Tachycardia induced cardiomyopathy: Difference between revisions

Jump to navigation Jump to search
Line 22: Line 22:
*[[Renin]]
*[[Renin]]
*[[Aldosterone]]
*[[Aldosterone]]
Although the precise mechanism is not known, it has been speculated that the underlying mechanism of disease involves a depletion of myocardial energetics<ref>Shinabane JS, Wood MA, Jensen DN,
Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997; 29:709-15.</ref>.


==Risk Factors==
==Risk Factors==

Revision as of 17:55, 16 October 2011

Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Guidelines

2023 ESC Guideline Recommendations

2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy

Case Studies

Case #1

Tachycardia induced cardiomyopathy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Tachycardia induced cardiomyopathy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Tachycardia induced cardiomyopathy

CDC on Tachycardia induced cardiomyopathy

Tachycardia induced cardiomyopathy in the news

Blogs on Tachycardia induced cardiomyopathy

Directions to Hospitals Treating Cardiomyopathy

Risk calculators and risk factors for Tachycardia induced cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Synonyms and Keywords: chronotropic cardiomyopathy, tachycardiomyopathy

Overview

Tachycardia induced cardiomyopathy is a decline in left ventricular function and left ventricular dilation as a result of chronic or frequently recurring paroxysmal tachycardia. The tachycardia can either be an atrial tachycardia or a ventricular tachycarrhythmia. Depending upon the duration of the tachycardia, the condition is either completely or partially reversible.

Historical Perspective

The relationship between tachycardia and a reversible decline in left ventricular dysfunction was first described by Phillips and Levine in 1949 [1].

Pathophysiology

Animal models demonstrate that sustained atrial or ventricular pacing results in dilation of all four cardiac chambers with thinning of the left and right ventricular walls. Both diastolic and systolic dysfunction develops in all four chambers as well [2]. The left ventricular wall thins, the cardiac output drops and the systemic vascular resistance (SVR)rises. later in the course of the disease, mitral regurgiation may develop due to dilation of the mitral valve anulus.

As a result of the reduced cardiac output, there is activation of the neurohormonal axis with elevations of the following hormones:

Although the precise mechanism is not known, it has been speculated that the underlying mechanism of disease involves a depletion of myocardial energetics[3].

Risk Factors

The rate and duration of the elevation in heart rate necessary to cause a cardiomyopathy is unclear and is likely dependent on a number of unknown factors.

Prognosis

Depending upon the duration of the tachycardia, the condition is either completely or partially reversible after some time.[4] The pace of recovery of left ventricual dysfunctionis similar to that of hibernating myocardium [5]. It may take one year for instance for left ventricular function to recover [6][7]

Treatment

The primary treatment for a tachycardia induced cardiomyopathy is correct the underlying tachycardia. This may include the use of:

Supportive agents such as ACE inhibitors / angiotensin receptor blockers are of benefit to try to prevent remodeling of the left ventricle.

References

  1. Phillips E, Levine SA. Auricular fibrillation without other evidence of heart disease: a cause of reversible heart failure. Am J Med 1949; 7:478-89.
  2. Whipple GH, Sheffield LT, Woodman EG. Reversible congestive heart failure due to chronic rapid stimulation of the normal heart. Pro N Engl Cardiovasc Soc 1962; 20:39-40.
  3. Shinabane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997; 29:709-15.
  4. Calo L, Sciarra L, Scioli R, Lamberti F, Loricchio ML, Pandozi C, Santini M. (2005). "Recovery of cardiac function after ablation of atrial tachycardia arising from the tricuspid annulus". Ital Heart J. 6 (8): 652–7. PMID 16161499.
  5. Rahimatoola SH. From coronary artery disease to heart failure: role of the hibernating myocardium. Am J Cardiol 1995; 75:16-22E.
  6. Fenelon G,Wijns W,Andries E, Brugada P. Tachycardiomyopathy: mechanisms and clinical applications. Pacing Clin Electrophysiol 1996; 19:95-106.
  7. Kessler G, Rosenblatt S, Friedman J, Kaplinsky E. Recurrent dilated cardiomyopathy reversed with conversion of atrial fibrillation. Am Heart J 1997; 133:384-6.


Template:WikiDoc Sources