Chronic obstructive pulmonary disease laboratory findings: Difference between revisions
No edit summary |
|||
Line 13: | Line 13: | ||
* Hypercapnia is usually seen when FEV1 falls below 1 L/s or 30% of the predicted value | * Hypercapnia is usually seen when FEV1 falls below 1 L/s or 30% of the predicted value | ||
* A pH value below 7.3 usually indicates a severe exacerbation and respiratory compromise. | * A pH value below 7.3 usually indicates a severe exacerbation and respiratory compromise. | ||
==Hematocrit== | |||
* COPD patients may have hypoxemia due to the chronic underlying disease. This chronic hypoxemia may lead to polycythemia (hematocrit > 52% in men or 47% in women is diagnostic of polycythemia. | |||
* Correction of hypoxemia should reduce secondary polycythemia in patients who have quit smoking. | |||
===Serum electrolytes=== | ===Serum electrolytes=== | ||
COPD patients have irreversible obstruction of airway that causes retention of carbon-dioxide. This in turn causes them to develop chronic respiratory acidosis. To compensate for this the body may develop metabolic alkalosis that leads to increased bicarbonate production. Bicarbonate levels act as useful indicator of disease progression. | COPD patients have irreversible obstruction of airway that causes retention of carbon-dioxide. This in turn causes them to develop chronic respiratory acidosis. To compensate for this the body may develop metabolic alkalosis that leads to increased bicarbonate production. Bicarbonate levels act as useful indicator of disease progression. |
Revision as of 13:45, 28 March 2012
Chronic obstructive pulmonary disease Microchapters |
Differentiating Chronic obstructive pulmonary disease from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Chronic obstructive pulmonary disease laboratory findings On the Web |
American Roentgen Ray Society Images of Chronic obstructive pulmonary disease laboratory findings |
FDA on Chronic obstructive pulmonary disease laboratory findings |
CDC on Chronic obstructive pulmonary disease laboratory findings |
Chronic obstructive pulmonary disease laboratory findings in the news |
Blogs on Chronic obstructive pulmonary disease laboratory findings |
Directions to Hospitals Treating Chronic obstructive pulmonary disease |
Risk calculators and risk factors for Chronic obstructive pulmonary disease laboratory findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Philip Marcus, M.D., M.P.H. [2]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [3]
Overview
Chronic obstructive pulmonary disease has irreversible airflow limitation specially during forced expiration. This is due to the destruction of lung tissue and increase in resistance to flow in the conducting airways. Thus, it doesn't show an improvement in FEV1 post bronchodilator administration (unlike asthma). This characteristic feature is used as an diagnostic criteria for COPD, i.e. a COPD is diagnosed by spirometry if FEV1/FVC < 70% for a matched control. Arterial blood gas may show hypoxemia with or without hypercapnia depending on the disease severity. pH may be normal due to renal compensation. A pH less than 7.3 usually indicate severe respiratory compromise. A blood sample taken from an artery, i.e. Arterial Blood Gas (ABG), can be tested for blood gas levels which may show low oxygen (hypoxaemia) and/or high carbon dioxide (respiratory acidosis if pH is also decreased). A blood sample taken from a vein may show a high blood count (reactive polycythemia), a reaction to long-term hypoxemia.
Laboratory Tests
Pulse oximetry
- Though pulse oximetry is not as accurate in predicting the percentage oxygen saturation as arterial blood gas analysis. However, it gives a quick estimate of patient status when combined with the clinical status.
Arterial blood gas (ABG)
- ABG may show changes of hypoxemia and hypercapnia depending on the severity of disease.
- Milder exacerbation may present only with hypoxemia without accompanied hypercapnia
- Hypercapnia is usually seen when FEV1 falls below 1 L/s or 30% of the predicted value
- A pH value below 7.3 usually indicates a severe exacerbation and respiratory compromise.
Hematocrit
- COPD patients may have hypoxemia due to the chronic underlying disease. This chronic hypoxemia may lead to polycythemia (hematocrit > 52% in men or 47% in women is diagnostic of polycythemia.
- Correction of hypoxemia should reduce secondary polycythemia in patients who have quit smoking.
Serum electrolytes
COPD patients have irreversible obstruction of airway that causes retention of carbon-dioxide. This in turn causes them to develop chronic respiratory acidosis. To compensate for this the body may develop metabolic alkalosis that leads to increased bicarbonate production. Bicarbonate levels act as useful indicator of disease progression.
Sputum culture
Though sputum culture can be done and yields organisms like Streptococcus pneumonia, and Hemophilus influenza during acute exacerbation, they are not otherwise useful in management plans.
Human B-type natriuretic peptide
- Research are ongoing on Human B-type natriuretic peptide (BNP) and pro-BNP to find if it can help to differentiate between congestive heart failure and COPD. However, no conclusive results are still drawn.