Adrenal atrophy: Difference between revisions
Line 48: | Line 48: | ||
===Physiology=== | ===Physiology=== | ||
The normal physiology of adrenal atrophy can be understood as follows: | The normal physiology of adrenal atrophy can be understood as follows: | ||
Adrenal glands produce hormones that help regulate your metabolism, immune system, blood pressure, response to stress and other essential functions. The glands are composed of two parts: | Adrenal glands produce hormones that help regulate your metabolism, immune system, blood pressure, response to stress and other essential functions. The glands are composed of two parts: | ||
*The adrenal cortex is the outer region and also the largest part of an adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. | *The adrenal cortex is the outer region and also the largest part of an adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. |
Revision as of 08:36, 20 December 2021
For patient information, click here
Adrenal atrophy Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Adrenal atrophy On the Web |
American Roentgen Ray Society Images of Adrenal atrophy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]
Overview
Adrenal glands, also known as suprarenal glands, are small, triangular-shaped glands located on top of both kidneys. They produce hormones that help regulate your metabolism, immune system, blood pressure, response to stress and other essential functions. Adrenal atrophy may be caused by a loss of ACTH and trophic support of the adrenal cortex or direct damage to the tissue due to exogenous corticosteroid overuse or an endocrine disease, affecting the glands. The onset of clinical manifestations is dependent to the etiology of the atrophy. However, the symptoms of the adrenal atrophy usually develop in patient’s 30s to 50s and in their 60s in the case of secondary adrenal atrophy. Common complications of the adrenal atrophy and its malfunction include hypoglycemia, dehydration, weight loss, and disorientation. Prognosis is generally poor, due to the irreversibility of atrophy and the one out of 200 patients with adrenal atrophy die each year due to the adrenal crisis. As the disease consists of the irreversible atrophy of the adrenal gland treatment of the adrenal atrophy is a conservative treatment, including hormone replacement therapy and managing the adrenal crisis state.
Historical Perspective
There is limited information about the historical perspective of adrenal atrophy.
Famous Cases
The following are a few famous cases of adrenal atrophy:
- President John F. Kennedy was diagnosed with Addison’s disease after his election in 1960, due to an autoimmune disease, attacking the adrenal tissue.
- The King Henry VIII was known as a domineering, philanderer king, who became bloated and significantly obese after 35 years of being in power. Historian Robert Hutchinson has theorized that he has had Cushing’s Syndrome.
Classification
There is no established system for the classification of adrenal atrophy.
However, adrenal insufficiency may be classified into three subtypes based on its cause:
- Primary adrenal insufficiency due to impairment of the adrenal glands. Causes:
- Autoimmune disease in 80% of the cases.
- Congenital adrenal hyperplasia or an adenoma (tumor) of the adrenal gland.
- Infections (TB, CMV, histoplasmosis, paracoccidioidomycosis).
- Vascular (hemorrhage from sepsis, adrenal vein thrombosis, HIT).
- Deposition disease (hemochromatosis, amyloidosis, sarcoidosis).
- Drugs (azole anti-fungals, etomidate (even one dose), rifampin, anticonvulsants).
- Secondary adrenal insufficiency is caused by impairment of the pituitary gland. Causes:
- Pituitary adenoma (which can suppress production of adrenocorticotropic hormone (ACTH) and lead to adrenal deficiency unless the endogenous hormones are replaced).
- Sheehan's syndrome.
- Tertiary adrenal insufficiency is due to hypothalamic disease and a decrease in the release of corticotropin releasing hormone (CRH). Causes:
- Sudden withdrawal from long-term exogenous steroid use (which is the most common cause overall).
- Brain tumor.
Adrenal cortical atrophy may be focal or diffuse. Compared with the normal adrenal cortex, the atrophic cortex is characterized by reduced thickness of the one or more of the cortical layers due to a decrease in cell size or a loss of cells. The zonae fasciculata and reticularis are more often affected than the zona glomerulosa. There is variably decreased overall size of the gland, often with distortion of the gland outline. The glandular capsule may be thickened due to fibrosis.[1][2]
Pathophysiology
Physiology
The normal physiology of adrenal atrophy can be understood as follows:
Adrenal glands produce hormones that help regulate your metabolism, immune system, blood pressure, response to stress and other essential functions. The glands are composed of two parts:
- The adrenal cortex is the outer region and also the largest part of an adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones.
- The adrenal medulla is located inside the adrenal cortex in the center of an adrenal gland. It produces “stress hormones,” including epinephrine.
Pathogenesis
The exact pathogenesis of adrenal atrophy is not fully understood. However, it is thought that adrenal atrophy is caused by direct insult or the lack of stimulation of the gland. As a result, the disease can be categorized as primary or secondary.
- Primary Adrenal Atrophy
The primary atrophy is due to direct insult to the adrenal tissue due to:
- Infections (TB, CMV, histoplasmosis, paracoccidioidomycosis)
- Vascular impairments (hemorrhage from sepsis, adrenal vein thrombosis, HIT)
- Deposition disease (hemochromatosis, amyloidosis, sarcoidosis)
- Drugs (azole anti-fungals, etomidate (even one dose), rifampin, anticonvulsants)
- Cytotoxic agents such as mitotane.
- Secondary Adrenal Atrophy
The secondary atrophy is mainly due to the loss of ACTH and trophic support of the adrenal cortex, and this may result in deficits in functional capability of the cortex to produce glucocorticoids. This situation occurs in patients who are on prolonged glucocorticoid therapy that produces prolonged inhibition of endogenous pituitary ACTH secretion. Removal of the therapy then often results in adrenocortical incompetence. Adrenal atrophy may result from inhibition of pituitary ACTH or hypothalamic function. Compounds such as valproic acid, bromocriptine, cyproheptadine, ketanserin, ritanserin, somatostatin analogs, glucocorticoids, 4′-thio-beta-d-arabinofuranosylcytosine, and hexachlorobenzene have been noted previously to impair hypothalamo-pituitary function through deficits in ACTH or CRH in various species.
Causes
Differentiating Adrenal atrophy from other Diseases
Adrenal atrophy must be differentiated from other diseases that cause salt wasting and nausea or vomiting and yield to the adrenal hormone imbalance. Among the main diseases are:
- Adrenal Crisis
- Adrenal Hemorrhage
- C-17 Hydroxylase Deficiency
- Eosinophilia
- Histoplasmosis
- Hyperkalemia
- Sarcoidosis
- Tuberculosis (TB)
In addition, hyponatremia and hyperkalemia may result from chronic renal insufficiency due to inadequate production of renin and consequent aldosterone deficiency.[3][4]
Epidemiology and Demographics
Risk Factors
Screening
Natural History, Complications and Prognosis
Diagnosis
History and Symptoms | Physical Examination | Laboratory Findings | Electrocardiogram | X Ray | CT | MRI | Ultrasound | Other Imaging Findings | Other Diagnostic Studies
Treatment
Medical Therapy | Primary Prevention | Secondary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies
Case Studies
- ↑ Conran RM, Nickerson PA (June 1982). "Atrophy of the zona fasciculata in the adrenal cortex of thyroparathyroidectomized rats: a quantitative study". Am J Anat. 164 (2): 133–43. doi:10.1002/aja.1001640204. PMID 6285687.
- ↑ Grossman AB (November 2010). "Clinical Review#: The diagnosis and management of central hypoadrenalism". J Clin Endocrinol Metab. 95 (11): 4855–63. doi:10.1210/jc.2010-0982. PMID 20719838.
- ↑ Sousa AG, Cabral JV, El-Feghaly WB, de Sousa LS, Nunes AB (March 2016). "Hyporeninemic hypoaldosteronism and diabetes mellitus: Pathophysiology assumptions, clinical aspects and implications for management". World J Diabetes. 7 (5): 101–11. doi:10.4239/wjd.v7.i5.101. PMC 4781902. PMID 26981183.
- ↑ Husebye E, Løvås K (April 2009). "Pathogenesis of primary adrenal insufficiency". Best Pract Res Clin Endocrinol Metab. 23 (2): 147–57. doi:10.1016/j.beem.2008.09.004. PMID 19500759.