NF-κB has been detected in numerous cell types that express cytokines, chemokines, growth factors, cell adhesion molecules, and some acute phase proteins in health and in various disease states. NF-κB is activated by a wide variety of stimuli such as cytokines, oxidant-free radicals, inhaled particles, ultraviolet irradiation, and bacterial or viral products. Inappropriate activation of NF-kappa-B has been linked to inflammatory events associated with autoimmune arthritis, asthma, septic shock, lung fibrosis, glomerulonephritis, atherosclerosis, and AIDS. In contrast, complete and persistent inhibition of NF-kappa-B has been linked directly to apoptosis, inappropriate immune cell development, and delayed cell growth. For reviews, see Chen et al. (1999) and Baldwin (1996).[supplied by OMIM][2]
Clinical significance
Mutation of the NFKB2 gene has been linked to Common variable immunodeficiency (CVID) as the cause of the disease. Other genes might also be responsible. The frequency of NFKB2 mutation in CVID population is yet to be established.[3]
The protein NFKB2 can become mutated and lead to hereditary endocrine and immuneodeficiences.[4] The mutation occurs at the C-terminus of NFKB2 and it causes common variable immunodeficienciency which in turn causes endocrine deficiency and immunodeficiencies.[4] A NFKB2 mutation can cause things like adrenocorticotropic hormone deficiency and DAVID syndrome which is a pituitary hormone deficiency and CVID.[4][5]
The mutations that occur within the C-terminus affect the serine 866 and 870.[5] These serines are considered phosphorylation sites for NFKB2.[5] These mutations at the serine’s in the C-terminus lead to CVID in combination with other endocrine deficiencies. These endocrine deficiencies along with the mutation of NFKB2, lead scientists to believe that mutation of NFKB2 is a rare hereditary disease called DAVID’s disease.[4]
↑Schmid RM, Perkins ND, Duckett CS, Andrews PC, Nabel GJ (Aug 1991). "Cloning of an NF-kappa B subunit which stimulates HIV transcription in synergy with p65". Nature. 352 (6337): 733–6. doi:10.1038/352733a0. PMID1876189.
↑ 6.06.1Thornburg NJ, Pathmanathan R, Raab-Traub N (Dec 2003). "Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma". Cancer Research. 63 (23): 8293–301. PMID14678988.
↑Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U (Mar 1993). "The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers". Cell. 72 (5): 729–39. doi:10.1016/0092-8674(93)90401-b. PMID8453667.
↑Fong A, Sun SC (Jun 2002). "Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100". The Journal of Biological Chemistry. 277 (25): 22111–4. doi:10.1074/jbc.C200151200. PMID11994270.
↑Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L, D'Adamio F, Riccardi C (Aug 2001). "Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB". Blood. 98 (3): 743–53. doi:10.1182/blood.v98.3.743. PMID11468175.
Further reading
Schreck R, Albermann K, Baeuerle PA (1993). "Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review)". Free Radical Research Communications. 17 (4): 221–37. doi:10.3109/10715769209079515. PMID1473734.
Baldwin AS (1996). "The NF-kappa B and I kappa B proteins: new discoveries and insights". Annual Review of Immunology. 14 (1): 649–83. doi:10.1146/annurev.immunol.14.1.649. PMID8717528.
Chen F, Castranova V, Shi X, Demers LM (Jan 1999). "New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases". Clinical Chemistry. 45 (1): 7–17. PMID9895331.
Bottex-Gauthier C, Pollet S, Favier A, Vidal DR (Apr 2002). "[The Rel/NF-kappa-B transcription factors: complex role in cell regulation]". Pathologie-Biologie. 50 (3): 204–11. doi:10.1016/s0369-8114(02)00289-4. PMID11980335.
Garg A, Aggarwal BB (Jun 2002). "Nuclear transcription factor-kappaB as a target for cancer drug development". Leukemia. 16 (6): 1053–68. doi:10.1038/sj.leu.2402482. PMID12040437.