Bloom syndrome protein: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
m task using AWB
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Bloom syndrome protein''' is a [[protein]] that in humans is encoded by the ''BLM'' [[gene]] and is not expressed in [[Bloom syndrome]].<ref name="pmid9388193">{{cite journal | vauthors = Karow JK, Chakraverty RK, Hickson ID | title = The Bloom's syndrome gene product is a 3'-5' DNA helicase | journal = J Biol Chem | volume = 272 | issue = 49 | pages = 30611–4 | date = January 1998 | pmid = 9388193 | pmc = | doi = 10.1074/jbc.272.49.30611 }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
The Bloom syndrome gene product is related to the [[RecQ]] subset of DExH box-containing DNA [[helicase]]s and has both DNA-stimulated [[ATPase]] and ATP-dependent DNA helicase activities. Mutations causing [[Bloom syndrome]] delete or alter helicase motifs and may disable the 3' → 5' helicase activity.  The normal protein may act to suppress inappropriate [[homologous recombination]].<ref>{{cite web|title=Bloom syndrome|url=http://ghr.nlm.nih.gov/condition/bloom-syndrome|work=Genetics Home Reference|publisher=NIH|accessdate=19 March 2013}}</ref>
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Bloom syndrome
| HGNCid = 1058
| Symbol = BLM
| AltSymbols =; BS; MGC126616; MGC131618; MGC131620; RECQ2; RECQL2; RECQL3
| OMIM = 604610
| ECnumber = 
| Homologene = 47902
| MGIid = 1328362
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0004003 |text = ATP-dependent DNA helicase activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0016787 |text = hydrolase activity}} {{GNF_GO|id=GO:0016818 |text = hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006260 |text = DNA replication}} {{GNF_GO|id=GO:0006281 |text = DNA repair}} {{GNF_GO|id=GO:0006310 |text = DNA recombination}} {{GNF_GO|id=GO:0019735 |text = antimicrobial humoral response}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 641
    | Hs_Ensembl = ENSG00000197299
    | Hs_RefseqProtein = NP_000048
    | Hs_RefseqmRNA = NM_000057
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 15
    | Hs_GenLoc_start = 89061639
    | Hs_GenLoc_end = 89159688
    | Hs_Uniprot = P54132
    | Mm_EntrezGene = 12144
    | Mm_Ensembl = ENSMUSG00000030528
    | Mm_RefseqmRNA = NM_001042527
    | Mm_RefseqProtein = NP_001035992
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 80328605
    | Mm_GenLoc_end = 80408610
    | Mm_Uniprot = O88700
  }}
}}
'''Bloom syndrome''', also known as '''BLM''', is a human [[gene]].


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
==[[Meiosis]]==
{{PBB_Summary
[[File:Homologous Recombination.jpg|thumb|400px|A current model of meiotic recombination, initiated by a double-strand break or gap, followed by pairing with an homologous chromosome and strand invasion to initiate the recombinational repair process. Repair of the gap can lead to crossover (CO) or non-crossover (NCO) of the flanking regions. CO recombination is thought to occur by the Double Holliday Junction (DHJ) model, illustrated on the right, above. NCO recombinants are thought to occur primarily by the Synthesis Dependent Strand Annealing (SDSA) model, illustrated on the left, above. Most recombination events appear to be the SDSA type.]]
| section_title =
[[Genetic recombination|Recombination]] during [[meiosis]] is often initiated by a DNA double-strand break (DSB). During recombination, sections of DNA at the [[Directionality (molecular biology)|5' ends]] of the break are cut away in a process called resection. In the strand invasion step that follows, an overhanging [[Directionality (molecular biology)|3' end]] of the broken DNA molecule then "invades" the DNA of an homologous chromosome that is not broken. After strand invasion, the further sequence of events may follow either of two main pathways leading to a crossover (CO) or a non-crossover (NCO) recombinant (see [[Genetic recombination]] and bottom of Figure in this section).
| summary_text = The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities. Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3'-5' helicase activity. The normal protein may act to suppress inappropriate recombination.<ref name="entrez">{{cite web | title = Entrez Gene: BLM Bloom syndrome| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=641| accessdate = }}</ref>
}}


==References==
The budding yeast ''[[Saccharomyces cerevisiae]]'' encodes an ortholog of the Bloom syndrome (BLM) protein that is designated [[Sgs1]] (Small growth suppressor 1)Sgs1(BLM) is a [[helicase]] that functions in [[homologous recombination]]al repair of DSBs.  The [[Sgs1]](BLM) helicase appears to be a central regulator of most of the recombination events that occur during ''S. cerevisiae'' [[meiosis]].<ref name=De>{{cite journal |vauthors=De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M |title=BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism |journal=Mol. Cell |volume=46 |issue=1 |pages=43–53 |year=2012 |pmid=22500736 |pmc=3328772 |doi=10.1016/j.molcel.2012.02.020 |url=}}</ref> During normal meiosis Sgs1(BLM) is responsible for directing recombination towards the alternate formation of either early NCOs or [[Holliday junction]] joint molecules, the latter being subsequently resolved as COs.<ref name=De />
{{reflist|2}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal  | author=Woo LL, Onel K, Ellis NA |title=The broken genome: genetic and pharmacologic approaches to breaking DNA. |journal=Ann. Med. |volume=39 |issue= 3 |pages= 208-18 |year= 2007 |pmid= 17457718 |doi= 10.1080/08035250601167136 }}
*{{cite journal  | author=McDaniel LD, Schultz RA |title=Elevated sister chromatid exchange phenotype of Bloom syndrome cells is complemented by human chromosome 15. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 17 |pages= 7968-72 |year= 1992 |pmid= 1518822 |doi=  }}
*{{cite journal  | author=Ellis NA, Groden J, Ye TZ, ''et al.'' |title=The Bloom's syndrome gene product is homologous to RecQ helicases. |journal=Cell |volume=83 |issue= 4 |pages= 655-66 |year= 1995 |pmid= 7585968 |doi=  }}
*{{cite journal  | author=German J, Roe AM, Leppert MF, Ellis NA |title=Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 14 |pages= 6669-73 |year= 1994 |pmid= 8022833 |doi= }}
*{{cite journal  | author=Foucault F, Vaury C, Barakat A, ''et al.'' |title=Characterization of a new BLM mutation associated with a topoisomerase II alpha defect in a patient with Bloom's syndrome. |journal=Hum. Mol. Genet. |volume=6 |issue= 9 |pages= 1427-34 |year= 1998 |pmid= 9285778 |doi=  }}
*{{cite journal  | author=Karow JK, Chakraverty RK, Hickson ID |title=The Bloom's syndrome gene product is a 3'-5' DNA helicase. |journal=J. Biol. Chem. |volume=272 |issue= 49 |pages= 30611-4 |year= 1998 |pmid= 9388193 |doi=  }}
*{{cite journal  | author=Kaneko H, Orii KO, Matsui E, ''et al.'' |title=BLM (the causative gene of Bloom syndrome) protein translocation into the nucleus by a nuclear localization signal. |journal=Biochem. Biophys. Res. Commun. |volume=240 |issue= 2 |pages= 348-53 |year= 1997 |pmid= 9388480 |doi= 10.1006/bbrc.1997.7648 }}
*{{cite journal | author=Wu L, Davies SL, North PS, ''et al.'' |title=The Bloom's syndrome gene product interacts with topoisomerase III. |journal=J. Biol. Chem. |volume=275 |issue= 13 |pages= 9636-44 |year= 2000 |pmid= 10734115 |doi=  }}
*{{cite journal  | author=Yankiwski V, Marciniak RA, Guarente L, Neff NF |title=Nuclear structure in normal and Bloom syndrome cells. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 10 |pages= 5214-9 |year= 2000 |pmid= 10779560 |doi= 10.1073/pnas.090525897 }}
*{{cite journal  | author=Wang Y, Cortez D, Yazdi P, ''et al.'' |title=BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. |journal=Genes Dev. |volume=14 |issue= 8 |pages= 927-39 |year= 2000 |pmid= 10783165 |doi=  }}
*{{cite journal  | author=Karow JK, Constantinou A, Li JL, ''et al.'' |title=The Bloom's syndrome gene product promotes branch migration of holliday junctions. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 12 |pages= 6504-8 |year= 2000 |pmid= 10823897 |doi= 10.1073/pnas.100448097 }}
*{{cite journal | author=Brosh RM, Li JL, Kenny MK, ''et al.'' |title=Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. |journal=J. Biol. Chem. |volume=275 |issue= 31 |pages= 23500-8 |year= 2000 |pmid= 10825162 |doi= 10.1074/jbc.M001557200 }}
*{{cite journal  | author=Dutertre S, Ababou M, Onclercq R, ''et al.'' |title=Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. |journal=Oncogene |volume=19 |issue= 23 |pages= 2731-8 |year= 2000 |pmid= 10851073 |doi= 10.1038/sj.onc.1203595 }}
*{{cite journal  | author=Barakat A, Ababou M, Onclercq R, ''et al.'' |title=Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome. |journal=Hum. Mutat. |volume=15 |issue= 6 |pages= 584-5 |year= 2000 |pmid= 10862105 |doi= 10.1002/1098-1004(200006)15:6<584::AID-HUMU28>3.0.CO;2-I }}
*{{cite journal  | author=Brosh RM, Karow JK, White EJ, ''et al.'' |title=Potent inhibition of werner and bloom helicases by DNA minor groove binding drugs. |journal=Nucleic Acids Res. |volume=28 |issue= 12 |pages= 2420-30 |year= 2000 |pmid= 10871376 |doi=  }}
*{{cite journal  | author=Wu L, Davies SL, Levitt NC, Hickson ID |title=Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. |journal=J. Biol. Chem. |volume=276 |issue= 22 |pages= 19375-81 |year= 2001 |pmid= 11278509 |doi= 10.1074/jbc.M009471200 }}
*{{cite journal | author=Langland G, Kordich J, Creaney J, ''et al.'' |title=The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. |journal=J. Biol. Chem. |volume=276 |issue= 32 |pages= 30031-5 |year= 2001 |pmid= 11325959 |doi= 10.1074/jbc.M009664200 }}
*{{cite journal  | author=Wang XW, Tseng A, Ellis NA, ''et al.'' |title=Functional interaction of p53 and BLM DNA helicase in apoptosis. |journal=J. Biol. Chem. |volume=276 |issue= 35 |pages= 32948-55 |year= 2001 |pmid= 11399766 |doi= 10.1074/jbc.M103298200 }}
*{{cite journal  | author=Hu P, Beresten SF, van Brabant AJ, ''et al.'' |title=Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability. |journal=Hum. Mol. Genet. |volume=10 |issue= 12 |pages= 1287-98 |year= 2001 |pmid= 11406610 |doi=  }}
*{{cite journal  | author=Freire R, d'Adda Di Fagagna F, Wu L, ''et al.'' |title=Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha. |journal=Nucleic Acids Res. |volume=29 |issue= 15 |pages= 3172-80 |year= 2001 |pmid= 11470874 |doi=  }}
}}
{{refend}}


{{protein-stub}}
In the plant ''[[Arabidopsis thaliana]]'', homologs of the Sgs1(BLM) helicase act as major barriers to meiotic CO formation.<ref name=Mazel>{{cite journal |vauthors=Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R |title=Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=112 |issue=15 |pages=4713–8 |year=2015 |pmid=25825745 |pmc=4403193 |doi=10.1073/pnas.1423107112 |url=}}</ref>  These helicases are thought to displace the invading strand allowing its annealing with the other 3’overhang end of the DSB, leading to NCO recombinant formation by a process called synthesis dependent strand annealing (SDSA) (see [[Genetic recombination]] and Figure in this section).  It is estimated that only about 4% of DSBs are repaired by CO recombination.<ref name="pmid22723424">{{vcite2 journal |vauthors=Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R |title=FANCM limits meiotic crossovers |journal=Science |volume=336 |issue=6088 |pages=1588–90 |year=2012 |pmid=22723424 |doi=10.1126/science.1220381 |url=}}</ref>  Sequela-Arnaud et al.<ref name=Mazel /> suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past [[natural selection]].
 
== Interactions ==
Bloom syndrome protein has been shown to [[Protein-protein interaction|interact]] with:
{{div col|colwidth=20em}}
* [[Ataxia telangiectasia mutated|ATM]],<ref name = pmid10783165>{{cite journal | vauthors = Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J | title = BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures | journal = Genes Dev. | volume = 14 | issue = 8 | pages = 927–39 | date = April 2000 | pmid = 10783165 | pmc = 316544 | doi =  10.1101/gad.14.8.927}}</ref><ref name = pmid12034743>{{cite journal | vauthors = Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF | title = Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM | journal = J. Biol. Chem. | volume = 277 | issue = 34 | pages = 30515–23 | date = August 2002 | pmid = 12034743 | doi = 10.1074/jbc.M203801200 }}</ref>
* [[CHAF1A]],<ref name = pmid15143166>{{cite journal | vauthors = Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I | title = Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1 | journal = Mol. Cell. Biol. | volume = 24 | issue = 11 | pages = 4710–9 | date = June 2004 | pmid = 15143166 | pmc = 416397 | doi = 10.1128/MCB.24.11.4710-4719.2004 }}</ref>
* [[CHEK1]],<ref name = pmid15364958>{{cite journal | vauthors = Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R, Ward IM, Celeste A, Nussenzweig A, Chen J, Halazonetis TD, Harris CC | title = Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest | journal = J. Cell Biol. | volume = 166 | issue = 6 | pages = 801–13 | date = September 2004 | pmid = 15364958 | pmc = 2172115 | doi = 10.1083/jcb.200405128 }}</ref>
* [[FANCM]],<ref>{{cite journal | vauthors = Deans AJ, West SC | title = FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia | journal = Mol. Cell | volume = 36 | issue = 6 | pages = 943–53 | date = 24 December 2009 | pmid = 20064461 | doi = 10.1016/j.molcel.2009.12.006 }}</ref>
* [[Flap structure-specific endonuclease 1|FEN1]],<ref name = pmid14688284>{{cite journal | vauthors = Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM | title = Stimulation of flap endonuclease-1 by the Bloom's syndrome protein | journal = J. Biol. Chem. | volume = 279 | issue = 11 | pages = 9847–56 | date = March 2004 | pmid = 14688284 | doi = 10.1074/jbc.M309898200 }}</ref>
* [[H2AFX]],<ref name = pmid15364958/>
* [[MLH1]]<ref name = pmid10783165/><ref name = pmid11470874/><ref name = pmid11325959>{{cite journal | vauthors = Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J | title = The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair | journal = J. Biol. Chem. | volume = 276 | issue = 32 | pages = 30031–5 | date = August 2001 | pmid = 11325959 | doi = 10.1074/jbc.M009664200 }}</ref><ref name = pmid11691925>{{cite journal | vauthors = Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I | title = Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1 | journal = Nucleic Acids Res. | volume = 29 | issue = 21 | pages = 4378–86 | date = November 2001 | pmid = 11691925 | pmc = 60193 | doi =  10.1093/nar/29.21.4378}}</ref>
* [[P53]],<ref name = pmid15364958/><ref name = pmid11399766>{{cite journal | vauthors = Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC | title = Functional interaction of p53 and BLM DNA helicase in apoptosis | journal = J. Biol. Chem. | volume = 276 | issue = 35 | pages = 32948–55 | date = August 2001 | pmid = 11399766 | doi = 10.1074/jbc.M103298200 }}</ref><ref name = pmid11781842>{{cite journal | vauthors = Garkavtsev IV, Kley N, Grigorian IA, Gudkov AV | title = The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control | journal = Oncogene | volume = 20 | issue = 57 | pages = 8276–80 | date = December 2001 | pmid = 11781842 | doi = 10.1038/sj.onc.1205120 }}</ref><ref name = pmid12080066>{{cite journal | vauthors = Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D, Griffith JD, Li JL, Hickson ID, Shen JC, Loeb LA, Mazur SJ, Appella E, Brosh RM, Karmakar P, Bohr VA, Harris CC | title = The processing of Holliday junctions by BLM and WRN helicases is regulated by p53 | journal = J. Biol. Chem. | volume = 277 | issue = 35 | pages = 31980–7 | date = August 2002 | pmid = 12080066 | doi = 10.1074/jbc.M204111200 }}</ref>
* [[RAD51L3]],<ref name = pmid12975363>{{cite journal | vauthors = Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID | title = Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D) | journal = J. Biol. Chem. | volume = 278 | issue = 48 | pages = 48357–66 | date = November 2003 | pmid = 12975363 | doi = 10.1074/jbc.M308838200 }}</ref>
* [[RAD51]],<ref name = pmid11278509>{{cite journal | vauthors = Wu L, Davies SL, Levitt NC, Hickson ID | title = Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51 | journal = J. Biol. Chem. | volume = 276 | issue = 22 | pages = 19375–81 | date = June 2001 | pmid = 11278509 | doi = 10.1074/jbc.M009471200 }}</ref>
* [[Replication protein A1|RPA1]],<ref name = pmid10825162>{{cite journal | vauthors = Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA | title = Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity | journal = J. Biol. Chem. | volume = 275 | issue = 31 | pages = 23500–8 | date = August 2000 | pmid = 10825162 | doi = 10.1074/jbc.M001557200 }}</ref><ref name = pmid12181313>{{cite journal | vauthors = Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA | title = Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases | journal = J. Biol. Chem. | volume = 277 | issue = 43 | pages = 41110–9 | date = October 2002 | pmid = 12181313 | doi = 10.1074/jbc.M205396200 }}</ref><ref name = pmid11950880>{{cite journal | vauthors = Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B | title = The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination | journal = J. Cell Sci. | volume = 115 | issue = Pt 8 | pages = 1611–22 | date = April 2002 | pmid = 11950880 | doi =  }}</ref>
* [[TOP3A]],<ref name = pmid11470874>{{cite journal | vauthors = Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP | title = Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha | journal = Nucleic Acids Res. | volume = 29 | issue = 15 | pages = 3172–80 | date = August 2001 | pmid = 11470874 | pmc = 55826 | doi =  10.1093/nar/29.15.3172}}</ref><ref name = pmid10825162/><ref name = pmid10734115>{{cite journal | vauthors = Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID | title = The Bloom's syndrome gene product interacts with topoisomerase III | journal = J. Biol. Chem. | volume = 275 | issue = 13 | pages = 9636–44 | date = March 2000 | pmid = 10734115 | doi =  10.1074/jbc.275.13.9636}}</ref><ref name = pmid11406610>{{cite journal | vauthors = Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA | title = Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability | journal = Hum. Mol. Genet. | volume = 10 | issue = 12 | pages = 1287–98 | date = June 2001 | pmid = 11406610 | doi =  10.1093/hmg/10.12.1287}}</ref>
* [[TP53BP1]],<ref name = pmid15364958/>
* [[Werner syndrome ATP-dependent helicase|WRN]],<ref name = pmid11919194>{{cite journal | vauthors = von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Hickson ID, Bohr VA | title = Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins | journal = J. Biol. Chem. | volume = 277 | issue = 24 | pages = 22035–44 | date = June 2002 | pmid = 11919194 | doi = 10.1074/jbc.M200914200 }}</ref>  and
* [[XRCC2]].<ref name = pmid12975363/>
{{Div col end}}
{{Clear}}
 
== References ==
{{Reflist|35em}}
 
== Further reading ==
{{Refbegin|35em}}
* {{cite journal | vauthors = Woo LL, Onel K, Ellis NA | title = The broken genome: genetic and pharmacologic approaches to breaking DNA | journal = Ann. Med. | volume = 39 | issue = 3 | pages = 208–18 | year = 2007 | pmid = 17457718 | doi = 10.1080/08035250601167136 }}
* {{cite journal | vauthors = McDaniel LD, Schultz RA | title = Elevated sister chromatid exchange phenotype of Bloom syndrome cells is complemented by human chromosome 15 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 89 | issue = 17 | pages = 7968–72 | year = 1992 | pmid = 1518822 | pmc = 49836 | doi = 10.1073/pnas.89.17.7968 }}
* {{cite journal | vauthors = Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J | title = The Bloom's syndrome gene product is homologous to RecQ helicases | journal = Cell | volume = 83 | issue = 4 | pages = 655–66 | year = 1995 | pmid = 7585968 | doi = 10.1016/0092-8674(95)90105-1 }}
* {{cite journal | vauthors = German J, Roe AM, Leppert MF, Ellis NA | title = Bloom syndrome: an analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 91 | issue = 14 | pages = 6669–73 | year = 1994 | pmid = 8022833 | pmc = 44264 | doi = 10.1073/pnas.91.14.6669 }}
* {{cite journal | vauthors = Foucault F, Vaury C, Barakat A, Thibout D, Planchon P, Jaulin C, Praz F, Amor-Guéret M | title = Characterization of a new BLM mutation associated with a topoisomerase II alpha defect in a patient with Bloom's syndrome | journal = Hum. Mol. Genet. | volume = 6 | issue = 9 | pages = 1427–34 | year = 1998 | pmid = 9285778 | doi = 10.1093/hmg/6.9.1427 }}
* {{cite journal | vauthors = Kaneko H, Orii KO, Matsui E, Shimozawa N, Fukao T, Matsumoto T, Shimamoto A, Furuichi Y, Hayakawa S, Kasahara K, Kondo N | title = BLM (the causative gene of Bloom syndrome) protein translocation into the nucleus by a nuclear localization signal | journal = Biochem. Biophys. Res. Commun. | volume = 240 | issue = 2 | pages = 348–53 | year = 1997 | pmid = 9388480 | doi = 10.1006/bbrc.1997.7648 }}
* {{cite journal | vauthors = Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID | title = The Bloom's syndrome gene product interacts with topoisomerase III | journal = J. Biol. Chem. | volume = 275 | issue = 13 | pages = 9636–44 | year = 2000 | pmid = 10734115 | doi = 10.1074/jbc.275.13.9636 }}
* {{cite journal | vauthors = Yankiwski V, Marciniak RA, Guarente L, Neff NF | title = Nuclear structure in normal and Bloom syndrome cells | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 97 | issue = 10 | pages = 5214–9 | year = 2000 | pmid = 10779560 | pmc = 25808 | doi = 10.1073/pnas.090525897 }}
* {{cite journal | vauthors = Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J | title = BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures | journal = Genes Dev. | volume = 14 | issue = 8 | pages = 927–39 | year = 2000 | pmid = 10783165 | pmc = 316544 | doi =  10.1101/gad.14.8.927}}
* {{cite journal | vauthors = Karow JK, Constantinou A, Li JL, West SC, Hickson ID | title = The Bloom's syndrome gene product promotes branch migration of Holliday junctions | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 97 | issue = 12 | pages = 6504–8 | year = 2000 | pmid = 10823897 | pmc = 18638 | doi = 10.1073/pnas.100448097 }}
* {{cite journal | vauthors = Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA | title = Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity | journal = J. Biol. Chem. | volume = 275 | issue = 31 | pages = 23500–8 | year = 2000 | pmid = 10825162 | doi = 10.1074/jbc.M001557200 }}
* {{cite journal | vauthors = Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C, Amor-Guéret M | title = Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase | journal = Oncogene | volume = 19 | issue = 23 | pages = 2731–8 | year = 2000 | pmid = 10851073 | doi = 10.1038/sj.onc.1203595 }}
* {{cite journal | vauthors = Barakat A, Ababou M, Onclercq R, Dutertre S, Chadli E, Hda N, Benslimane A, Amor-Guéret M | title = Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome | journal = Hum. Mutat. | volume = 15 | issue = 6 | pages = 584–5 | year = 2000 | pmid = 10862105 | doi = 10.1002/1098-1004(200006)15:6<584::AID-HUMU28>3.0.CO;2-I }}
* {{cite journal | vauthors = Brosh RM, Karow JK, White EJ, Shaw ND, Hickson ID, Bohr VA | title = Potent inhibition of Werner and Bloom helicases by DNA minor groove binding drugs | journal = Nucleic Acids Res. | volume = 28 | issue = 12 | pages = 2420–30 | year = 2000 | pmid = 10871376 | pmc = 102731 | doi = 10.1093/nar/28.12.2420 }}
* {{cite journal | vauthors = Wu L, Davies SL, Levitt NC, Hickson ID | title = Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51 | journal = J. Biol. Chem. | volume = 276 | issue = 22 | pages = 19375–81 | year = 2001 | pmid = 11278509 | doi = 10.1074/jbc.M009471200 }}
* {{cite journal | vauthors = Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J | title = The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair | journal = J. Biol. Chem. | volume = 276 | issue = 32 | pages = 30031–5 | year = 2001 | pmid = 11325959 | doi = 10.1074/jbc.M009664200 }}
* {{cite journal | vauthors = Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC | title = Functional interaction of p53 and BLM DNA helicase in apoptosis | journal = J. Biol. Chem. | volume = 276 | issue = 35 | pages = 32948–55 | year = 2001 | pmid = 11399766 | doi = 10.1074/jbc.M103298200 }}
* {{cite journal | vauthors = Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA | title = Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability | journal = Hum. Mol. Genet. | volume = 10 | issue = 12 | pages = 1287–98 | year = 2001 | pmid = 11406610 | doi = 10.1093/hmg/10.12.1287 }}
* {{cite journal | vauthors = Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP | title = Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIα | journal = Nucleic Acids Res. | volume = 29 | issue = 15 | pages = 3172–80 | year = 2001 | pmid = 11470874 | pmc = 55826 | doi = 10.1093/nar/29.15.3172 }}
{{Refend}}
 
== External links ==
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=bloom GeneReviews/NCBI/NIH/UW entry on Bloom Syndrome]
* {{UCSC gene info|BLM}}
 
{{DNA repair}}
 
[[Category:DNA replication and repair-deficiency disorders]]

Revision as of 19:25, 8 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.[1]

The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities. Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3' → 5' helicase activity. The normal protein may act to suppress inappropriate homologous recombination.[2]

Meiosis

File:Homologous Recombination.jpg
A current model of meiotic recombination, initiated by a double-strand break or gap, followed by pairing with an homologous chromosome and strand invasion to initiate the recombinational repair process. Repair of the gap can lead to crossover (CO) or non-crossover (NCO) of the flanking regions. CO recombination is thought to occur by the Double Holliday Junction (DHJ) model, illustrated on the right, above. NCO recombinants are thought to occur primarily by the Synthesis Dependent Strand Annealing (SDSA) model, illustrated on the left, above. Most recombination events appear to be the SDSA type.

Recombination during meiosis is often initiated by a DNA double-strand break (DSB). During recombination, sections of DNA at the 5' ends of the break are cut away in a process called resection. In the strand invasion step that follows, an overhanging 3' end of the broken DNA molecule then "invades" the DNA of an homologous chromosome that is not broken. After strand invasion, the further sequence of events may follow either of two main pathways leading to a crossover (CO) or a non-crossover (NCO) recombinant (see Genetic recombination and bottom of Figure in this section).

The budding yeast Saccharomyces cerevisiae encodes an ortholog of the Bloom syndrome (BLM) protein that is designated Sgs1 (Small growth suppressor 1). Sgs1(BLM) is a helicase that functions in homologous recombinational repair of DSBs. The Sgs1(BLM) helicase appears to be a central regulator of most of the recombination events that occur during S. cerevisiae meiosis.[3] During normal meiosis Sgs1(BLM) is responsible for directing recombination towards the alternate formation of either early NCOs or Holliday junction joint molecules, the latter being subsequently resolved as COs.[3]

In the plant Arabidopsis thaliana, homologs of the Sgs1(BLM) helicase act as major barriers to meiotic CO formation.[4] These helicases are thought to displace the invading strand allowing its annealing with the other 3’overhang end of the DSB, leading to NCO recombinant formation by a process called synthesis dependent strand annealing (SDSA) (see Genetic recombination and Figure in this section). It is estimated that only about 4% of DSBs are repaired by CO recombination.[5] Sequela-Arnaud et al.[4] suggested that CO numbers are restricted because of the long-term costs of CO recombination, that is, the breaking up of favorable genetic combinations of alleles built up by past natural selection.

Interactions

Bloom syndrome protein has been shown to interact with:

References

  1. Karow JK, Chakraverty RK, Hickson ID (January 1998). "The Bloom's syndrome gene product is a 3'-5' DNA helicase". J Biol Chem. 272 (49): 30611–4. doi:10.1074/jbc.272.49.30611. PMID 9388193.
  2. "Bloom syndrome". Genetics Home Reference. NIH. Retrieved 19 March 2013.
  3. 3.0 3.1 De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M (2012). "BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism". Mol. Cell. 46 (1): 43–53. doi:10.1016/j.molcel.2012.02.020. PMC 3328772. PMID 22500736.
  4. 4.0 4.1 Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R (2015). "Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM". Proc. Natl. Acad. Sci. U.S.A. 112 (15): 4713–8. doi:10.1073/pnas.1423107112. PMC 4403193. PMID 25825745.
  5. Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, et al. (2012). "FANCM limits meiotic crossovers". Science. 336 (6088): 1588–90. doi:10.1126/science.1220381. PMID 22723424.
  6. 6.0 6.1 Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (April 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
  7. Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (August 2002). "Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM". J. Biol. Chem. 277 (34): 30515–23. doi:10.1074/jbc.M203801200. PMID 12034743.
  8. Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I (June 2004). "Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1". Mol. Cell. Biol. 24 (11): 4710–9. doi:10.1128/MCB.24.11.4710-4719.2004. PMC 416397. PMID 15143166.
  9. 9.0 9.1 9.2 9.3 Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R, Ward IM, Celeste A, Nussenzweig A, Chen J, Halazonetis TD, Harris CC (September 2004). "Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest". J. Cell Biol. 166 (6): 801–13. doi:10.1083/jcb.200405128. PMC 2172115. PMID 15364958.
  10. Deans AJ, West SC (24 December 2009). "FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia". Mol. Cell. 36 (6): 943–53. doi:10.1016/j.molcel.2009.12.006. PMID 20064461.
  11. Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM (March 2004). "Stimulation of flap endonuclease-1 by the Bloom's syndrome protein". J. Biol. Chem. 279 (11): 9847–56. doi:10.1074/jbc.M309898200. PMID 14688284.
  12. 12.0 12.1 Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP (August 2001). "Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha". Nucleic Acids Res. 29 (15): 3172–80. doi:10.1093/nar/29.15.3172. PMC 55826. PMID 11470874.
  13. Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J (August 2001). "The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair". J. Biol. Chem. 276 (32): 30031–5. doi:10.1074/jbc.M009664200. PMID 11325959.
  14. Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I (November 2001). "Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1". Nucleic Acids Res. 29 (21): 4378–86. doi:10.1093/nar/29.21.4378. PMC 60193. PMID 11691925.
  15. Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (August 2001). "Functional interaction of p53 and BLM DNA helicase in apoptosis". J. Biol. Chem. 276 (35): 32948–55. doi:10.1074/jbc.M103298200. PMID 11399766.
  16. Garkavtsev IV, Kley N, Grigorian IA, Gudkov AV (December 2001). "The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control". Oncogene. 20 (57): 8276–80. doi:10.1038/sj.onc.1205120. PMID 11781842.
  17. Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D, Griffith JD, Li JL, Hickson ID, Shen JC, Loeb LA, Mazur SJ, Appella E, Brosh RM, Karmakar P, Bohr VA, Harris CC (August 2002). "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53". J. Biol. Chem. 277 (35): 31980–7. doi:10.1074/jbc.M204111200. PMID 12080066.
  18. 18.0 18.1 Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (November 2003). "Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)". J. Biol. Chem. 278 (48): 48357–66. doi:10.1074/jbc.M308838200. PMID 12975363.
  19. Wu L, Davies SL, Levitt NC, Hickson ID (June 2001). "Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51". J. Biol. Chem. 276 (22): 19375–81. doi:10.1074/jbc.M009471200. PMID 11278509.
  20. 20.0 20.1 Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA (August 2000). "Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity". J. Biol. Chem. 275 (31): 23500–8. doi:10.1074/jbc.M001557200. PMID 10825162.
  21. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (October 2002). "Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases". J. Biol. Chem. 277 (43): 41110–9. doi:10.1074/jbc.M205396200. PMID 12181313.
  22. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (April 2002). "The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination". J. Cell Sci. 115 (Pt 8): 1611–22. PMID 11950880.
  23. Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (March 2000). "The Bloom's syndrome gene product interacts with topoisomerase III". J. Biol. Chem. 275 (13): 9636–44. doi:10.1074/jbc.275.13.9636. PMID 10734115.
  24. Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (June 2001). "Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability". Hum. Mol. Genet. 10 (12): 1287–98. doi:10.1093/hmg/10.12.1287. PMID 11406610.
  25. von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Hickson ID, Bohr VA (June 2002). "Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins". J. Biol. Chem. 277 (24): 22035–44. doi:10.1074/jbc.M200914200. PMID 11919194.

Further reading

External links