Ectopic expression of CDX2 was reported in more than 85% of the human patients with acute myeloid leukemia (AML). Ectopic expression of Cdx2 in murine bone marrow induced AML in mice and upregulate Hox genes in bone marrow progenitors.[3][3][4] CDX2 is also implicated in the pathogenesis of Barrett's esophagus where it has been shown that components from gastroesophageal reflux such as bile acids are able to induce the expression of an intestinal differentiation program through up-regulation of NF-κB and CDX2.[5]
Biomarker for intestinal cancer
CDX2 is also used in diagnostic surgical pathology as a marker for gastrointestinal differentiation, especially colorectal.[6]
Possible use in stem cell research
This gene (or, more specifically, the equivalent gene in humans) has come up in the proposal by the President's Council on Bioethics, as a solution to the stem cell controversy.[7] According to one of the plans put forth, by deactivating the gene, it would not be possible for a properly organized embryo to form, thus providing stem cells without requiring the destruction of an embryo.[8] Other genes that have been proposed for this purpose include Hnf4, which is required for gastrulation.[7][9]
↑German MS, Wang J, Fernald AA, Espinosa R, Le Beau MM, Bell GI (Nov 1994). "Localization of the genes encoding two transcription factors, LMX1 and CDX3, regulating insulin gene expression to human chromosomes 1 and 13". Genomics. 24 (2): 403–4. doi:10.1006/geno.1994.1639. PMID7698771.
↑Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA (Apr 2006). "Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells". Gastroenterology. 130 (4): 1191–206. doi:10.1053/j.gastro.2005.12.032. PMID16618413.
↑Liu Q, Teh M, Ito K, Shah N, Ito Y, Yeoh KG (Dec 2007). "CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer". Modern Pathology. 20 (12): 1286–97. doi:10.1038/modpathol.3800968. PMID17906616.
↑ 10.010.1Hussain MA, Habener JF (Oct 1999). "Glucagon gene transcription activation mediated by synergistic interactions of pax-6 and cdx-2 with the p300 co-activator". The Journal of Biological Chemistry. 274 (41): 28950–7. doi:10.1074/jbc.274.41.28950. PMID10506141.
Inoue H, Riggs AC, Tanizawa Y, Ueda K, Kuwano A, Liu L, Donis-Keller H, Permutt MA (Jun 1996). "Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) gene". Diabetes. 45 (6): 789–94. doi:10.2337/diabetes.45.6.789. PMID8635654.
Mallo GV, Rechreche H, Frigerio JM, Rocha D, Zweibaum A, Lacasa M, Jordan BR, Dusetti NJ, Dagorn JC, Iovanna JL (Feb 1997). "Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis". International Journal of Cancer. 74 (1): 35–44. doi:10.1002/(SICI)1097-0215(19970220)74:1<35::AID-IJC7>3.0.CO;2-1. PMID9036867.
Chawengsaksophak K, James R, Hammond VE, Köntgen F, Beck F (Mar 1997). "Homeosis and intestinal tumours in Cdx2 mutant mice". Nature. 386 (6620): 84–7. doi:10.1038/386084a0. PMID9052785.
Walters JR, Howard A, Rumble HE, Prathalingam SR, Shaw-Smith CJ, Legon S (Aug 1997). "Differences in expression of homeobox transcription factors in proximal and distal human small intestine". Gastroenterology. 113 (2): 472–7. doi:10.1053/gast.1997.v113.pm9247466. PMID9247466.
Drummond F, Putt W, Fox M, Edwards YH (Sep 1997). "Cloning and chromosome assignment of the human CDX2 gene". Annals of Human Genetics. 61 (Pt 5): 393–400. doi:10.1046/j.1469-1809.1997.6150393.x. PMID9459001.
Yamamoto H, Miyamoto K, Li B, Taketani Y, Kitano M, Inoue Y, Morita K, Pike JW, Takeda E (Feb 1999). "The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine". Journal of Bone and Mineral Research. 14 (2): 240–7. doi:10.1359/jbmr.1999.14.2.240. PMID9933478.
Hussain MA, Habener JF (Oct 1999). "Glucagon gene transcription activation mediated by synergistic interactions of pax-6 and cdx-2 with the p300 co-activator". The Journal of Biological Chemistry. 274 (41): 28950–7. doi:10.1074/jbc.274.41.28950. PMID10506141.
Rings EH, Boudreau F, Taylor JK, Moffett J, Suh ER, Traber PG (Dec 2001). "Phosphorylation of the serine 60 residue within the Cdx2 activation domain mediates its transactivation capacity". Gastroenterology. 121 (6): 1437–50. doi:10.1053/gast.2001.29618. PMID11729123.
Mizoshita T, Inada K, Tsukamoto T, Kodera Y, Yamamura Y, Hirai T, Kato T, Joh T, Itoh M, Tatematsu M (2002). "Expression of Cdx1 and Cdx2 mRNAs and relevance of this expression to differentiation in human gastrointestinal mucosa--with special emphasis on participation in intestinal metaplasia of the human stomach". Gastric Cancer. 4 (4): 185–91. doi:10.1007/PL00011741. PMID11846061.
Eda A, Osawa H, Yanaka I, Satoh K, Mutoh H, Kihira K, Sugano K (2002). "Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia". Journal of Gastroenterology. 37 (2): 94–100. doi:10.1007/s005350200002. PMID11871772.
Moucadel V, Totaro MS, Dell CD, Soubeyran P, Dagorn JC, Freund JN, Iovanna JL (Sep 2002). "The homeobox gene Cdx1 belongs to the p53-p21(WAF)-Bcl-2 network in intestinal epithelial cells". Biochemical and Biophysical Research Communications. 297 (3): 607–15. doi:10.1016/S0006-291X(02)02250-7. PMID12270138.
Song BL, Qi W, Wang CH, Yang JB, Yang XY, Lin ZX, Li BL (Jan 2003). "Preparation of an anti-Cdx-2 antibody for analysis of different species Cdx-2 binding to acat2 promoter". Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica et Biophysica Sinica. 35 (1): 6–12. PMID12518221.