COVID-19 medical therapy: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 80: Line 80:
*[[Azithromycin]] has been effective in the treatment of [[Zika]] and [[Ebola]] viruses and prevented severe respiratory tract infection.<ref name="pmid27911847">{{cite journal |vauthors=Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Mancia Leon WR, Krencik R, Ullian EM, Spatazza J, Pollen AA, Mandel-Brehm C, Nowakowski TJ, Kriegstein AR, DeRisi JL |title=Zika virus cell tropism in the developing human brain and inhibition by azithromycin |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=113 |issue=50 |pages=14408–14413 |date=December 2016 |pmid=27911847 |pmc=5167169 |doi=10.1073/pnas.1618029113 |url=}}</ref>
*[[Azithromycin]] has been effective in the treatment of [[Zika]] and [[Ebola]] viruses and prevented severe respiratory tract infection.<ref name="pmid27911847">{{cite journal |vauthors=Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Mancia Leon WR, Krencik R, Ullian EM, Spatazza J, Pollen AA, Mandel-Brehm C, Nowakowski TJ, Kriegstein AR, DeRisi JL |title=Zika virus cell tropism in the developing human brain and inhibition by azithromycin |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=113 |issue=50 |pages=14408–14413 |date=December 2016 |pmid=27911847 |pmc=5167169 |doi=10.1073/pnas.1618029113 |url=}}</ref>
* Mechanism of action is binding to [[50S subunit]] of the [[bacteria ribosom]],then inhibition of  translation of [[mRNA]].
* Mechanism of action is binding to [[50S subunit]] of the [[bacteria ribosom]],then inhibition of  translation of [[mRNA]].
* Effects of [[azithromycin]] in treatment of viral respiratory tract infection include:1. antibacterial coverage 2.immunomodulatory and anti-inflammatory effects.  
* Effects of [[azithromycin]] in treatment of viral respiratory tract infection include:1. antibacterial coverage 2.immunomodulatory and anti-inflammatory effects.<ref name="GautretLagier2020">{{cite journal|last1=Gautret|first1=Philippe|last2=Lagier|first2=Jean-Christophe|last3=Parola|first3=Philippe|last4=Hoang|first4=Van Thuan|last5=Meddeb|first5=Line|last6=Mailhe|first6=Morgane|last7=Doudier|first7=Barbara|last8=Courjon|first8=Johan|last9=Giordanengo|first9=Valérie|last10=Vieira|first10=Vera Esteves|last11=Dupont|first11=Hervé Tissot|last12=Honoré|first12=Stéphane|last13=Colson|first13=Philippe|last14=Chabrière|first14=Eric|last15=La Scola|first15=Bernard|last16=Rolain|first16=Jean-Marc|last17=Brouqui|first17=Philippe|last18=Raoult|first18=Didier|title=Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial|journal=International Journal of Antimicrobial Agents|year=2020|pages=105949|issn=09248579|doi=10.1016/j.ijantimicag.2020.105949}}</ref>


* A trial in france reported  %100 viral clearance in nasopharengeal swap after recieving [[hydroxychloroquine]] with [[azithromycin]].<ref name="GautretLagier2020">{{cite journal|last1=Gautret|first1=Philippe|last2=Lagier|first2=Jean-Christophe|last3=Parola|first3=Philippe|last4=Hoang|first4=Van Thuan|last5=Meddeb|first5=Line|last6=Mailhe|first6=Morgane|last7=Doudier|first7=Barbara|last8=Courjon|first8=Johan|last9=Giordanengo|first9=Valérie|last10=Vieira|first10=Vera Esteves|last11=Dupont|first11=Hervé Tissot|last12=Honoré|first12=Stéphane|last13=Colson|first13=Philippe|last14=Chabrière|first14=Eric|last15=La Scola|first15=Bernard|last16=Rolain|first16=Jean-Marc|last17=Brouqui|first17=Philippe|last18=Raoult|first18=Didier|title=Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial|journal=International Journal of Antimicrobial Agents|year=2020|pages=105949|issn=09248579|doi=10.1016/j.ijantimicag.2020.105949}}</ref>
* A trial in france reported  %100 viral clearance in nasopharengeal swap after recieving [[hydroxychloroquine]] with [[azithromycin]].<ref name="GautretLagier2020">{{cite journal|last1=Gautret|first1=Philippe|last2=Lagier|first2=Jean-Christophe|last3=Parola|first3=Philippe|last4=Hoang|first4=Van Thuan|last5=Meddeb|first5=Line|last6=Mailhe|first6=Morgane|last7=Doudier|first7=Barbara|last8=Courjon|first8=Johan|last9=Giordanengo|first9=Valérie|last10=Vieira|first10=Vera Esteves|last11=Dupont|first11=Hervé Tissot|last12=Honoré|first12=Stéphane|last13=Colson|first13=Philippe|last14=Chabrière|first14=Eric|last15=La Scola|first15=Bernard|last16=Rolain|first16=Jean-Marc|last17=Brouqui|first17=Philippe|last18=Raoult|first18=Didier|title=Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial|journal=International Journal of Antimicrobial Agents|year=2020|pages=105949|issn=09248579|doi=10.1016/j.ijantimicag.2020.105949}}</ref>
Line 87: Line 87:
===[[Vitamin C]] (Ascorbic Acid) ===
===[[Vitamin C]] (Ascorbic Acid) ===


* Effects of [[Vitamin C]] in viral agents include''':'''
* Effects of [[Vitamin C]] in viral agents include:<ref name="pmid29534432">{{cite journal |vauthors=van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV, Bos GMJ |title=Influence of Vitamin C on Lymphocytes: An Overview |journal=Antioxidants (Basel) |volume=7 |issue=3 |pages= |date=March 2018 |pmid=29534432 |pmc=5874527 |doi=10.3390/antiox7030041 |url=}}</ref>


# Maturation of [[T lymphocytes]] and [[NK]]( [[natural killer]]) cells that are involved in the immune response to viral agents.
# Maturation of [[T lymphocytes]] and [[NK]]( [[natural killer]]) cells that are involved in the immune response to viral agents.
Line 93: Line 93:
# Remodulation of the [[cytokine]] network in systemic inflammatory syndrome.
# Remodulation of the [[cytokine]] network in systemic inflammatory syndrome.


* Study in [[COVID-19]] patients in china showed administration of high dose IV,[[Vitamin C]] (1500mg per day) in moderate and severe cases was correlated with improvement in [[oxygenation indexes]] and recovery.
* Study in [[COVID-19]] patients in china showed administration of high dose IV,[[Vitamin C]] (1500mg per day) in moderate and severe cases was correlated with improvement in [[oxygenation indexes]] and recovery.<ref name="pmid32328576">{{cite journal |vauthors=Cheng RZ |title=Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? |journal=Med Drug Discov |volume=5 |issue= |pages=100028 |date=March 2020 |pmid=32328576 |pmc=7167497 |doi=10.1016/j.medidd.2020.100028 |url=}}</ref>


===[[Corticosteroids]]===
===[[Corticosteroids]]===
Line 102: Line 102:
==== Methylprednisolone ====
==== Methylprednisolone ====


* Effects of low doses of [[methylprednisolone]] in [[COVID-19]] include:
* Effects of low doses of [[methylprednisolone]] in [[COVID-19]] include:<ref name="pmid30097460">{{cite journal |vauthors=Lamontagne F, Rochwerg B, Lytvyn L, Guyatt GH, Møller MH, Annane D, Kho ME, Adhikari NKJ, Machado F, Vandvik PO, Dodek P, Leboeuf R, Briel M, Hashmi M, Camsooksai J, Shankar-Hari M, Baraki MK, Fugate K, Chua S, Marti C, Cohen D, Botton E, Agoritsas T, Siemieniuk RAC |title=Corticosteroid therapy for sepsis: a clinical practice guideline |journal=BMJ |volume=362 |issue= |pages=k3284 |date=August 2018 |pmid=30097460 |pmc=6083439 |doi=10.1136/bmj.k3284 |url=}}</ref><ref name="pmid32043983">{{cite journal |vauthors=Russell CD, Millar JE, Baillie JK |title=Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury |journal=Lancet |volume=395 |issue=10223 |pages=473–475 |date=February 2020 |pmid=32043983 |pmc=7134694 |doi=10.1016/S0140-6736(20)30317-2 |url=}}</ref>
 
# Controlled of  [[hypercytokinemia]]
# Controlled of  [[hypercytokinemia]]
# Anti-inflammatory effect in superimposed infection in [[COVID-19]]
# Anti-inflammatory effect in superimposed infection in [[COVID-19]]
# Increased blood pressure when it is low
# Increased blood pressure when it is low
# Decreased risk of death in [[ARDS]] related [[COVID-19]]  
# Decreased risk of death in [[ARDS]] related [[COVID-19]]<ref name="pmid32167524">{{cite journal |vauthors=Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y |title=Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China |journal=JAMA Intern Med |volume= |issue= |pages= |date=March 2020 |pmid=32167524 |pmc=7070509 |doi=10.1001/jamainternmed.2020.0994 |url=}}</ref>


==== Dexamethasone ====
==== Dexamethasone ====


* The recommended [[dose]] of [[dexamethasone]] for [[COVID-19]] is 6 mg IV once daily or po x 10 days<ref name="urlSanford Guide" />
* The recommended [[dose]] of [[dexamethasone]] for [[COVID-19]] is 6 mg IV once daily or po x 10 days<ref name="urlSanford Guide" />
* Effects of [[Dexamethasone|dexamethason]] in [[ARDS]] related [[COVID-19]] include:<ref name="pmid32043983">{{cite journal |vauthors=Russell CD, Millar JE, Baillie JK |title=Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury |journal=Lancet |volume=395 |issue=10223 |pages=473–475 |date=February 2020 |pmid=32043983 |pmc=7134694 |doi=10.1016/S0140-6736(20)30317-2 |url=}}</ref>
* Effects of [[Dexamethasone|dexamethason]] in [[ARDS]] related [[COVID-19]] include:<ref name="pmid32043983">{{cite journal |vauthors=Russell CD, Millar JE, Baillie JK |title=Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury |journal=Lancet |volume=395 |issue=10223 |pages=473–475 |date=February 2020 |pmid=32043983 |pmc=7134694 |doi=10.1016/S0140-6736(20)30317-2 |url=}}</ref><ref name="pmid32043986">{{cite journal |vauthors=Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E, Conesa LA, Martín-Rodríguez C, Díaz-Domínguez FJ, Serna-Grande P, Rivas R, Ferreres J, Belda J, Capilla L, Tallet A, Añón JM, Fernández RL, González-Martín JM |title=Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial |journal=Lancet Respir Med |volume=8 |issue=3 |pages=267–276 |date=March 2020 |pmid=32043986 |doi=10.1016/S2213-2600(19)30417-5 |url=}}</ref>


# Decreased days of [[intubation]]
# Decreased days of [[intubation]]
Line 121: Line 120:
===[[Niclosamide]] and [[Ivermectin]]===
===[[Niclosamide]] and [[Ivermectin]]===


*Mechanism of action is the Inhibition of binding of [[Coronavirus, SARS associated|coronavirus]] onto the cells.
*Mechanism of action is the Inhibition of binding of [[Coronavirus, SARS associated|coronavirus]] onto the cells.<ref name="pmid15215127">{{cite journal |vauthors=Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, Lin RK, Chao YS, Hsu JT |title=Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide |journal=Antimicrob. Agents Chemother. |volume=48 |issue=7 |pages=2693–6 |date=July 2004 |pmid=15215127 |pmc=434198 |doi=10.1128/AAC.48.7.2693-2696.2004 |url=}}</ref>


*[[Niclosamid]] inhibits replication of [[MERS-COV]] AND [[SARS-COV-2|SARS-COV-2.]]
*[[Niclosamid]] inhibits replication of [[MERS-COV]] AND [[SARS-COV-2|SARS-COV-2.]].<ref name="pmid31852899">{{cite journal |vauthors=Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, Zannas AS, Herrmann A, Holsboer F, Brack-Werner R, Boshart M, Müller-Myhsok B, Drosten C, Müller MA, Rein T |title=SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection |journal=Nat Commun |volume=10 |issue=1 |pages=5770 |date=December 2019 |pmid=31852899 |pmc=6920372 |doi=10.1038/s41467-019-13659-4 |url=}}</ref>


*[[Ivermectin]] inhibits viral replication in dengue virus, [[flavivirus]],[[influenza]]. <ref name="pmid31852899">{{cite journal |vauthors=Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, Zannas AS, Herrmann A, Holsboer F, Brack-Werner R, Boshart M, Müller-Myhsok B, Drosten C, Müller MA, Rein T |title=SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection |journal=Nat Commun |volume=10 |issue=1 |pages=5770 |date=December 2019 |pmid=31852899 |pmc=6920372 |doi=10.1038/s41467-019-13659-4 |url=}}</ref>
*[[Ivermectin]] inhibits viral replication in dengue virus, [[flavivirus]],[[influenza]]. <ref name="pmid31852899">{{cite journal |vauthors=Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, Zannas AS, Herrmann A, Holsboer F, Brack-Werner R, Boshart M, Müller-Myhsok B, Drosten C, Müller MA, Rein T |title=SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection |journal=Nat Commun |volume=10 |issue=1 |pages=5770 |date=December 2019 |pmid=31852899 |pmc=6920372 |doi=10.1038/s41467-019-13659-4 |url=}}</ref>
* FDA approved Ivermectin for treatment of SARS-COV-2. The study showed [[Ivermectin]] inhibited [[SARS-COV-2]]  replication up to 5000 fold at 48 h in vitro.  
* FDA approved Ivermectin for treatment of SARS-COV-2. The study showed [[Ivermectin]] inhibited [[SARS-COV-2]]  replication up to 5000 fold at 48 h in vitro.<ref name="CalyDruce2020">{{cite journal|last1=Caly|first1=Leon|last2=Druce|first2=Julian D.|last3=Catton|first3=Mike G.|last4=Jans|first4=David A.|last5=Wagstaff|first5=Kylie M.|title=The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro|journal=Antiviral Research|volume=178|year=2020|pages=104787|issn=01663542|doi=10.1016/j.antiviral.2020.104787}}</ref>


=== Convalescent Plasma ===
=== Convalescent Plasma ===
Line 132: Line 131:
*Convalescent Plasma is Transfusion of plasma loaded with antibodies after improvement from [[COVID-19]].
*Convalescent Plasma is Transfusion of plasma loaded with antibodies after improvement from [[COVID-19]].


* Studies in Taiwan and South Korea showed clinical benefits in severe cases of [[SARS-COV]] and [[MERS]]
* Studies in Taiwan and South Korea showed clinical benefits in severe cases of [[SARS-COV]] and [[MERS]].<ref name="pmid16183666">{{cite journal |vauthors=Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, Wan HL, Chen JH, Hu BS, Perng CL, Lu JJ, Chang FY |title=Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital |journal=J. Antimicrob. Chemother. |volume=56 |issue=5 |pages=919–22 |date=November 2005 |pmid=16183666 |pmc=7110092 |doi=10.1093/jac/dki346 |url=}}</ref>
* Pilot study in [[COVID19]] showed symptoms improvement including [[fever]], [[cough]], [[tightness of breath]],[[chest pain]].
* Pilot study in [[COVID19]] showed symptoms improvement including [[fever]], [[cough]], [[tightness of breath]],[[chest pain]].<ref name="pmid32253318">{{cite journal |vauthors=Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X |title=Effectiveness of convalescent plasma therapy in severe COVID-19 patients |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=117 |issue=17 |pages=9490–9496 |date=April 2020 |pmid=32253318 |pmc=7196837 |doi=10.1073/pnas.2004168117 |url=}}</ref>


* Serious side effects were not reported.<ref name="pmid32253318">{{cite journal |vauthors=Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X |title=Effectiveness of convalescent plasma therapy in severe COVID-19 patients |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=117 |issue=17 |pages=9490–9496 |date=April 2020 |pmid=32253318 |pmc=7196837 |doi=10.1073/pnas.2004168117 |url=}}</ref>
* Serious side effects were not reported.<ref name="pmid32253318">{{cite journal |vauthors=Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X |title=Effectiveness of convalescent plasma therapy in severe COVID-19 patients |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=117 |issue=17 |pages=9490–9496 |date=April 2020 |pmid=32253318 |pmc=7196837 |doi=10.1073/pnas.2004168117 |url=}}</ref>
Line 141: Line 140:


*In COVID-19 hypercoagulable state induces micro-macro-vascular [[thrombosis]].
*In COVID-19 hypercoagulable state induces micro-macro-vascular [[thrombosis]].
* Predictors of poor outcome in COVID-19 include: Disseminated intravascular [[Coagulopathy|coagulation]] , high level of [[D-dimer]].
* Predictors of poor outcome in COVID-19 include: Disseminated intravascular [[Coagulopathy|coagulation]] , high level of [[D-dimer]].<ref name="pmid32073213">{{cite journal |vauthors=Tang N, Li D, Wang X, Sun Z |title=Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia |journal=J. Thromb. Haemost. |volume=18 |issue=4 |pages=844–847 |date=April 2020 |pmid=32073213 |pmc=7166509 |doi=10.1111/jth.14768 |url=}}</ref>
*[[Mortality]] with [[anticoagulant therapy]] was decreased in COVID-19.
*[[Mortality]] with [[anticoagulant therapy]] was decreased in COVID-19.


* Efficacy of [[heparin]] in [[COVID-19]] includes  : 1.anti inflammatory properties,2. prevention of viral attachment via changing in [[covid 19]] spike protein 3.anticoagulation effect.
* Efficacy of [[heparin]] in [[COVID-19]] includes  : 1.anti inflammatory properties,2. prevention of viral attachment via changing in [[covid 19]] spike protein 3.anticoagulation effect. <ref name="Mycroft-WestSu2020">{{cite journal|last1=Mycroft-West|first1=Courtney|last2=Su|first2=Dunhao|last3=Elli|first3=Stefano|last4=Li|first4=Yong|last5=Guimond|first5=Scott|last6=Miller|first6=Gavin|last7=Turnbull|first7=Jeremy|last8=Yates|first8=Edwin|last9=Guerrini|first9=Marco|last10=Fernig|first10=David|last11=Lima|first11=Marcelo|last12=Skidmore|first12=Mark|year=2020|doi=10.1101/2020.02.29.971093}}</ref>


*<nowiki/>Efficacy of [[low molecular weight hepari]]<nowiki/>n in [[COVID-19]] includes:
*<nowiki/>Efficacy of [[low molecular weight hepari]]<nowiki/>n in [[COVID-19]] includes:

Revision as of 14:31, 10 August 2020

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 medical therapy

CDC on COVID-19 medical therapy

COVID-19 medical therapy in the news

Blogs on COVID-19 medical therapy

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sara Zand, M.D.[2], Syed Hassan A. Kazmi BSc, MD [3],Sabawoon Mirwais, M.B.B.S, M.D.[4]

Overview

COVID-19 is an inflammatory hypercytokinemia disease. The aim of therapy is prevention of viral replication and controlling the inflammatory process.

Antiviral Agents

Remdesivir

+

  1. Significant reduction in viral load in bronchoaleolar lavage
  2. Inhibition of SARS-COV-2 replication in nasal and bronchial airway epithelial cells.
  • Remdesivir Indicates only for in-hospital setting in Severe COVID-19 disease.
  • The recommended dose of remdesivir in COVID-19 is::[3]
    • Adult dosing (wt > 40 kg): 200 mg IV loading dose on day 1, then 100 mg IV daily maintenance dose
      • Infuse each dose over 30-120 min
      • 5 day course if not on ventilation/ECMO. If no clinical improvement at 5 days, extend to 10 days
      • 10 day course for patients on mechanical ventilation/ECMO
    • Pediatric dosing (wt 3.5 - 40 kg): 5 mg/kg loading dose on day 1, then 2.5 mg/kg maintenance dose
      • 5 day course if not on ventilation/ECMO. If no clinical improvement at 5 days, extend to 10 days
      • 10 day course for patients on mechanical ventilation/ECMO
  1. Severe renal impairment (eGFR <30 ml/min)
  2. Severe hepatic dysfunction or alanin transferase (ALT)ᐳ 5-times upper limit

Hydroxychloroquine and Chloroquine


Lopinavir-Ritonavir or kalerta

  • Lopinavir-Ritonavir Inhibits the activity of the HIV-1 protease.
  • In an open-label randomized controlled trial, the comparison between patients with COVID-19 received either lopinavir-ritonavir 400/100 mg, orally twice daily plus standard of care or standard care alone showed no benefit of administration of lopinavir-ritonavir.[6]
  • Only one study in Korea in the initial phase of outbreak accepted using this combination.[7]
  • Side effects: Diarrhea, nausea, asthenia

Umifenovir (Arbidol)

Favipiravir (Avigan)

  • Favipiravir has been used in 2014 in Japan for the treatment of influenza resistant to neuraminidase inhibitors and has been used in the treatment of infectious diseases caused by RNA viruses such as influenza, Ebola, and norovirus.[12] [13]
  • Mechanism of action: after entering the infected cells and being phosphorylated, inhibits viral RNA replication.
  • SARS-CoV-2 is an enveloped, positive-sense, single-strand RNA virus and studies showed the efficacy of favipiravir on SARS-COV-2.
  • A randomized control trial has shown that COVID-19 patients treated with favipiravir have superior recovery rate (71.43%) than that treated with umifenovir (55.86%), and the duration of fever and cough relief time are significantly shorter in favipiravir group than in umifenovir group. [11]
  • Two randomized and nonrandomized controlled trials are evaluating the safety and efficacy of favipiravir for treatment of COVID-19 disease.

Oseltamivir (Tamiflu)

Supportive Agents

Azithromycin

  • Azithromycin has been effective in the treatment of Zika and Ebola viruses and prevented severe respiratory tract infection.[17]
  • Mechanism of action is binding to 50S subunit of the bacteria ribosom,then inhibition of translation of mRNA.
  • Effects of azithromycin in treatment of viral respiratory tract infection include:1. antibacterial coverage 2.immunomodulatory and anti-inflammatory effects.[18]
  • A trial in france reported  %100 viral clearance in nasopharengeal swap after recieving hydroxychloroquine with azithromycin.[18]
  • Data about benefits of azithromycin in COVID-19 disease is still inadequate and needs further evaluation.

Vitamin C (Ascorbic Acid)

  1. Maturation of T lymphocytes and NK( natural killer) cells that are involved in the immune response to viral agents.
  2. Inhibition of reactive oxygen species (ROS) production
  3. Remodulation of the cytokine network in systemic inflammatory syndrome.
  • Study in COVID-19 patients in china showed administration of high dose IV,Vitamin C (1500mg per day) in moderate and severe cases was correlated with improvement in oxygenation indexes and recovery.[20]

Corticosteroids

Methylprednisolone

  1. Controlled of hypercytokinemia
  2. Anti-inflammatory effect in superimposed infection in COVID-19
  3. Increased blood pressure when it is low
  4. Decreased risk of death in ARDS related COVID-19[23]

Dexamethasone

  1. Decreased days of intubation
  2. Decreased mortality


Niclosamide and Ivermectin

  • Mechanism of action is the Inhibition of binding of coronavirus onto the cells.[25]

Convalescent Plasma

  • Convalescent Plasma is Transfusion of plasma loaded with antibodies after improvement from COVID-19.
  • Serious side effects were not reported.[29]
  • There is no randomized trial data to assess the efficacy of convalescent plasma in COVID-19.

Anticoagulation

  • Efficacy of heparin in COVID-19 includes  : 1.anti inflammatory properties,2. prevention of viral attachment via changing in covid 19 spike protein 3.anticoagulation effect. [31]

Ibuprofen

Tucilizumab (Actemra)

  • Tocilizumab is a monoclonal antibody that binds to IL-6 receptor on the cells and prevents inflammatory response.
  • Study in Wuhan showed significant clinical improvement in severe COVID-19 patients.
  • Tucilizumab is indicated in COVID-19 patients with the following criteria:
  1. Hypoxia
  2. Lung infiltration on CXR
  3. High inflammatory markers(CRP>3g/dl,ferritin>400ng/dl
  4. Clinical deterioration
  • Contraindications of tocilizumab include as followings:
  1. Confirmed bacterial or fungal infection
  2. Platelet count<100000/cc
  3. Neutrophil count<2000/cc
  4. Alanin aminotrasferase or aspartat aminotransferase >5times upper limit normal

References

  1. Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, Neville S, Carra E, Lew W, Ross B, Wang Q, Wolfe L, Jordan R, Soloveva V, Knox J, Perry J, Perron M, Stray KM, Barauskas O, Feng JY, Xu Y, Lee G, Rheingold AL, Ray AS, Bannister R, Strickley R, Swaminathan S, Lee WA, Bavari S, Cihlar T, Lo MK, Warren TK, Mackman RL (March 2017). "Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses". J. Med. Chem. 60 (5): 1648–1661. doi:10.1021/acs.jmedchem.6b01594. PMC 7202039 Check |pmc= value (help). PMID 28124907.
  2. Grein, Jonathan; Ohmagari, Norio; Shin, Daniel; Diaz, George; Asperges, Erika; Castagna, Antonella; Feldt, Torsten; Green, Gary; Green, Margaret L.; Lescure, François-Xavier; Nicastri, Emanuele; Oda, Rentaro; Yo, Kikuo; Quiros-Roldan, Eugenia; Studemeister, Alex; Redinski, John; Ahmed, Seema; Bernett, Jorge; Chelliah, Daniel; Chen, Danny; Chihara, Shingo; Cohen, Stuart H.; Cunningham, Jennifer; D’Arminio Monforte, Antonella; Ismail, Saad; Kato, Hideaki; Lapadula, Giuseppe; L’Her, Erwan; Maeno, Toshitaka; Majumder, Sumit; Massari, Marco; Mora-Rillo, Marta; Mutoh, Yoshikazu; Nguyen, Duc; Verweij, Ewa; Zoufaly, Alexander; Osinusi, Anu O.; DeZure, Adam; Zhao, Yang; Zhong, Lijie; Chokkalingam, Anand; Elboudwarej, Emon; Telep, Laura; Timbs, Leighann; Henne, Ilana; Sellers, Scott; Cao, Huyen; Tan, Susanna K.; Winterbourne, Lucinda; Desai, Polly; Mera, Robertino; Gaggar, Anuj; Myers, Robert P.; Brainard, Diana M.; Childs, Richard; Flanigan, Timothy (2020). "Compassionate Use of Remdesivir for Patients with Severe Covid-19". New England Journal of Medicine. 382 (24): 2327–2336. doi:10.1056/NEJMoa2007016. ISSN 0028-4793.
  3. 3.0 3.1 3.2 "Sanford Guide".
  4. Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (2014). "Chloroquine is a zinc ionophore". PLoS ONE. 9 (10): e109180. doi:10.1371/journal.pone.0109180. PMC 4182877. PMID 25271834.
  5. Skipper, Caleb P.; Pastick, Katelyn A.; Engen, Nicole W.; Bangdiwala, Ananta S.; Abassi, Mahsa; Lofgren, Sarah M.; Williams, Darlisha A.; Okafor, Elizabeth C.; Pullen, Matthew F.; Nicol, Melanie R.; Nascene, Alanna A.; Hullsiek, Kathy H.; Cheng, Matthew P.; Luke, Darlette; Lother, Sylvain A.; MacKenzie, Lauren J.; Drobot, Glen; Kelly, Lauren E.; Schwartz, Ilan S.; Zarychanski, Ryan; McDonald, Emily G.; Lee, Todd C.; Rajasingham, Radha; Boulware, David R. (2020). "Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19". Annals of Internal Medicine. doi:10.7326/M20-4207. ISSN 0003-4819.
  6. Cao, Bin; Wang, Yeming; Wen, Danning; Liu, Wen; Wang, Jingli; Fan, Guohui; Ruan, Lianguo; Song, Bin; Cai, Yanping; Wei, Ming; Li, Xingwang; Xia, Jiaan; Chen, Nanshan; Xiang, Jie; Yu, Ting; Bai, Tao; Xie, Xuelei; Zhang, Li; Li, Caihong; Yuan, Ye; Chen, Hua; Li, Huadong; Huang, Hanping; Tu, Shengjing; Gong, Fengyun; Liu, Ying; Wei, Yuan; Dong, Chongya; Zhou, Fei; Gu, Xiaoying; Xu, Jiuyang; Liu, Zhibo; Zhang, Yi; Li, Hui; Shang, Lianhan; Wang, Ke; Li, Kunxia; Zhou, Xia; Dong, Xuan; Qu, Zhaohui; Lu, Sixia; Hu, Xujuan; Ruan, Shunan; Luo, Shanshan; Wu, Jing; Peng, Lu; Cheng, Fang; Pan, Lihong; Zou, Jun; Jia, Chunmin; Wang, Juan; Liu, Xia; Wang, Shuzhen; Wu, Xudong; Ge, Qin; He, Jing; Zhan, Haiyan; Qiu, Fang; Guo, Li; Huang, Chaolin; Jaki, Thomas; Hayden, Frederick G.; Horby, Peter W.; Zhang, Dingyu; Wang, Chen (2020). "A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19". New England Journal of Medicine. 382 (19): 1787–1799. doi:10.1056/NEJMoa2001282. ISSN 0028-4793.
  7. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, Choe KW, Kang YM, Lee B, Park SJ (February 2020). "Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR". J. Korean Med. Sci. 35 (6): e79. doi:10.3346/jkms.2020.35.e79. PMC 7025910 Check |pmc= value (help). PMID 32056407 Check |pmid= value (help).
  8. Pécheur EI, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW, Polyak SJ (January 2016). "The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses". J. Virol. 90 (6): 3086–92. doi:10.1128/JVI.02077-15. PMC 4810626. PMID 26739045.
  9. Villalaín J (July 2010). "Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes". J Phys Chem B. 114 (25): 8544–54. doi:10.1021/jp102619w. PMID 20527735.
  10. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z, Xia J (July 2020). "Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study". J. Infect. 81 (1): e1–e5. doi:10.1016/j.jinf.2020.03.002. PMC 7156152 Check |pmc= value (help). PMID 32171872 Check |pmid= value (help).
  11. 11.0 11.1 Chen, Chang; Zhang, Yi; Huang, Jianying; Yin, Ping; Cheng, Zhenshun; Wu, Jianyuan; Chen, Song; Zhang, Yongxi; Chen, Bo; Lu, Mengxin; Luo, Yongwen; Ju, Lingao; Zhang, Jingyi; Wang, Xinghuan (2020). doi:10.1101/2020.03.17.20037432. Missing or empty |title= (help)
  12. Furuta Y, Komeno T, Nakamura T (2017). "Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase". Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 93 (7): 449–463. doi:10.2183/pjab.93.027. PMC 5713175. PMID 28769016.
  13. De Clercq E (November 2019). "New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections". Chem Asian J. 14 (22): 3962–3968. doi:10.1002/asia.201900841. PMC 7159701 Check |pmc= value (help). PMID 31389664.
  14. McClellan K, Perry CM (2001). "Oseltamivir: a review of its use in influenza". Drugs. 61 (2): 263–83. doi:10.2165/00003495-200161020-00011. PMID 11270942.
  15. Wang, Dawei; Hu, Bo; Hu, Chang; Zhu, Fangfang; Liu, Xing; Zhang, Jing; Wang, Binbin; Xiang, Hui; Cheng, Zhenshun; Xiong, Yong; Zhao, Yan; Li, Yirong; Wang, Xinghuan; Peng, Zhiyong (2020). "Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China". JAMA. 323 (11): 1061. doi:10.1001/jama.2020.1585. ISSN 0098-7484.
  16. Rosa S, Santos WC (2020). "Clinical trials on drug repositioning for COVID-19 treatment". Rev. Panam. Salud Publica. 44: e40. doi:10.26633/RPSP.2020.40. PMC 7105280 Check |pmc= value (help). PMID 32256547 Check |pmid= value (help). Vancouver style error: initials (help)
  17. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Mancia Leon WR, Krencik R, Ullian EM, Spatazza J, Pollen AA, Mandel-Brehm C, Nowakowski TJ, Kriegstein AR, DeRisi JL (December 2016). "Zika virus cell tropism in the developing human brain and inhibition by azithromycin". Proc. Natl. Acad. Sci. U.S.A. 113 (50): 14408–14413. doi:10.1073/pnas.1618029113. PMC 5167169. PMID 27911847.
  18. 18.0 18.1 Gautret, Philippe; Lagier, Jean-Christophe; Parola, Philippe; Hoang, Van Thuan; Meddeb, Line; Mailhe, Morgane; Doudier, Barbara; Courjon, Johan; Giordanengo, Valérie; Vieira, Vera Esteves; Dupont, Hervé Tissot; Honoré, Stéphane; Colson, Philippe; Chabrière, Eric; La Scola, Bernard; Rolain, Jean-Marc; Brouqui, Philippe; Raoult, Didier (2020). "Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial". International Journal of Antimicrobial Agents: 105949. doi:10.1016/j.ijantimicag.2020.105949. ISSN 0924-8579.
  19. van Gorkom G, Klein Wolterink R, Van Elssen C, Wieten L, Germeraad W, Bos G (March 2018). "Influence of Vitamin C on Lymphocytes: An Overview". Antioxidants (Basel). 7 (3). doi:10.3390/antiox7030041. PMC 5874527. PMID 29534432. Vancouver style error: initials (help)
  20. Cheng RZ (March 2020). "Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?". Med Drug Discov. 5: 100028. doi:10.1016/j.medidd.2020.100028. PMC 7167497 Check |pmc= value (help). PMID 32328576 Check |pmid= value (help).
  21. Lamontagne F, Rochwerg B, Lytvyn L, Guyatt GH, Møller MH, Annane D, Kho ME, Adhikari N, Machado F, Vandvik PO, Dodek P, Leboeuf R, Briel M, Hashmi M, Camsooksai J, Shankar-Hari M, Baraki MK, Fugate K, Chua S, Marti C, Cohen D, Botton E, Agoritsas T, Siemieniuk R (August 2018). "Corticosteroid therapy for sepsis: a clinical practice guideline". BMJ. 362: k3284. doi:10.1136/bmj.k3284. PMC 6083439. PMID 30097460. Vancouver style error: initials (help)
  22. 22.0 22.1 Russell CD, Millar JE, Baillie JK (February 2020). "Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury". Lancet. 395 (10223): 473–475. doi:10.1016/S0140-6736(20)30317-2. PMC 7134694 Check |pmc= value (help). PMID 32043983 Check |pmid= value (help).
  23. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y (March 2020). "Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China". JAMA Intern Med. doi:10.1001/jamainternmed.2020.0994. PMC 7070509 Check |pmc= value (help). PMID 32167524 Check |pmid= value (help).
  24. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E, Conesa LA, Martín-Rodríguez C, Díaz-Domínguez FJ, Serna-Grande P, Rivas R, Ferreres J, Belda J, Capilla L, Tallet A, Añón JM, Fernández RL, González-Martín JM (March 2020). "Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial". Lancet Respir Med. 8 (3): 267–276. doi:10.1016/S2213-2600(19)30417-5. PMID 32043986 Check |pmid= value (help).
  25. Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, Lin RK, Chao YS, Hsu JT (July 2004). "Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide". Antimicrob. Agents Chemother. 48 (7): 2693–6. doi:10.1128/AAC.48.7.2693-2696.2004. PMC 434198. PMID 15215127.
  26. 26.0 26.1 Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, Zannas AS, Herrmann A, Holsboer F, Brack-Werner R, Boshart M, Müller-Myhsok B, Drosten C, Müller MA, Rein T (December 2019). "SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection". Nat Commun. 10 (1): 5770. doi:10.1038/s41467-019-13659-4. PMC 6920372 Check |pmc= value (help). PMID 31852899.
  27. Caly, Leon; Druce, Julian D.; Catton, Mike G.; Jans, David A.; Wagstaff, Kylie M. (2020). "The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro". Antiviral Research. 178: 104787. doi:10.1016/j.antiviral.2020.104787. ISSN 0166-3542.
  28. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, Wan HL, Chen JH, Hu BS, Perng CL, Lu JJ, Chang FY (November 2005). "Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital". J. Antimicrob. Chemother. 56 (5): 919–22. doi:10.1093/jac/dki346. PMC 7110092 Check |pmc= value (help). PMID 16183666.
  29. 29.0 29.1 Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X (April 2020). "Effectiveness of convalescent plasma therapy in severe COVID-19 patients". Proc. Natl. Acad. Sci. U.S.A. 117 (17): 9490–9496. doi:10.1073/pnas.2004168117. PMC 7196837 Check |pmc= value (help). PMID 32253318 Check |pmid= value (help).
  30. Tang N, Li D, Wang X, Sun Z (April 2020). "Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia". J. Thromb. Haemost. 18 (4): 844–847. doi:10.1111/jth.14768. PMC 7166509 Check |pmc= value (help). PMID 32073213 Check |pmid= value (help).
  31. Mycroft-West, Courtney; Su, Dunhao; Elli, Stefano; Li, Yong; Guimond, Scott; Miller, Gavin; Turnbull, Jeremy; Yates, Edwin; Guerrini, Marco; Fernig, David; Lima, Marcelo; Skidmore, Mark (2020). doi:10.1101/2020.02.29.971093. Missing or empty |title= (help)