Adenocarcinoma of the lung pathophysiology: Difference between revisions

Jump to navigation Jump to search
Trushatank (talk | contribs)
No edit summary
Trushatank (talk | contribs)
Line 3: Line 3:
{{CMG}}; {{AE}} {{Trusha}}, {{SC}}, {{Cherry}}
{{CMG}}; {{AE}} {{Trusha}}, {{SC}}, {{Cherry}}
==Overview==
==Overview==
Adenocarcinoma is the most common type of lung cancer found in non-smokers and is usually seen as a peripheral lesion in the [[Lung|lungs]]. In past several years many genetic and environmental factors has been identified as a causative factor for lung cancer. Individual susceptibility, active [[smoking]], [[radon]] exposure, exposure to high pollution levels, [[asbestos]] exposure, occupational or environmental exposure to particular agents or [[Carcinogen|carcinogens]] contribute to the development of adenocarcinoma of the lung. [[Hydrocarbon|Hydrocarbons]] cause damage to the [[DNA]] and form DNA adducts. Benzo-A-pyrine has effects on inducing [[P53 (protein)|p53]] mutations and affects [[Signaling pathway|molecular signaling pathways]] such as [[AKT]]. [[Gene|Genes]] involved in the pathogenesis of adenocarcinoma of the lung include [[epidermal growth factor receptor|EGFR]], [[HER2]], [[KRAS]], [[anaplastic lymphoma kinase|ALK]], and [[BRAF]]. On gross pathology, peripheral multifocal lesions are characteristic findings in [[Patient|patients]] with adenocarcinoma of the lung. On microscopic histopathological analysis, nuclear atypia, eccentrically placed [[Cell nucleus|nuclei]], abundant [[cytoplasm]], and conspicuous [[Nucleolus|nucleoli]] are characteristic findings of adenocarcinoma of the lung.
Adenocarcinoma is the most common type of [[lung cancer]] found in non-smokers and is usually seen as a peripheral lesion in the [[Lung|lungs]]. In past several years many [[Genetics|genetic]] and [[Environmental factor|environmental factors]] has been identified as a [[Causality|causative factor]] for [[lung cancer]]. Individual [[Susceptible individual|susceptibility]], [[smoking|active smoking]], [[radon|radon exposure]], [[Air pollution|exposure to high pollution levels]], [[asbestos|asbestos exposure]], [[Occupational health|occupational]] or [[Environmental factor|environmental exposure]] to particular agents or [[Carcinogen|carcinogens]] contribute to the development of adenocarcinoma of the lung. [[Hydrocarbon|Hydrocarbons]] cause [[DNA damage|damage to the DNA]] and form [[DNA adduct|DNA adducts]]. [[Gene|Genes]] involved in the [[pathogenesis]] of adenocarcinoma of the lung include [[epidermal growth factor receptor|EGFR]], [[HER2]], [[KRAS]], [[anaplastic lymphoma kinase|ALK]], and [[BRAF]]. On [[gross pathology]], peripheral multifocal single or multiple solid firm yellow-white [[Nodule (medicine)|nodule]] or [[Tumor|mass]] which may invade into the [[pleura]] and cause [[Pleura|pleural]] retraction/puckering. Adenocarcinoma usually does not form a [[Cavity|cavitary lesion]]. It may present as a diffuse [[Pleural cavity|pleural]] thickening resembling [[Mesothelioma|malignant mesothelioma]]. On [[Histopathological|microscopic histopathological analysis]], [[Cell nucleus|nuclear atypia]], eccentrically placed [[Cell nucleus|nuclei]], abundant [[cytoplasm]], and conspicuous [[Nucleolus|nucleoli]] are characteristic findings of adenocarcinoma of the lung.


==Pathogenesis==
==Pathogenesis==
* Adenocarcinoma is the most common type of [[lung cancer]] found in non-smokers and is usually seen as a peripheral lesion in the [[Lung|lungs]], as compared to centrally located tumors such as [[small cell lung cancer]] and [[squamous cell]] lung cancer.<ref name="Travis95">{{cite journal |author=Travis WD, Travis LB, Devesa SS |title=Lung cancer |journal=Cancer |volume=75 |issue=1 Suppl |pages=191–202 |date=January 1995|pmid=8000996 |doi= 10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y|url=}}</ref><ref name="Kumar-adenocarcinoma">{{cite book |chapter=Chapter 13, box on morphology of adenocarcinoma |author=Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson |title=Robbins Basic Pathology|publisher=Saunders |location=Philadelphia |isbn=1-4160-2973-7 |edition=8th}}</ref>
* Adenocarcinoma is the most common type of [[lung cancer]] found in non-smokers and is usually seen as a peripheral lesion in the [[Lung|lungs]], as compared to centrally located [[Tumor|tumors]] such as [[small cell lung cancer]] and [[squamous cell]] lung cancer.<ref name="Travis95">{{cite journal |author=Travis WD, Travis LB, Devesa SS |title=Lung cancer |journal=Cancer |volume=75 |issue=1 Suppl |pages=191–202 |date=January 1995|pmid=8000996 |doi= 10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y|url=}}</ref><ref name="Kumar-adenocarcinoma">{{cite book |chapter=Chapter 13, box on morphology of adenocarcinoma |author=Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson |title=Robbins Basic Pathology|publisher=Saunders |location=Philadelphia |isbn=1-4160-2973-7 |edition=8th}}</ref>
* Lung cancer [[pathogenesis]] can be understood with the help of following [[hypothesis]].<ref name="KanwalDing2017">{{cite journal|last1=Kanwal|first1=Madiha|last2=Ding|first2=Xiao-Ji|last3=Cao|first3=Yi|title=Familial risk for lung cancer|journal=Oncology Letters|volume=13|issue=2|year=2017|pages=535–542|issn=1792-1074|doi=10.3892/ol.2016.5518}}</ref><ref name="KadaraScheet2016">{{cite journal|last1=Kadara|first1=H.|last2=Scheet|first2=P.|last3=Wistuba|first3=I. I.|last4=Spira|first4=A. E.|title=Early Events in the Molecular Pathogenesis of Lung Cancer|journal=Cancer Prevention Research|volume=9|issue=7|year=2016|pages=518–527|issn=1940-6207|doi=10.1158/1940-6207.CAPR-15-0400}}</ref><ref name="RasoWistuba2007">{{cite journal|last1=Raso|first1=Maria Gabriela|last2=Wistuba|first2=Ignacio I.|title=Molecular Pathogenesis of Early-Stage Non-small Cell Lung Cancer and a Proposal for Tissue Banking to Facilitate Identification of New Biomarkers|journal=Journal of Thoracic Oncology|volume=2|issue=7|year=2007|pages=S128–S135|issn=15560864|doi=10.1097/JTO.0b013e318074fe42}}</ref>
* Lung cancer [[pathogenesis]] can be understood with the help of following [[hypothesis]].<ref name="KanwalDing2017">{{cite journal|last1=Kanwal|first1=Madiha|last2=Ding|first2=Xiao-Ji|last3=Cao|first3=Yi|title=Familial risk for lung cancer|journal=Oncology Letters|volume=13|issue=2|year=2017|pages=535–542|issn=1792-1074|doi=10.3892/ol.2016.5518}}</ref><ref name="KadaraScheet2016">{{cite journal|last1=Kadara|first1=H.|last2=Scheet|first2=P.|last3=Wistuba|first3=I. I.|last4=Spira|first4=A. E.|title=Early Events in the Molecular Pathogenesis of Lung Cancer|journal=Cancer Prevention Research|volume=9|issue=7|year=2016|pages=518–527|issn=1940-6207|doi=10.1158/1940-6207.CAPR-15-0400}}</ref><ref name="RasoWistuba2007">{{cite journal|last1=Raso|first1=Maria Gabriela|last2=Wistuba|first2=Ignacio I.|title=Molecular Pathogenesis of Early-Stage Non-small Cell Lung Cancer and a Proposal for Tissue Banking to Facilitate Identification of New Biomarkers|journal=Journal of Thoracic Oncology|volume=2|issue=7|year=2007|pages=S128–S135|issn=15560864|doi=10.1097/JTO.0b013e318074fe42}}</ref>
* '''Familial lung cancer''':
* '''Familial lung cancer''':

Revision as of 18:10, 26 February 2019

Adenocarcinoma of the Lung Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Adenocarcinoma of the Lung from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

Staging

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Intervention

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Adenocarcinoma of the lung pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Adenocarcinoma of the lung pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Adenocarcinoma of the lung pathophysiology

CDC on Adenocarcinoma of the lung pathophysiology

Adenocarcinoma of the lung pathophysiology in the news

Blogs on Adenocarcinoma of the lung pathophysiology

Directions to Hospitals Treating Adenocarcinoma of the lung

Risk calculators and risk factors for Adenocarcinoma of the lung pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Trusha Tank, M.D.[2], Shanshan Cen, M.D. [3], Sudarshana Datta, MD [4]

Overview

Adenocarcinoma is the most common type of lung cancer found in non-smokers and is usually seen as a peripheral lesion in the lungs. In past several years many genetic and environmental factors has been identified as a causative factor for lung cancer. Individual susceptibility, active smoking, radon exposure, exposure to high pollution levels, asbestos exposure, occupational or environmental exposure to particular agents or carcinogens contribute to the development of adenocarcinoma of the lung. Hydrocarbons cause damage to the DNA and form DNA adducts. Genes involved in the pathogenesis of adenocarcinoma of the lung include EGFR, HER2, KRAS, ALK, and BRAF. On gross pathology, peripheral multifocal single or multiple solid firm yellow-white nodule or mass which may invade into the pleura and cause pleural retraction/puckering. Adenocarcinoma usually does not form a cavitary lesion. It may present as a diffuse pleural thickening resembling malignant mesothelioma. On microscopic histopathological analysis, nuclear atypia, eccentrically placed nuclei, abundant cytoplasm, and conspicuous nucleoli are characteristic findings of adenocarcinoma of the lung.

Pathogenesis

Field of injury and field cancerization

Genetics

Molecular pathogenesis of adenocarcinoma of the lung

Mutations TP53, KRAS, EGFR, NF1, BRAF, MET, RIT
Fusions ALK, ROS1, RET
SCNAs Gains: NKX2-1, TERT, EGFR, MET, KRAS, ERBB2, MDM2

Losses: LRP1B, PTPRD, and CDKN2A

Pathway alterations RTK/RAS/RAF

mTOR JAK-STAT DNA repair Cell cycle regulation Epigenetic deregulation

Environment

  • Although genetics play a significant role in the pathogenesis of lung cancer, it is thought that exposure to environmental risk factors plays an equally important role in the development of lung cancer.
  • The main causes of lung cancer include carcinogens (such as those present in tobacco smoke), ionizing radiation, and viral infections.
  • Chronic exposure results in cumulative alterations to the DNA in the tissue lining the bronchi of the lungs (the bronchial epithelium).
  • Irreversible DNA changes following exposure to carcinogens are directly associated with the development of lung cancer.[19]

Smoking

Radon gas

The association of radon gas exposure to lung cancer is described below:[23][24]

  • Radon is a colorless and odorless gas generated by the breakdown of radioactive radium (decay product of uranium) found in the Earth's crust. The radiation decay products ionize genetic material, causing mutations that sometimes turn cancerous.
  • Radon exposure is the second major cause of lung cancer following smoking.
  • The mechanism of lung damage following radon exposure is not thought to be due to the radon gas itself, but due to the short-lived alpha decay products that cause cellular damage and DNA mutations.

Asbestos

  • Asbestos exposure is associated with many lung diseases, including lung cancer.[25]
  • Tiny asbestos fibers are released into the air are breathed into the lungs. The fibers become lodged in the lungs and are stuck for an indefinite amount of time. They can eventually lead to scarring and inflammation.

Viruses

Infection and Inflammation

Gross Pathology

Gray-tan tumor seen predominantly at the periphery.
(Source: Libre pathology
  • Adenocarcinoma of the lung may be preceded by morphological changes such as atypical adenomatous hypertrophy (AAH) in peripheral airway cells.
  • AAH is a parenchymal lesion that arises in the alveoli close to terminal and respiratory bronchioles.
  • AAH lesions are small and usually incidental histological findings; however, they may be detected grossly, especially if they are 0.5 cm or larger.
  • AAH is characterized by an alveolar structure lined by rounded, cuboidal, or low columnar cells.
  • The postulated progression of AAH to adenocarcinoma with bronchioloalveolar features, apparent from the increasingly atypical morphology, is supported by morphometric, cyto-fluorometric, and molecular studies.
  • On gross pathology, peripheral multifocal lesions are characteristic findings in patients with adenocarcinoma of the lung.[32]
    • Single or multiple solid firm yellow-white nodule or mass which may invade into the pleura and cause pleural retraction / puckering.
    • Adenocarcinoma usually does not form a cavitary lesion.
    • Adenocarcinoma may present as a diffuse pleural thickening resembling malignant mesothelioma.


Microscopic Pathology

On microscopic histopathological analysis, nuclear atypia, eccentrically placed nuclei, abundant cytoplasm, and conspicuous nucleoli are characteristic findings of adenocarcinoma of the lung.

  • Atypical adenomatous hyperplasia (AAH): is the precursor of peripheral adenocarcinomas. It consists of well demarcated columnar or cuboidal cells with the following features:[33][34]
  • As adenocarcinoma is a derivative of mucus producing glands in the lungs, it tends to stain mucin positive.
  • Based on differentiation, the tumor may be:
    • Well differentiated (low grade) : Normal appearance
    • Poorly differentiated (high grade): Abnormal glandular appearance with a positive mucin stain

Histological Subtypes

  • The IASLC/ATS/ERS lung adenocarcinoma histologic classification system was proposed in the Journal of Thoracic Oncology in 2011.[35]
  • According to this new classification, tumor size ≤3 cm with pure lepidic pattern, but without lymphatic, vascular, pleural invasion or tumor necrosis was defined as adenocarcinoma in situ (AIS).
  • If tumor size ≤3 cm with a lepidic predominant pattern and contained ≤5 mm stromal invasion it was defined as minimally invasive adenocarcinoma (MIA).
  • If tumor had >5 mm stromal invasion it was defined as an invasive adenocarcinoma.
  • Histologically adenocarcinoma is divided in to following subtypes:[36][37][38][39][40][41]
    • Lepidic adenocarcinoma
      Micrograph showing an invasive carcinoma with a few areas of lepidic growth lining alveoli.
      Source: Pathology outlines
    • Acinar adenocarcinoma:
      Micrograph showing an adenocarcinoma of the lung (acinar pattern), H&E stain.
      Source: Libre pathology
      • Acinar pattern comprises infiltrating round to oval glands lined by tumor cells.
      • Irregular-shaped glands.
      • Malignant cells: Hyperchromatic nuclei, fibroblastic stroma.
      • Sometimes the glandular cells and lumina may contain mucin.
    • Papillary adenocarcinoma
      Micrograph showing papillary adenocarcinoma of the lung
      Source: Libre pathology
      • The papillary pattern is composed of glandular tumour cells growing along fibrovascular cores.
      • Papillae, necrosis, surrounding invasion, cuboidal to columnar epithelial lining, mucinous or non-mucinous.
      • Lung adenocarcinomas with papillary growth show 2 types of papillary architecture:
        • True papillary type: Papillae containing a layered glandular epithelium surrounded by fibrovascular core.
        • Micropapillary type: The papillary tufts lack a central fibrovascular core and extensively shed within alveolar spaces.
    • Micropapillary adenocarcinoma:
      • The papillary tufts lack a central fibrovascular core and extensively shed within alveolar spaces.
      • Micropapillary growth has been associated with an aggressive clinical course compared with traditional papillary adenocarcinoma.
      • Micropapillary adenocarcinoma (MPA) may be often diagnosed at a high stage in nonsmokers, with intralobar satellites.
      • Micropapillary adenocarcinoma frequently metastasizes to the contralateral lung, mediastinal lymph nodes, bone, and adrenal glands, with high mortality.
    • Solid adenocarcinoma
      • Cohesive cell cluster in a nest-like pattern without acinar polarity are the hallmark of the solid growth pattern.
      • Solid adenocarcinoma consists of sheets of tumor cells with abundant cytoplasm and mostly vesicular nuclei with several conspicuous nucleoli.
      • No acinar, papillary, or lepidic patterns are seen and there was no suggestion of mucin in tumor cell cytoplasm
    • Invasive mucinous adenocarcinoma
      Micrograph of mucinous adenocarcinoma of the lung, H&E stain.
      Source: Libre pathology
      • Mixed invasive mucinous: Invasive mucinous adenocarcinoma demonstrates areas with lepidic, acinar, and papillary patterns.
        • Fibrotic focus that contains invasive tumor with a desmoplastic stroma.
        • The tumor consists of columnar cells filled with abundant mucin in the apical cytoplasm and shows small, basally oriented nuclei.
      • Nonmucinous adenocarcinoma
    • Colloid adenocarcinoma:
      • This tumor consists of abundant pools of mucin growing within and distending airspaces.
      • Well differentiated mucinous glandular epithelium along the surface of fibrous septa and within the pools of mucin.
      • Tumor cells may be very inconspicuous.
      • The surface of the fibrous wall may be lined by well-differentiated cuboidal or columnar mucinous epithelium.
    • Fetal adenocarcinoma:
      • Fetal adenocarcinoma consists of malignant glandular cells growing in tubules and papillary structures with endometrioid morphology.
      • Some tumor cells have prominent clear cytoplasm, and squamoid morules are present
    • Enteric adenocarcinoma:
      • Consists of an adenocarcinoma that morphologically resembles colonic adenocarcinoma with back-to-back angulated acinar structures.
      • The tumor cells are cuboidal to columnar with nuclear pseudostratification.
      • The tumor stains strongly for CDX-2.
    • Minimally invasive adenocarcinoma (MIA)
      • Nonmucinous (MIA):
        • This subpleural adenocarcinoma tumor consists primarily of lepidic growth with a small (0.5 cm) central area of invasion.
        • It may present as the lepidic pattern and/or acinar invasion.
      • Mucinous (MIA):
        • Mucinous MIA consists of a tumor showing lepidic growth and a small (0.5 cm) area of invasion.
        • The tumor cells consist of mucinous columnar cells and pale cytoplasm resembling goblet cells growing mostly in a lepidic pattern along the surface of alveolar walls.
        • The tumor invades the areas of stromal fibrosis in an acinar pattern.
        • Low grade differentiation.
    • Preinvasive lesions
      • Atypical adenomatous hyperplasia (AAH): Consists of atypical pneumocytes proliferating along alveolar walls.
        • Non invasive.
        • The slightly atypical pneumocytes are cuboidal and show gaps between the cells.
        • Nuclei are hyperchromatic and may present with nuclear enlargement and multinucleation.
      • Adenocarcinoma in situ (AIS)
        • Nonmucinous (AIS): Tumor grows purely with a lepidic pattern.
          • No foci of invasion or scarring is seen.
          • It shows atypical pneumocytes proliferating along the thickened, but preserved, alveolar walls.
        • Mucinous AIS: Consists of a nodular proliferation of mucinous columnar cells growing in a purely lepidic pattern.
          • Although there is a small central scar, no stromal or vascular invasion is seen.
          • The tumor cells consist of cuboidal to columnar cells with abundant apical mucin and small, basally oriented nuclei.

References

  1. Travis WD, Travis LB, Devesa SS (January 1995). "Lung cancer". Cancer. 75 (1 Suppl): 191–202. doi:10.1002/1097-0142(19950101)75:1+<191::AID-CNCR2820751307>3.0.CO;2-Y. PMID 8000996.
  2. Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson. "Chapter 13, box on morphology of adenocarcinoma". Robbins Basic Pathology (8th ed.). Philadelphia: Saunders. ISBN 1-4160-2973-7.
  3. Kanwal, Madiha; Ding, Xiao-Ji; Cao, Yi (2017). "Familial risk for lung cancer". Oncology Letters. 13 (2): 535–542. doi:10.3892/ol.2016.5518. ISSN 1792-1074.
  4. Kadara, H.; Scheet, P.; Wistuba, I. I.; Spira, A. E. (2016). "Early Events in the Molecular Pathogenesis of Lung Cancer". Cancer Prevention Research. 9 (7): 518–527. doi:10.1158/1940-6207.CAPR-15-0400. ISSN 1940-6207.
  5. Raso, Maria Gabriela; Wistuba, Ignacio I. (2007). "Molecular Pathogenesis of Early-Stage Non-small Cell Lung Cancer and a Proposal for Tissue Banking to Facilitate Identification of New Biomarkers". Journal of Thoracic Oncology. 2 (7): S128–S135. doi:10.1097/JTO.0b013e318074fe42. ISSN 1556-0864.
  6. Wistuba II, Gazdar AF (2006). "Lung cancer preneoplasia". Annu Rev Pathol. 1: 331–48. doi:10.1146/annurev.pathol.1.110304.100103. PMID 18039118.
  7. Devarakonda, Siddhartha; Morgensztern, Daniel; Govindan, Ramaswamy (2015). "Genomic alterations in lung adenocarcinoma". The Lancet Oncology. 16 (7): e342–e351. doi:10.1016/S1470-2045(15)00077-7. ISSN 1470-2045.
  8. Kadara H, Scheet P, Wistuba II, Spira AE (July 2016). "Early Events in the Molecular Pathogenesis of Lung Cancer". Cancer Prev Res (Phila). 9 (7): 518–27. doi:10.1158/1940-6207.CAPR-15-0400. PMID 27006378.
  9. Auerbach, Oscar; Stout, A. P.; Hammond, E. Cuyler; Garfinkel, Lawrence (1961). "Changes in Bronchial Epithelium in Relation to Cigarette Smoking and in Relation to Lung Cancer". New England Journal of Medicine. 265 (6): 253–267. doi:10.1056/NEJM196108102650601. ISSN 0028-4793.
  10. Stewart, Bernard (2014). World cancer report 2014. Lyon, France Geneva, Switzerland: International Agency for Research on Cancer,Distributed by WHO Press, World Health Organization. ISBN 9283204298.
  11. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S; et al. (2007). "Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer". Nature. 448 (7153): 561–6. doi:10.1038/nature05945. PMID 17625570.
  12. Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM; et al. (2012). "Identifying and targeting ROS1 gene fusions in non-small cell lung cancer". Clin Cancer Res. 18 (17): 4570–9. doi:10.1158/1078-0432.CCR-12-0550. PMC 3703205. PMID 22919003.
  13. Stewart, Bernard (2014). World cancer report 2014. Lyon, France Geneva, Switzerland: International Agency for Research on Cancer,Distributed by WHO Press, World Health Organization. ISBN 9283204298.
  14. Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A.; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A.; Borecki, Ingrid B.; Broderick, Stephen; Chang, Andrew C.; Chiang, Derek Y.; Chirieac, Lucian R.; Cho, Jeonghee; Fujii, Yoshitaka; Gazdar, Adi F.; Giordano, Thomas; Greulich, Heidi; Hanna, Megan; Johnson, Bruce E.; Kris, Mark G.; Lash, Alex; Lin, Ling; Lindeman, Neal; Mardis, Elaine R.; McPherson, John D.; Minna, John D.; Morgan, Margaret B.; Nadel, Mark; Orringer, Mark B.; Osborne, John R.; Ozenberger, Brad; Ramos, Alex H.; Robinson, James; Roth, Jack A.; Rusch, Valerie; Sasaki, Hidefumi; Shepherd, Frances; Sougnez, Carrie; Spitz, Margaret R.; Tsao, Ming-Sound; Twomey, David; Verhaak, Roel G. W.; Weinstock, George M.; Wheeler, David A.; Winckler, Wendy; Yoshizawa, Akihiko; Yu, Soyoung; Zakowski, Maureen F.; Zhang, Qunyuan; Beer, David G.; Wistuba, Ignacio I.; Watson, Mark A.; Garraway, Levi A.; Ladanyi, Marc; Travis, William D.; Pao, William; Rubin, Mark A.; Gabriel, Stacey B.; Gibbs, Richard A.; Varmus, Harold E.; Wilson, Richard K.; Lander, Eric S.; Meyerson, Matthew (2007). "Characterizing the cancer genome in lung adenocarcinoma". Nature. 450 (7171): 893–898. doi:10.1038/nature06358. ISSN 0028-0836.
  15. Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL (October 1988). "Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung". Cancer Res. 48 (20): 5738–41. PMID 3048648.
  16. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson BE, Jänne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, Meyerson M (September 2012). "Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing". Cell. 150 (6): 1107–20. doi:10.1016/j.cell.2012.08.029. PMC 3557932. PMID 22980975.
  17. Hurlin, Peter J.; Huang, Jie (2006). "The MAX-interacting transcription factor network". Seminars in Cancer Biology. 16 (4): 265–274. doi:10.1016/j.semcancer.2006.07.009. ISSN 1044-579X.
  18. Devarakonda S, Morgensztern D, Govindan R (July 2015). "Genomic alterations in lung adenocarcinoma". Lancet Oncol. 16 (7): e342–51. doi:10.1016/S1470-2045(15)00077-7. PMID 26149886.
  19. Dela Cruz CS, Tanoue LT, Matthay RA (2011). "Lung cancer: epidemiology, etiology, and prevention". Clin. Chest Med. 32 (4): 605–44. doi:10.1016/j.ccm.2011.09.001. PMC 3864624. PMID 22054876.
  20. Morabia, Alfredo (2012). "Quality, originality, and significance of the 1939 "Tobacco consumption and lung carcinoma" article by Mueller, including translation of a section of the paper". Preventive Medicine. 55 (3): 171–177. doi:10.1016/j.ypmed.2012.05.008. ISSN 0091-7435.
  21. Hecht, S (Oct 2003). "Tobacco carcinogens, their biomarkers and tobacco-induced cancer". Nature Reviews. Cancer. Nature Publishing Group. 3 (10): 733–744. doi:10.1038/nrc1190. PMID 14570033. Retrieved 2007-08-10.
  22. Peto R, R (2006). Mortality from smoking in developed countries 1950–2000: Indirect estimates from National Vital Statistics. Oxford University Press. ISBN 0-19-262535-7. Retrieved 2007-08-10. Unknown parameter |coauthors= ignored (help)
  23. Catelinois, O (May 2006). "Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis". Environmental Health Perspectives. National Institute of Environmental Health Science. 114 (9): 1361–1366. doi:10.1289/ehp.9070. PMID 16966089. Retrieved 2007-08-10. Unknown parameter |coauthors= ignored (help)
  24. University of Minnesota.http://enhs.umn.edu/hazards/hazardssite/radon/radonmolaction.html#Anchor-Molecular-23240/
  25. Järvholm, Bengt; Åström, Evelina (2014). "The Risk of Lung Cancer After Cessation of Asbestos Exposure in Construction Workers Using Pleural Malignant Mesothelioma as a Marker of Exposure". Journal of Occupational and Environmental Medicine. 56 (12): 1297–1301. doi:10.1097/JOM.0000000000000258. ISSN 1076-2752.
  26. Leroux, C (Mar–Apr 2007). "Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep". Veterinary Research. 38 (2): 211–228. PMID 17257570. Unknown parameter |coauthors= ignored (help)
  27. Palmarini, M (November 2001). "Retrovirus-induced ovine pulmonary adenocarcinoma, an animal model for lung cancer". Journal of the National Cancer Institute. Oxford University Press. 93 (21): 1603–1614. PMID 11698564. Retrieved 2007-08-11. Unknown parameter |coauthors= ignored (help)
  28. Cheng, YW (Apr 2001). "The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women". Cancer Research. American Association for Cancer Research. 61 (7): 2799–2803. PMID 11306446. Retrieved 2007-08-11. Unknown parameter |coauthors= ignored (help)
  29. Zheng, H (May 2007). "Oncogenic role of JC virus in lung cancer". Journal of Pathology. 212 (3): 306–315. PMID 17534844. Unknown parameter |coauthors= ignored (help)
  30. Giuliani, L (Sep 2007). "Detection of oncogenic viruses (SV40, BKV, JCV, HCMV, HPV) and p53 codon 72 polymorphism in lung carcinoma". Lung Cancer. 57 (3): 273–281. PMID 17400331. Unknown parameter |coauthors= ignored (help)
  31. 31.0 31.1 Eric A Engels.11/30/11. Inflammation in the development of lung cancer:epidemiological evidence.Expert Review of Anticancer Therapy.Apr.2008.p605
  32. Adenocarcinoma of the lung. Librepathology 2015. http://librepathology.org/wiki/index.php/File:Adenocarcinoma_%283950819000%29.jpg
  33. Kumar, Vinay (2007). Robbins basic pathology. Philadelphia, PA: Saunders/Elsevier. ISBN 1416029737.
  34. Stewart, Bernard (2014). World cancer report 2014. Lyon, France Geneva, Switzerland: International Agency for Research on Cancer,Distributed by WHO Press, World Health Organization. ISBN 9283204298.
  35. . doi:10.3978/j.issn.2072-1439.2014.09.13. Missing or empty |title= (help)
  36. Travis, William (2004). Pathology and genetics of tumours of the lung, pleura, thymus, and heart. Lyon: IARC Press. ISBN 9283224183.
  37. "www.jto.org".
  38. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, Ishikawa Y, Wistuba I, Flieder DB, Franklin W, Gazdar A, Hasleton PS, Henderson DW, Kerr KM, Nakatani Y, Petersen I, Roggli V, Thunnissen E, Tsao M (May 2013). "Diagnosis of lung adenocarcinoma in resected specimens: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification". Arch. Pathol. Lab. Med. 137 (5): 685–705. doi:10.5858/arpa.2012-0264-RA. PMID 22913371.
  39. Iwata H (September 2016). "Adenocarcinoma containing lepidic growth". J Thorac Dis. 8 (9): E1050–E1052. doi:10.21037/jtd.2016.08.78. PMID 27747060.
  40. Jones KD (December 2013). "Whence lepidic?: the history of a Canadian neologism". Arch. Pathol. Lab. Med. 137 (12): 1822–4. doi:10.5858/arpa.2013-0144-HP. PMID 23937575.
  41. Lin, Gengpeng; Xie, Canmao (2017). "PUB070 Acinar-Predominant Pattern Correlates with Poorer Outcome in Invasive Mucinous Adenocarcinoma of the Lung". Journal of Thoracic Oncology. 12 (1): S1489. doi:10.1016/j.jtho.2016.11.2040. ISSN 1556-0864.


Template:WikiDoc Sources