Transposition of the great vessels pathophysiology: Difference between revisions

Jump to navigation Jump to search
Kristin Feeney (talk | contribs)
No edit summary
Priyamvada Singh (talk | contribs)
No edit summary
Line 10: Line 10:


'''Fetal Ciculation'''
'''Fetal Ciculation'''
* Oxygen-rich blood from the umbilical vein (drains to) → The right atrium (drains to) → Fossa ovalis →  Left ventricle →  The pulmonary artery → Ductus arteriosus →  Descending aorta


Due to the high resistance in the pulmonary circulation compared to the placenta, blood flows to the descending aorta rather than to the lung.  
Oxygen-rich blood from '''placenta''' (drains to)→ the '''umbilical vein''' (drains to) → '''The right atrium''' (drains to) → '''Fossa ovalis'''(drains to) →  '''Left ventricle''' (drains to)→  '''The pulmonary artery'''(drains to) → '''Ductus arteriosus'''(drains to) →  '''Descending aorta'''
 
The high resistance in the pulmonary circulation compared to the placenta, allows the blood to flow to the descending aorta rather than to the lung. Due to this the fetus gets blood with a higher oxygen tension.


'''Pathophysiology in Dextro-TGA in extra-uterine life'''-
'''Pathophysiology in Dextro-TGA in extra-uterine life'''-

Revision as of 20:30, 10 August 2011

Transposition of the great vessels Microchapters

Home

Patient Information

Overview

Historical perspective

Classification

Dextro-transposition of the great arteries
L-transposition of the great arteries

Pathophysiology

Causes

Differentiating Transposition of the great vessels from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

MRI

CT

Echocardiography

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Palliative care
Corrective surgery
Post-operative care
Follow up

Prevention

Reproduction

Case Studies

Case #1

Transposition of the great vessels pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Transposition of the great vessels pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Transposition of the great vessels pathophysiology

CDC on Transposition of the great vessels pathophysiology

Transposition of the great vessels pathophysiology in the news

Blogs on Transposition of the great vessels pathophysiology

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Transposition of the great vessels pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [2]; Cafer Zorkun, M.D., Ph.D. [3]; Keri Shafer, M.D. [4]; Assistant Editor(s)-In-Chief: Kristin Feeney, B.S. [5]

Overview

Pathophysiology

The fetus circulation in-utero is different compared to the extra-uterine circulation. The fetus tolerates a D-TGA well in-utero due to this difference in circulation.

Fetal Ciculation

Oxygen-rich blood from placenta (drains to)→ the umbilical vein (drains to) → The right atrium (drains to) → Fossa ovalis(drains to) → Left ventricle (drains to)→ The pulmonary artery(drains to) → Ductus arteriosus(drains to) → Descending aorta

The high resistance in the pulmonary circulation compared to the placenta, allows the blood to flow to the descending aorta rather than to the lung. Due to this the fetus gets blood with a higher oxygen tension.

Pathophysiology in Dextro-TGA in extra-uterine life-

  • In normal cardiac anatomy, the aorta is positioned posterior and to the right of the main pulmonary artery. Aorta being positioned anterior and slightly rightward of the pulmonary artery. These changes cause the aorta to arise from the right ventricle and the pulmonary artery from the left ventricle (ventriculoarterial discordance).
  • In Uncorrected D-TGA the systemic and pulmonary circulations are parallel circuits which means that the deoxygenated systemic venous blood comes to the right ventricle and inplace of going to the lungs, drains back to the systemic circulation via the aorta. Similarly, oxygenated pulmonary venous blood is recirculated to the lungs via the pulmonary artery.
  • This parallel circulation is incompatible to life.
  • For a child with dextro-TGA to survive, a communication between the two parallel circuits is necessary.
  • Various connections that allow mixing in these patients are: patent foramen ovale, ventricular septal defect, atrial septal defect,patent ductus arteriosus or the bronchopulmonary collateral circulation.
    • Ventricular septal defect (VSD) occurs (in about 50%) of patients with D-TGA. Patients with a VSD may have other cardiac anomalies like pulmonary stenosis or atresia, overriding of atrioventricular valve, and coarctation of aorta.
    • Left ventricular outflow tract obstruction is common in D-TGA and is present in up to 25 percent of patients.


References

External links

nl:Transpositie van de grote vaten

Template:WH Template:WS