Beta-thalassemia laboratory findings: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 5: Line 5:
==Overview==
==Overview==


The initial work up for diagnosis of beta-thalassemia includes complete blood count and hemoglobin electrophoresis which may indicate low hemoglobin level, MCV, MCH and high hemoglobin F and A2. For advanced assessment, there are other methods such as:  
The initial work up for diagnosis of beta-thalassemia includes complete blood count and hemoglobin electrophoresis which may indicate low hemoglobin level, MCV, MCH and high hemoglobin F and A2. For advanced assessment, there are other methods such as: high-performance liquid chromatography (HPLC), capillary zone electrophoresis (CE) systems,


==Laboratory findings==
==Laboratory findings==

Revision as of 01:29, 17 August 2023

Beta-thalassemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Differentiating Beta-thalassemia from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Beta-thalassemia laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Beta-thalassemia laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Beta-thalassemia laboratory findings

CDC on Beta-thalassemia laboratory findings

Beta-thalassemia laboratory findings in the news

Blogs on Beta-thalassemia laboratory findings

Directions to Hospitals Treating Beta-thalassemia

Risk calculators and risk factors for Beta-thalassemia laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Maryam Hadipour, M.D.[2]

Overview

The initial work up for diagnosis of beta-thalassemia includes complete blood count and hemoglobin electrophoresis which may indicate low hemoglobin level, MCV, MCH and high hemoglobin F and A2. For advanced assessment, there are other methods such as: high-performance liquid chromatography (HPLC), capillary zone electrophoresis (CE) systems,

Laboratory findings

Various laboratory procedures are needed to diagnose thalassemia and abnormal hemoglobin levels including[1]:

  • The automatic hematology analyzer evaluation of red blood cell indices
  • Hemoglobin analysis
  • Quantification of hemoglobin A2 and hemoglobin F

The most popular laboratory methods for diagnosis of beta-thalassemia are[1]:

  • CBC: CBC reveals severe microcytic hypochromic anemia, with decreased hemoglobin, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH).
  • Hemoglobin electrophoresis: In the results of hemoglobin electrophoresis of a normal individual, hemoglobin A (HbA) should be about 95-98% of the total hemoglobin and the rest would be hemoglobin A2 and F. Hemoglobin F is increased in beta-thalassemia.

There are other types of laboratory tests which are more precise and advanced[2]:

  • Thalassemic disorders and their carriers can be distinguished using high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CE) systems. It has been frequently employed to take the role of the manual method. These devices provide accurate, repeatable qualitative and quantitative evaluations of hemoglobin component data. They have made it possible for us to diagnose thalassemia both prenatally and postnatally quickly.
  • DNA analysis may be used to identify specific thalassemia mutations, and several methods have been developed.
  • Real-time polymerase chain reaction (PCR) can also be used to genotype thalassemia, followed by melting curve analysis.
  • DNA sequencing will be used when a mutation cannot be identified using a previous molecular analysis approach.
  • In the most recent years, thalassemia diagnosis has also benefited from genome sequencing by NGS.
  • Invasive methods such as chorionic villus sample and amniotic fluid evaluation would be needed for mothers carrying the suspected fetus[3].

References

  1. 1.0 1.1 Dozy AM, Kan YW (May 1994). "Characterization of beta-thalassemia mutations by denaturing gradient gel electrophoresis: patterns in the Mediterranean mutations". Clin Genet. 45 (5): 221–7. doi:10.1111/j.1399-0004.1994.tb04145.x. PMID 8076405.
  2. Munkongdee T, Chen P, Winichagoon P, Fucharoen S, Paiboonsukwong K (2020). "Update in Laboratory Diagnosis of Thalassemia". Front Mol Biosci. 7: 74. doi:10.3389/fmolb.2020.00074. PMC 7326097 Check |pmc= value (help). PMID 32671092 Check |pmid= value (help).
  3. Lin M, Zhu JJ, Wang Q, Xie LX, Lu M, Wang JL, Wang CF, Zhong TY, Zheng L, Pan MC, Wu JR, Wen YF, Liu GR, Zhan XF, Lin F, Yang LY (February 2012). "Development and evaluation of a reverse dot blot assay for the simultaneous detection of common alpha and beta thalassemia in Chinese". Blood Cells Mol Dis. 48 (2): 86–90. doi:10.1016/j.bcmd.2011.12.001. PMID 22197394.


Template:WikiDoc Sources