741. doi:10.1111/j.1399-3046.2011.01563.x. PMID 21883749. Unknown parameter
|month=
ignored (help) - ↑ D. P. Gold, J. J. van Dongen, C. C. Morton, G. A. Bruns, P. van den Elsen, A. H. Geurts van Kessel & C. Terhorst (1987). "The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice". Proceedings of the National Academy of Sciences of the United States of America. 84 (6): 1664–1668. PMID 2882512. Unknown parameter
|month=
ignored (help) - ↑ A. M. Weissman, D. Hou, D. G. Orloff, W. S. Modi, H. Seuanez, S. J. O'Brien & R. D. Klausner (1988). "Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex". Proceedings of the National Academy of Sciences of the United States of America. 85 (24): 9709–9713. PMID 2974162. Unknown parameter
|month=
ignored (help) - ↑ M. F. Seldin, H. C. Morse, R. C. LeBoeuf & A. D. Steinberg (1988). "Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q". Genomics. 2 (1): 48–56. PMID 3384439. Unknown parameter
|month=
ignored (help) - ↑ Lawrence R. Shiow, David W. Roadcap, Kenneth Paris, Susan R. Watson, Irina L. Grigorova, Tonya Lebet, Jinping An, Ying Xu, Craig N. Jenne, Niko Foger, Ricardo U. Sorensen, Christopher C. Goodnow, James E. Bear, Jennifer M. Puck & Jason G. Cyster (2008). "The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency". Nature immunology. 9 (11): 1307–1315. doi:10.1038/ni.1662. PMID 18836449. Unknown parameter
|month=
ignored (help) - ↑ M. Schorpp, M. Hofmann, T. N. Dear & T. Boehm (1997). "Characterization of mouse and human nude genes". Immunogenetics. 46 (6): 509–515. PMID 9321431.
- ↑ Saulius Zuklys, Adam Handel, Saule Zhanybekova, Fatima Govani, Marcel Keller, Stefano Maio, Carlos E. Mayer, Hong Ying Teh, Katrin Hafen, Giuseppe Gallone, Thomas Barthlott, Chris P. Ponting & Georg A. Hollander (2016). "Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells". Nature immunology. 17 (10): 1206–1215. doi:10.1038/ni.3537. PMID 27548434. Unknown parameter
|month=
ignored (help) - ↑ C. Pignata, M. Fiore, V. Guzzetta, A. Castaldo, G. Sebastio, F. Porta & A. Guarino (1996). "Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs". American journal of medical genetics. 65 (2): 167–170. doi:10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O. PMID 8911612. Unknown parameter
|month=
ignored (help) - ↑ S. Amorosi, M. D'Armiento, G. Calcagno, I. Russo, M. Adriani, A. M. Christiano, L. Weiner, J. L. Brissette & C. Pignata (2008). "FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus". Clinical genetics. 73 (4): 380–384. doi:10.1111/j.1399-0004.2008.00977.x. PMID 18339010. Unknown parameter
|month=
ignored (help) - ↑ Lizzy Rivers & H. Bobby Gaspar (2015). "Severe combined immunodeficiency: recent developments and guidance on clinical management". Archives of disease in childhood. 100 (7): 667–672. doi:10.1136/archdischild-2014-306425. PMID 25564533. Unknown parameter
|month=
ignored (help) - ↑ Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter
|month=
ignored (help) - ↑ H. Ratech, M. A. Greco, G. Gallo, D. L. Rimoin, H. Kamino & R. Hirschhorn (1985). "Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations". The American journal of pathology. 120 (1): 157–169. PMID 4014441. Unknown parameter
|month=
ignored (help) - ↑ R. Hirschhorn, P. S. Paageorgiou, H. H. Kesarwala & L. T. Taft (1980). "Amerioration of neurologic abnormalities after "enzyme replacement" in adenosine deaminase deficiency". The New England journal of medicine. 303 (7): 377–380. doi:10.1056/NEJM198008143030706. PMID 6156414. Unknown parameter
|month=
ignored (help) - ↑ M. E. Bollinger, F. X. Arredondo-Vega, I. Santisteban, K. Schwarz, M. S. Hershfield & H. M. Lederman (1996). "Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency". The New England journal of medicine. 334 (21): 1367–1371. doi:10.1056/NEJM199605233342104. PMID 8614422. Unknown parameter
|month=
ignored (help) - ↑ M. S. Hershfield (1995). "PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency". Human mutation. 5 (2): 107–112. doi:10.1002/humu.1380050202. PMID 7749407.
- ↑ R. H. Buckley, S. E. Schiff, R. I. Schiff, L. Markert, L. W. Williams, J. L. Roberts, L. A. Myers & F. E. Ward (1999). "Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency". The New England journal of medicine. 340 (7): 508–516. doi:10.1056/NEJM199902183400703. PMID 10021471. Unknown parameter
|month=
ignored (help) - ↑ R. J. Levinsky & K. Tiedeman (1983). "Successful bone-marrow transplantation for reticular dysgenesis". Lancet (London, England). 1 (8326 Pt 1): 671–672. PMID 6132037. Unknown parameter
|month=
ignored (help) - ↑ M. O'Driscoll, K. M. Cerosaletti, P. M. Girard, Y. Dai, M. Stumm, B. Kysela, B. Hirsch, A. Gennery, S. E. Palmer, J. Seidel, R. A. Gatti, R. Varon, M. A. Oettinger, H. Neitzel, P. A. Jeggo & P. Concannon (2001). "DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency". Molecular cell. 8 (6): 1175–1185. PMID 11779494. Unknown parameter
|month=
ignored (help) - ↑ Dietke Buck, Laurent Malivert, Regina de Chasseval, Anne Barraud, Marie-Claude Fondaneche, Ozden Sanal, Alessandro Plebani, Jean-Louis Stephan, Markus Hufnagel, Francoise le Deist, Alain Fischer, Anne Durandy, Jean-Pierre de Villartay & Patrick Revy (2006). "Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly". Cell. 124 (2): 287–299. doi:10.1016/j.cell.2005.12.030. PMID 16439204. Unknown parameter
|month=
ignored (help) - ↑ J. D. Sipley, J. C. Menninger, K. O. Hartley, D. C. Ward, S. P. Jackson & C. W. Anderson (1995). "Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8". Proceedings of the National Academy of Sciences of the United States of America. 92 (16): 7515–7519. PMID 7638222. Unknown parameter
|month=
ignored (help) - ↑ K. Schwarz, G. H. Gauss, L. Ludwig, U. Pannicke, Z. Li, D. Lindner, W. Friedrich, R. A. Seger, T. E. Hansen-Hagge, S. Desiderio, M. R. Lieber & C. R. Bartram (1996). "RAG mutations in human B cell-negative SCID". Science (New York, N.Y.). 274 (5284): 97–99. PMID 8810255. Unknown parameter
|month=
ignored (help) - ↑ J. L. Stephan, V. Vlekova, F. Le Deist, S. Blanche, J. Donadieu, G. De Saint-Basile, A. Durandy, C. Griscelli & A. Fischer (1993). "Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients". The Journal of pediatrics. 123 (4): 564–572. PMID 8410508. Unknown parameter
|month=
ignored (help) - ↑ L. Li, D. Drayna, D. Hu, A. Hayward, S. Gahagan, H. Pabst & M. J. Cowan (1998). "The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p". American journal of human genetics. 62 (1): 136–144. doi:10.1086/301688. PMID 9443881. Unknown parameter
|month=
ignored (help) - ↑ Mach B, Steimle V, Martinez-Soria E, Reith W (1996). "Regulation of MHC class II genes: lessons from a disease". Annu. Rev. Immunol. 14: 301–31. doi:10.1146/annurev.immunol.14.1.301. PMID 8717517.
- ↑ Gorska MM, Alam R (February 2012). "A mutation in the human Uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia". Blood. 119 (6): 1399–406. doi:10.1182/blood-2011-04-350686. PMC 3286207. PMID 22184408.
- ↑ Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ (July 2011). "Second messenger role for Mg2+ revealed by human T-cell immunodeficiency". Nature. 475 (7357): 471–6. doi:10.1038/nature10246. PMC 3159560. PMID 21796205.
- ↑ Hubert P, Bergeron F, Ferreira V, Seligmann M, Oksenhendler E, Debre P, Autran B (April 2000). "Defective p56Lck activity in T cells from an adult patient with idiopathic CD4+ lymphocytopenia". Int. Immunol. 12 (4): 449–57. PMID 10744646.
- ↑ Lovatt M, Filby A, Parravicini V, Werlen G, Palmer E, Zamoyska R (November 2006). "Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response". Mol. Cell. Biol. 26 (22): 8655–65. doi:10.1128/MCB.00168-06. PMC 1636771. PMID 16966372.
- ↑ de la Calle-Martin O, Hernandez M, Ordi J, Casamitjana N, Arostegui JI, Caragol I, Ferrando M, Labrador M, Rodriguez-Sanchez JL, Espanol T (July 2001). "Familial CD8 deficiency due to a mutation in the CD8 alpha gene". J. Clin. Invest. 108 (1): 117–23. doi:10.1172/JCI10993. PMC 209336. PMID 11435463.