COVID-19 future or investigational therapies: Difference between revisions
Gerald Chi- (talk | contribs) |
|||
Line 19: | Line 19: | ||
*[[Chloroquine]]/[[Hydroxychloroquine]] | *[[Chloroquine]]/[[Hydroxychloroquine]] | ||
*[[Arbidol]] | *[[Arbidol]] | ||
* Remdesivir | * [[Remdesivir]] | ||
* Favipiravir | * Favipiravir | ||
== Ongoing Clinical Trials== | == Ongoing Clinical Trials== |
Revision as of 18:36, 11 July 2020
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
COVID-19 future or investigational therapies On the Web |
American Roentgen Ray Society Images of COVID-19 future or investigational therapies |
Risk calculators and risk factors for COVID-19 future or investigational therapies |
For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here
For COVID-19 patient information, click here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Syed Hassan A. Kazmi BSc, MD [2] Sabawoon Mirwais, M.B.B.S, M.D.[3] Huda A. Karman, M.D.
Overview
The investigational therapies for COVID-19 is an area of vast research due to its global health impact. Many world-renowned research scientists and pharmaceutical companies have joined hands to address the health impact of COVID-19 on the human race. Investigational therapies include both preventative and treatment based strategies.
Future or Investigational Therapies
The following pharmacological therapies are currently under investigation as potentials to treat COVID-19:
- Dexamethasone
- Chloroquine/Hydroxychloroquine
- Arbidol
- Remdesivir
- Favipiravir
Ongoing Clinical Trials
The RECOVERY Trial
- University of Oxford
- A large interventional randomised controlled trial
- Open label
- To investigate whether any of the assigned treatment arms prevents death in patients with COVID-19 (COVID-19 therapy evaluation)
- Over 11,800 patients admitted to hospital with COVID-19
- Factorial Assignment where patients are randomly assigned to multiple treatment arms vs usual care
- Main randomisation (part A): Random allocation between 5 treatment arms
- Main randomisation (part B): Simultaneously random allocation between
- Convalescent plasma (Biological)
- No additional treatment
- Subsequent randomisation
- Optional second randomisation
- For participants with progressive COVID-19 (as evidenced by hypoxia and an inflammatory state)
Corticosteroid
- One arm of RECOVERY Trial
- Corticosteroid turns down the inflammatory response (overreaction) caused by Cytokine storm
- Used for patients with the severe acute respiratory syndrome (ventilated or hypoxic patients)
Intervention:
- Dexamethasone: Oral (liquid or tablets) or intravenous, 6 mg once daily for 10 days
Pregnancy or breastfeeding women
- Prednisolone: Oral, 40 mg or
- Hydrocortisone: Intravenous 80 mg twice daily
Results:
- Reduced mortality by one third, from 40% to 25% in ventilated patients (29.0% vs. 40.7%, RR 0.65 [95% CI 0.51 to 0.82]; p<0.001)
- Reduced mortality by one fifth, from 25% to 20% in patients requiring oxygen (21.5% vs. 25.0%, RR 0.80 [95% CI 0.70 to 0.92]; p=0.002)
- No reduced mortality in patients not receiving respiratory support at randomization (17.0% vs. 13.2%, RR 1.22 [95% CI 0.93 to 1.61]; p=0.14)
- Increased mortality rate among patients who were not receiving respiratory support (no statistically significant difference)[1]
Conclusion
- Dexamethasone reduced the 28-day mortality by one-third among hospitalized patients on mechanical ventilators and by one-fifth among hospitalized patients receiving supplemental oxygen by other means[2]
- Dexamethasone increased the mortality rate in mildly ill patients[1]
- Dexamethasone might have disparate effects at different stages of the disease[1]
- One arm of RECOVERY Trial
Intervention
- Lopinavir 400mg-Ritonavir: 100mg, Oral (or nasogastric tube) every 12 hours for 10 days
End Result[3]
- In June 29, the trial Steering Committee concluded that there is no beneficial effect of lopinavir-ritonavir in patients hospitalised with COVID-19 and closed randomisation to that treatment arm.
Hydroxychloroquine
- One arm of RECOVERY Trial
Intervention
- Hydroxychloroquine by mouth for a total of 10 days
Result[4]
- In June 4th, the independent Data Monitoring Committee have concluded that there is no beneficial effect of hydroxychloroquine in patients hospitalised with COVID-19
- The committee decided to stop enrolling participants to the hydroxychloroquine arm of the RECOVERY Trial with immediate effect
Azithromycin
- One arm of RECOVERY Trial
Intervention
- Azithromycin 500mg by mouth (or nasogastric tube) or intravenously once daily for 10 days.
Tocilizumab
- One arm of RECOVERY Trial
- Intervention
Convalescent plasma
- One arm of RECOVERY Trial
Intervention
- Single unit of ABO compatible convalescent plasma (275mls +/- 75 mls) intravenous per day on study days 1 (as soon as possible after randomisation) and 2 (with a minimum of 12 hour interval between 1st and 2nd units)
Other Clinical Trials
Favipiravir
- Mechanism of action of favipiravir is selectively inhibits RNA polymerase.[5]
- In USA, phase 2 clinical trials are going in collaboration with Brigham and Women's Hospital, Massachusetts General Hospital, and the University of Massachusetts Medical School on with favipiravir with approximately 50 patients who are positive for COVID-19.
- In Japan, phase 3 clinical trials are going on with favipiravir on COVID-19 patients.
- In India, Phase III clinical trials with favipiravir along with umifenovir is started in May 2020.
- Recently in India favipiravir was approved by the Drug Controller General of India (DCGI) to treat mild to moderates cases of COVID-19 patients but it is strictly limited to emergency use only.
Remdesivir [ClinicalTrials.gov number, NCT04280705]
- In a first COVID-19 treatment EMA’s human medicines committee (CHMP) recommended remdesivir for EU authorization in a preliminary report.[6]
- A total of 1063 patients underwent randomization in the remdesivir double-blind, placebo-controlled trial.
- Intravenous remdesivir used in adult hospitalized COVID-19 patients in a double-blind, randomized, placebo-controlled trial.
- Dosage of remdesivir 200 mg loading dose on day 1, which is followed by 100 mg daily for up to 9 additional days or a placebo for up-to 10 days in the random trail.
CONCLUSIONS
- Remdesivir treatment was shown results superior to placebo in the outcome of shortening the time to recovery in adults who are hospitalized with Covid-19.
- Remdesivir treatment was also shown superior to placebo in the evidence of lower respiratory tract infection in adults who are hospitalized with Covid-19.
SOLIDARITY Clinical Trial
- WHO and partners have launched an in an international clinical trial to help find an effective treatment for COVID-19. It will compare four treatment options against the standard of care, to assess their relative effectiveness against COVID-19.
- On 17 June 2020, WHO announced that the hydroxychloroquine (HCQ) arm of the Solidarity Trial to find an effective COVID-19 treatment was being stopped.
Chloroquine/Hydroxycholoroquine
- A a randomized, double-blind, placebo-controlled trial across the United States and parts of Canada testing hydroxychloroquine as postexposure prophylaxis found that after high-risk or moderate-risk exposure to Covid-19, hydroxychloroquine did not prevent illness compatible with Covid-19 or confirmed infection when used as postexposure prophylaxis within 4 days after exposure.[7]
- The incidence of a new illness compatible with Covid-19 did not differ significantly between participants receiving hydroxychloroquine (49 of 414 [11.8%]) and those receiving placebo (58 of 407 [14.3%]).
- Side effects were more common with hydroxychloroquine than with placebo (40.1% vs. 16.8%), but no serious adverse reactions were reported.
- NIH halts clinical trial of hydroxychloroquine.
- The US Govt NIAID & NIH stop trial evaluating hydroxychloroquine and azithromycin to prevent hospitalization & death from COVID19 because study leadership & DSMB determined that the rate of participant enrollment was inadequate to meet trial objectives.
FDA approved Phase II and III clinical trials
- Clinical study to evaluate the performance and safety of favipiravir in COVID-19 NCT04336904
- Ruxolitinib in Covid-19 Patients With Defined hyper inflammation (RuxCoFlam) NCT04338958
- Study to evaluate the safety and Antiviral Activity of Remdesivir (GS-5734™) in Participants With Moderate Coronavirus Disease (COVID-19) Compared to Standard of Care Treatment NCT04292730
- Tocilizumab in the Treatment of Coronavirus Induced Disease (COVID-19) (CORON-ACT) NCT04335071
- A Study of Quintuple Therapy to Treat COVID-19 Infection (HAZDpaC Hydroxychloroquine, azithromycin, vitamin C, Vitamin D, zinc) [Phase II] NCT04334512
- An Adaptive Phase 2/3, Randomized, Double-Blind, Placebo-Controlled Study Assessing Efficacy and Safety of Sarilumab for Hospitalized Patients With COVID-19
- A Multi-center, Randomized, Parallel-Controlled Clinical Trial of the Application of A Hydrogen-Oxygen Generator With Nebulizer in the Improvement of Symptoms in Patients Infected With COVID-19
- A Randomized, Double-blind, Placebo-controlled, Multi-site, Phase III Study to Evaluate the Safety and Efficacy of CD24Fc in COVID-19 Treatment
- Use of cSVF For Residual Lung Damage COPD/Fibrotic Lung Disease After Symptomatic COVID-19 Infection For Residual Pulmonary Injury or Post-Adult Respiratory Distress Syndrome Following Viral Infection
- A Pragmatic Adaptive Open-Label, Randomized Phase II/III Multicenter Study of IFX-1 in Patients With Severe COVID-19 Pneumonia
- Chloroquine Phosphate Against Infection by the Novel Coronavirus SARS-CoV-2: The HOPE Open-Label, Non-Randomized Clinical Trial
- A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Leronlimab for Mild to Moderate Coronavirus Disease 2019 (COVID-19)
- A Phase 1b, Randomized, Double-blinded, Placebo-controlled Study of Hydroxychloroquine in Outpatient Adults With COVID-19
Vaccine
- AstraZeneca is a potential coronavirus vaccine that is likely to provide protection against contracting Covid-19 for about a year
Immune Targets
- The B cell and T cell epitopes derived from the spike (S) and nucleocapsid (N) proteins are currently under investigation as immune targets for the development of a vaccine.
- Phylogenetic similarity between SARS-CoV and COVID-19 at the level of structural proteins S, E, M, and N is providing guidance for the development of a possible vaccine.
Current Clinical Trials
The following countries are currently working on the development of a vaccine for COVID-19 (SARS-CoV2)
USA
- Beth Israel Deaconess Medical Center (BIDMC), Boston, and Johnson & Johnson (J&J) are currently collaborating to advance the COVID-19 vaccine. A Phase I trial is expected to launch during the last quarter of 2020. AdVac and PER.C6 technologies are being used for rapid production.
- National Institute for Allergy and Infectious Diseases (NIAID) has announced that a phase 1 trial has begun for COVID-19 immunization in Washington state.
- The trial includes 45 young, healthy volunteers with different doses of immunization shots co-developed by NIH and Moderna Inc.
- The Moderna prophylactic vaccine is developing an mRNA vaccine against COVID-19. This cohort study completed its second phase and ready to enter the third phase.
Israel
- Researchers at Israel’s Institute for Biological Research are expected to announce in the coming days that they have completed development of a vaccine for COVID-19
China
- China was the first country to release the genetic sequence of the virus on open scientific databases so that research institutes and commercial companies could try to develop treatments and vaccines without needing to obtain samples.
- China has announced the first animal tests.
Australia
- Following successful in vitro experiments, animal testing has begun in the University of Queensland in Australia
Prior Work
The following table depicts major vaccine products that have been developed against SARS-CoV and MERS-CoV:[8][9]
Vaccine Base | Antigen | Clinical Testing | Pros | Cons |
---|---|---|---|---|
DNA |
|
Phase I, II
(NCT03721718) |
|
|
mRNA | Phase I, II
(NCT04283461) |
|||
Viral Vector |
|
Phase I
(NCT03399578, NCT03615911) |
|
|
Conjugated subunit |
|
|
| |
Virion |
|
|
| |
Inactivated |
|
|
| |
Live attenuated |
|
|
References
- ↑ 1.0 1.1 1.2 "Breakthrough Drug for Covid-19 May Be Risky for Mild Cases - The New York Times".
- ↑ "Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report | medRxiv".
- ↑ "No clinical benefit from use of hydroxychloroquine in hospitalised patients with COVID-19 — RECOVERY Trial".
- ↑ Furuta Y, Komeno T, Nakamura T (2017). "Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase". Proc Jpn Acad Ser B Phys Biol Sci. 93 (7): 449–463. doi:10.2183/pjab.93.027. PMC 5713175. PMID 28769016.
- ↑ Beigel, John H.; Tomashek, Kay M.; Dodd, Lori E.; Mehta, Aneesh K.; Zingman, Barry S.; Kalil, Andre C.; Hohmann, Elizabeth; Chu, Helen Y.; Luetkemeyer, Annie; Kline, Susan; Lopez de Castilla, Diego; Finberg, Robert W.; Dierberg, Kerry; Tapson, Victor; Hsieh, Lanny; Patterson, Thomas F.; Paredes, Roger; Sweeney, Daniel A.; Short, William R.; Touloumi, Giota; Lye, David Chien; Ohmagari, Norio; Oh, Myoung-don; Ruiz-Palacios, Guillermo M.; Benfield, Thomas; Fätkenheuer, Gerd; Kortepeter, Mark G.; Atmar, Robert L.; Creech, C. Buddy; Lundgren, Jens; Babiker, Abdel G.; Pett, Sarah; Neaton, James D.; Burgess, Timothy H.; Bonnett, Tyler; Green, Michelle; Makowski, Mat; Osinusi, Anu; Nayak, Seema; Lane, H. Clifford (2020). "Remdesivir for the Treatment of Covid-19 — Preliminary Report". New England Journal of Medicine. doi:10.1056/NEJMoa2007764. ISSN 0028-4793.
- ↑ Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, Skipper CP, Nascene AA, Nicol MR, Abassi M, Engen NW, Cheng MP, LaBar D, Lother SA, MacKenzie LJ, Drobot G, Marten N, Zarychanski R, Kelly LE, Schwartz IS, McDonald EG, Rajasingham R, Lee TC, Hullsiek KH (June 2020). "A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19". N. Engl. J. Med. doi:10.1056/NEJMoa2016638. PMID 32492293 Check
|pmid=
value (help). - ↑ Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Zhu H, Zhao W, Han Y, Qin C (January 2019). "From SARS to MERS, Thrusting Coronaviruses into the Spotlight". Viruses. 11 (1). doi:10.3390/v11010059. PMC 6357155. PMID 30646565.
- ↑ Schindewolf C, Menachery VD (January 2019). "Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism". Viruses. 11 (1). doi:10.3390/v11010074. PMC 6356267. PMID 30658390.