Forkhead box protein P1 is a protein that in humans is encoded by the FOXP1gene. FOXP1 is necessary for the proper development of the brain, heart, and lung in mammals. It is a member of the large FOX family of transcription factors.
This gene belongs to subfamily P of the forkhead box (FOX) transcription factor family. Forkhead box transcription factors play important roles in the regulation of tissue- and cell type-specific gene transcription during both development and adulthood. Forkhead box P1 protein contains both DNA-binding- and protein-protein binding-domains. This gene may act as a tumor suppressor as it is lost in several tumor types and maps to a chromosomal region (3p14.1) reported to contain a tumor suppressor gene(s). Alternative splicing results in multiple transcript variants encoding different isoforms.[1]
Foxp1 is a transcription factor; specifically it is a transcriptional repressor. Fox genes are part of a forkhead DNA-binding domain family. This domain binds to sequences in promoters and enhancers of many genes. Foxp1 regulates a variety of important aspects of development including tissue development of: the lungs, brain, thymus and heart. In the heart Foxp1 has 3 vital roles, these include the regulation of cardiac myocyte maturation and proliferation, outflow tract separation of the pulmonary artery and aorta, and expression of Sox4 in cushions and myocardium. Foxp1 is also an important gene in muscle development of the esophagus and esophageal epithelium. Foxp1 is also an important regulator of lung airway morphogenesis. Foxp1 knockout embryos display severe defects in cardiac morphogenesis. A few of these defects include myocyte maturation and proliferation defects that cause a thin ventricular myocardial compact zone, non-separation of the pulmonary artery and aorta, and cardiomyocyte proliferation increase and defective differentiation. These defects, caused by Foxp1 inactivation, lead to fetal death. Disruptions of FoxP1 have been identified in very rare human patients and – similarly to FoxP2 - lead to cognitive dysfunction, including intellectual disability and autism spectrum disorder, together with language impairment.[2]
It was shown that the embryonic stem cell (ESC)-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an Alternative splicing event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.[3]
Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, Gatter K, Jones M, Mason DY, Prime JE, Trougouboff P, Wood K, Cordell JL (2002). "The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p". Cancer Res. 61 (24): 8820–9. PMID11751404.
Wolska MK, Bukowski K, Jakubczak A (2002). "[Occurrence of beta-lactamase type ESBL and IBL in Pseudomonas aeruginosa rods]". Medycyna doświadczalna i mikrobiologia. 53 (1): 45–51. PMID11757404.
Wang B, Lin D, Li C, Tucker P (2003). "Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors". J. Biol. Chem. 278 (27): 24259–68. doi:10.1074/jbc.M207174200. PMID12692134.
Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004). "Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction". J. Neurosci. 24 (13): 3152–63. doi:10.1523/JNEUROSCI.5589-03.2004. PMID15056695.
Fox SB, Brown P, Han C, Ashe S, Leek RD, Harris AL, Banham AH (2004). "Expression of the forkhead transcription factor FOXP1 is associated with estrogen receptor alpha and improved survival in primary human breast carcinomas". Clin. Cancer Res. 10 (10): 3521–7. doi:10.1158/1078-0432.CCR-03-0461. PMID15161711.
Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A (2005). "T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma". Leukemia. 19 (4): 652–8. doi:10.1038/sj.leu.2403644. PMID15703784.
Banham AH, Connors JM, Brown PJ, Cordell JL, Ott G, Sreenivasan G, Farinha P, Horsman DE, Gascoyne RD (2005). "Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma". Clin. Cancer Res. 11 (3): 1065–72. PMID15709173.
Brown P, Marafioti T, Kusec R, Banham AH (2007). "The FOXP1 transcription factor is expressed in the majority of follicular lymphomas but is rarely expressed in classical and lymphocyte predominant Hodgkin's lymphoma". J. Mol. Histol. 36 (4): 249–56. doi:10.1007/s10735-005-6521-3. PMID16200457.
Giatromanolaki A, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2006). "Loss of expression and nuclear/cytoplasmic localization of the FOXP1 forkhead transcription factor are common events in early endometrial cancer: relationship with estrogen receptors and HIF-1alpha expression". Mod. Pathol. 19 (1): 9–16. doi:10.1038/modpathol.3800494. PMID16258506.
Sagaert X, de Paepe P, Libbrecht L, Vanhentenrijk V, Verhoef G, Thomas J, Wlodarska I, De Wolf-Peeters C (2006). "Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma". J. Clin. Oncol. 24 (16): 2490–7. doi:10.1200/JCO.2006.05.6150. PMID16636337.
Haralambieva E, Adam P, Ventura R, Katzenberger T, Kalla J, Höller S, Hartmann M, Rosenwald A, Greiner A, Muller-Hermelink HK, Banham AH, Ott G (2007). "Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation". Leukemia. 20 (7): 1300–3. doi:10.1038/sj.leu.2404244. PMID16673020.
Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrisey EE, Margulies KB, Cappola TP (2006). "Transcriptional genomics associates FOX transcription factors with human heart failure". Circulation. 114 (12): 1269–76. doi:10.1161/CIRCULATIONAHA.106.632430. PMID16952980.
Weiguo Shu, Min Min Lu, Yuzhen Zhang, Philip W. Tucker, Deying Zhou, and Edward E. Morrisey. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 2007 134:1991-2000; published ahead of print April 11, 2007, doi:10.1242/dev.02846PMID17428829
Bin Wang, Joel Weidenfeld, Min Min Lu, Shanna Maika, William A. Kuziel, Edward E. Morrisey, and Philip W. Tucker. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 2004 131:4477-4487; doi:10.1242/dev.01287