Chronic obstructive pulmonary disease laboratory findings: Difference between revisions

Jump to navigation Jump to search
Priyamvada Singh (talk | contribs)
Priyamvada Singh (talk | contribs)
Line 37: Line 37:
===Human B-type natriuretic peptide===
===Human B-type natriuretic peptide===
* Research are ongoing on Human B-type natriuretic peptide (BNP) and pro-BNP to find if it can help to differentiate between congestive heart failure and COPD. However, no conclusive results are still drawn.
* Research are ongoing on Human B-type natriuretic peptide (BNP) and pro-BNP to find if it can help to differentiate between congestive heart failure and COPD. However, no conclusive results are still drawn.
===Chest Xray===
* Signs of hyperinflation like flattening of diaphragm.
* Increased retrosternal space
* Hypovascularity
* Long, narrow heart shadow
Chronic bronchitis
* Increased bronchovascular markings
* Cardiomegaly
* Right ventricular enlargement, prominent hilar vascular shadows, opacity in retrosternal air spaces (pulmonary hypertension)


==References==
==References==

Revision as of 20:26, 13 March 2012

Chronic obstructive pulmonary disease Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Chronic obstructive pulmonary disease from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography or Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Chronic obstructive pulmonary disease laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Chronic obstructive pulmonary disease laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic obstructive pulmonary disease laboratory findings

CDC on Chronic obstructive pulmonary disease laboratory findings

Chronic obstructive pulmonary disease laboratory findings in the news

Blogs on Chronic obstructive pulmonary disease laboratory findings

Directions to Hospitals Treating Chronic obstructive pulmonary disease

Risk calculators and risk factors for Chronic obstructive pulmonary disease laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Philip Marcus, M.D., M.P.H. [2]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [3]

Overview

Chronic obstructive pulmonary disease has irreversible airflow limitation specially during forced expiration. This is due to the destruction of lung tissue and increase in resistance to flow in the conducting airways. Thus, it doesn't show an improvement in FEV1 post bronchodilator administration (unlike asthma). This characteristic feature is used as an diagnostic criteria for COPD, i.e. a COPD is diagnosed by spirometry if FEV1/FVC < 70% for a matched control. Arterial blood gas may show hypoxemia with or without hypercapnia depending on the disease severity. pH may be normal due to renal compensation. A pH less than 7.3 usually indicate severe respiratory compromise.

Laboratory Tests

Arterial blood gas (ABG)

  • ABG may show changes of hypoxemia and hypercapnia depending on the severity of disease.
  • Milder exacerbation may present only with hypoxemia without accompanied hypercapnia
  • Hypercapnia is usually seen when FEV1 falls below 1 L/s or 30% of the predicted value
  • A pH value below 7.3 usually indicates a severe exacerbation and respiratory compromise.

Serum electrolytes

COPD patients have irreversible obstruction of airway that causes retention of carbon-dioxide. This in turn causes them to develop chronic respiratory acidosis. To compensate for this the body may develop metabolic alkalosis that leads to increased bicarbonate production. Bicarbonate levels act as useful indicator of disease progression.

Spirometry

COPD is particularly characterized if a ratio of forced expiratory volume over 1 second (FEV1) to forced vital capacity (FVC) being < 0.7 and the FEV1 < 70% of the predicted value when compared with a matched control. [1], [2] (see Spirometry).

The severity of COPD can be classified as follows using spirometry (see above):

Severity FEV1 /FVC FEV1 % predicted
At risk >0.7 ≥80
Mild COPD ≤0.7 ≥80
Moderate COPD ≤0.7 50-80
Severe COPD ≤0.7 30-50
Very Severe COPD ≤0.7 <30 or 30-50 with Chronic Respiratory Failure symptoms

Sputum culture

Though sputum culture can be done and yields organisms like Streptococcus pneumonia, and Hemophilus influenza during acute exacerbation, they are not otherwise useful in management plans.

Human B-type natriuretic peptide

  • Research are ongoing on Human B-type natriuretic peptide (BNP) and pro-BNP to find if it can help to differentiate between congestive heart failure and COPD. However, no conclusive results are still drawn.

Chest Xray

  • Signs of hyperinflation like flattening of diaphragm.
  • Increased retrosternal space
  • Hypovascularity
  • Long, narrow heart shadow

Chronic bronchitis

  • Increased bronchovascular markings
  • Cardiomegaly
  • Right ventricular enlargement, prominent hilar vascular shadows, opacity in retrosternal air spaces (pulmonary hypertension)

References

  1. PatientPlus - Spirometry
  2. [[]]. PMID 22319804. Missing or empty |title= (help); |access-date= requires |url= (help)


Template:WikiDoc Sources