Diagnostic musculoskeletal ultrasound: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
Muscoloskeletal structures such as muscles, tendons, nerve and ligament are imaged at a higher frequencies (7-18 MHz) if they are superficial as these frequencies provide better axial and lateral resolution. Deeper structures are imaged at a lower frequencies (5-10MHz) with lower axial and lateral resolution but greater penetration. Most ultrasound equipment today is capable of imaging over a broad range of frequencies, however specific probes are utilized when different centers of focus (or frequency) are desired. | Muscoloskeletal structures such as muscles, tendons, nerve and ligament are imaged at a higher frequencies (7-18 MHz) if they are superficial as these frequencies provide better axial and lateral resolution. Deeper structures are imaged at a lower frequencies (5-10MHz) with lower axial and lateral resolution but greater penetration. Most ultrasound equipment today is capable of imaging over a broad range of frequencies, however specific probes are utilized when different centers of focus (or frequency) are desired. | ||
Medical sonography is used in, for example: | Medical sonography is used in, for example: | ||
*Ligament injuries | |||
*Tendonopathies and tendonosis | |||
*Muscle injury and atrophy | |||
*Peripheral nerve injury | |||
*Arthropathy | |||
*Cyst and solid mass evaluaiton | |||
*Guidance for injection | |||
*Guidance for percutaneous tenotomy | |||
Common areas of study in musculoskeletal ultrasound include the shoulder, wrist and knee, however numerous other applications exist. Virtually any joint, muscle, tendon, ligament and peripheral nerve can be studied. While newer technology for spinal column evaluaiton is being expoused by equipment manufacturers, this applicaiton has not yet been widely accepted. There are, however numerous references that support the use of musculoskeletal ultrasound for the evalution of paraspinal musculature and interspinous ligament as well as for guidance in spinal injection. At least one blinded study has been published that demonstrated an 85% correlation rate for paraspinal muscuskelatal ulrasound to paraspinal MRI [http://wikidoc.org/index.php/Image:Diagnostic_Musculoskeletal_Paraspinal_Ultrasound_full.pdf Schwartz, 1999] | |||
Revision as of 21:07, 10 May 2009
Editor-In-Chief: Robert G. Schwartz, M.D. [1], Piedmont Physical Medicine and Rehabilitation, P.A.
Please Join in Editing This Page and Apply to be an Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [2] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.
Overview
Diagnostic Musculoskeletal Ultrasound involves the use of Medical ultrasonography to assess a variety of disorders of the musculoskeletal system. It is far less expensive then MRI,is non invasive, does not involve the use of ionizing radiation and is readily accepted by patients. In physics the term "ultrasound" applies to all acoustic energy with a frequency above human hearing (20,000 hertz or 20 kilohertz). Typical diagnostic sonographic scanners operate in the frequency range of 2 to 18 megahertz, hundreds of times greater than this limit. The choice of frequency is a trade-off between spatial resolution of the image and imaging depth: lower frequencies produce less resolution but image deeper into the body.
The capability for accurate diagnosis of musculoskeletal conditions has dramatically increased in recent years. In some cases, such as the ability to evaluate motion of tendons and muscles in real-time, it provides valuable information not available from any other modality. In addition, Diagnostic Musculoskeletal Ultrasound has become a valuable guidance tool for procedures such as intra-articular injection, peripheral and spinal nerve block, and percutaneous tenotomy. Disadvantages, such as learning curve, ease of interpretation and image quality have diminished as technology and expertise has increased. Diagnostic Musculoskeletal Ultrasound has become a valuable asset in the diagnostic armamentarium of musculoskeletal injury and pathology.
Diagnostic Applications
Diagnostic Musculoskeletal Ultrasonography is becoming widely used in medicine. It is possible to perform diagnosis or therapeutic procedures with the guidance of ultrasound (for instance percutaneous tenotomy, guided injections, biopsies or drainage of fluid collections). Medical professional sonographers typically use a hand-held probe (called a transducer) that is placed directly on and moved over the patient. A water-based gel is used to couple the ultrasound between the transducer and patient.
Muscoloskeletal structures such as muscles, tendons, nerve and ligament are imaged at a higher frequencies (7-18 MHz) if they are superficial as these frequencies provide better axial and lateral resolution. Deeper structures are imaged at a lower frequencies (5-10MHz) with lower axial and lateral resolution but greater penetration. Most ultrasound equipment today is capable of imaging over a broad range of frequencies, however specific probes are utilized when different centers of focus (or frequency) are desired.
Medical sonography is used in, for example:
- Ligament injuries
- Tendonopathies and tendonosis
- Muscle injury and atrophy
- Peripheral nerve injury
- Arthropathy
- Cyst and solid mass evaluaiton
- Guidance for injection
- Guidance for percutaneous tenotomy
Common areas of study in musculoskeletal ultrasound include the shoulder, wrist and knee, however numerous other applications exist. Virtually any joint, muscle, tendon, ligament and peripheral nerve can be studied. While newer technology for spinal column evaluaiton is being expoused by equipment manufacturers, this applicaiton has not yet been widely accepted. There are, however numerous references that support the use of musculoskeletal ultrasound for the evalution of paraspinal musculature and interspinous ligament as well as for guidance in spinal injection. At least one blinded study has been published that demonstrated an 85% correlation rate for paraspinal muscuskelatal ulrasound to paraspinal MRI Schwartz, 1999