Aortic stenosis valvuloplasty: Difference between revisions

Jump to navigation Jump to search
(/* ACC/AHA Guidelines- Indications for Percutaneous Aortic Balloon Valvotomy (DO NOT EDIT) {{cite journal| author=Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD et al.| title=2008 focused update incorporated into the ACC/AHA ...)
Line 76: Line 76:
(Level of Evidence: C)
(Level of Evidence: C)
}}
}}
==ACC/AHA 2008 Guidelines- Recommendations for Aortic Valve Repair/Replacement and Aortic Root Replacement (DO NOT EDIT)==
{{cquote|
===[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class I]]===
1. Aortic valvuloplasty, AVR, or Ross repair is indicated
in patients with severe AS or chronic severe AR while
they undergo coronary artery bypass grafting surgery
on the aorta, or surgery on other heart valves. (Level of
Evidence: C)
2. AVR is indicated for patients with severe AS and LV
dysfunction (LV ejection fraction less than 50%).
(Level of Evidence: C)
3. AVR is indicated in adolescents or young adults with
severe AR who have:
a. Development of symptoms. (Level of Evidence: C)
b. Development of persistent LV dysfunction (LV ejection
fraction less than 50%) or progressive LV
dilatation (LV end-diastolic diameter 4 standard
deviations above normal). (Level of Evidence: C)
4. Surgery to repair or replace the ascending aorta in a
patient with a BAV is recommended when the ascending
aorta diameter is 5.0 cm or more or when there is
progressive dilation at a rate greater than or equal to
5 mm per year.73 (Level of Evidence: B)
===[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class III]]===
1. AVR is not useful for prevention of sudden death in
asymptomatic adults with AS who have none of the
findings listed under the Class IIa/IIb indications.
(Level of Evidence: B)
2. AVR is not indicated in asymptomatic patients with
AR who have normal LV size and function. (Level of Evidence: B)
===[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIa]]===
1. AVR is reasonable for asymptomatic patients with
severe AR and normal systolic function (ejection fraction
greater than 50%) but with severe LV dilatation
(LV end-diastolic diameter greater than 75 mm or
end-systolic dimension greater than 55 mm*). (Level of
Evidence: B)
2. Surgical aortic valve repair or replacement is reasonable
in patients with moderate AS undergoing coro- nary artery bypass grafting or other cardiac or aortic
root surgery. (Level of Evidence: B)
===[[ACC AHA guidelines classification scheme#Classification of Recommendations|Class IIb]]===
1. AVR may be considered for asymptomatic patients
with any of the following indications:
a. Severe AS and abnormal response to exercise.
(Level of Evidence: C)
b. Evidence of rapid progression of AS or AR. (Level
of Evidence: C)
c. Mild AS while undergoing coronary artery bypass
grafting or other cardiac surgery and evidence of a
calcific aortic valve. (Level of Evidence: C)
d. Extremely severe AS (aortic valve area less than 0.6
cm and/or mean Doppler systolic AV gradient
greater than 60 mm Hg) in an otherwise good
operative candidate. (Level of Evidence: C)
e. Moderate AR undergoing coronary artery bypass
grafting or other cardiac surgery. (Level of Evidence:
C)
f. Severe AR with rapidly progressive LV dilation,
when the degree of LV dilation exceeds an end-diastolic
dimension of 70 mm or end-systolic dimension
of 50 mm, with declining exercise tolerance, or with
abnormal hemodynamic response to exercise. (Level
of Evidence: C)
2. Surgical repair may be considered in adults with AS or
AR and concomitant ascending aortic dilatation (ascending
aorta diameter greater than 4.5 cm) coexisting
with AS or AR. (Level of Evidence: B)
3. Early surgical repair may be considered in adults with
the following indications:
a. AS and a progressive increase in ascending aortic
size. (Level of Evidence: C)
b. Mild AR if valve-sparing aortic root replacement is
being considered. (Level of Evidence: C)}}


==Percutaneous Aortic Balloon Valvotomy (PABV) Technique==
==Percutaneous Aortic Balloon Valvotomy (PABV) Technique==

Revision as of 18:09, 1 October 2012

Aortic Stenosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Aortic Stenosis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Cardiac Stress Test

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography

Cardiac Catheterization

Aortic Valve Area

Aortic Valve Area Calculation

Treatment

General Approach

Medical Therapy

Surgery

Percutaneous Aortic Balloon Valvotomy (PABV) or Aortic Valvuloplasty

Transcatheter Aortic Valve Replacement (TAVR)

TAVR vs SAVR
Critical Pathway
Patient Selection
Imaging
Evaluation
Valve Types
TAVR Procedure
Post TAVR management
AHA/ACC Guideline Recommendations

Follow Up

Prevention

Precautions and Prophylaxis

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Aortic stenosis valvuloplasty On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Aortic stenosis valvuloplasty

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Aortic stenosis valvuloplasty

CDC on Aortic stenosis valvuloplasty

Aortic stenosis valvuloplasty in the news

Blogs on Aortic stenosis valvuloplasty

Directions to Hospitals Treating Aortic stenosis valvuloplasty

Risk calculators and risk factors for Aortic stenosis valvuloplasty

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Joanna J. Wykrzykowska, M.D.; Associate Editor(s)-In-Chief: Mohammed A. Sbeih, M.D. [2]

Overview

Although surgical aortic valve replacement is the mainstay of treatment of aortic stenosis as it improves both symptoms and life expectancy, some patients may not be surgical candidates due to comorbidities, and minimally invasive treatment such as percutaneous aortic balloon valvotomy (PABV) maybe an alternative to surgery as a palliative strategy. PABV is a procedure in which 1 or more balloons are placed across a stenotic valve and inflated to decrease the severity of aortic stenosis. This is to be distinguished from transcatheter aortic valve implantation (TAVI) which is a different method that involves replacement of the valve percutaneously.

Indications

  • ACC/AHA guidelines concluded that percutaneous aortic balloon valvotomy (PABV) is not a substitute for aortic valve replacement in adults. In adults with severe calcific AS who are not good candidates for this procedure as there is high restenosis rate (more than 10% of cases) and high risk of complications. Clinical deterioration occur within 6 to 12 months in most patients, and that is why balloon valvotomy is not a substitute for aortic valve replacement surgery. The procedure can be used in children and young adults with congenital, noncalcific AS.

ACC/AHA Guidelines- Indications for Percutaneous Aortic Balloon Valvotomy (DO NOT EDIT) [1]

Class IIb

1. Aortic balloon valvotomy might be reasonable as a bridge to surgery in hemodynamically unstable adult patients with AS who are at high risk for AVR. (Level of Evidence: C)

2. Aortic balloon valvotomy might be reasonable for palliation in adult patients with AS in whom AVR cannot be performed because of serious comorbid conditions. (Level of Evidence: C)

Class III

1. Aortic balloon valvotomy is not recommended as an alternative to AVR in adult patients with AS; certain younger adults without valve calcification may be an exception. (Level of Evidence: B)

ACC/AHA 2008 Guidelines- Recommendations for Catheter Interventions for Adults With Valvular Aortic Stenosis (DO NOT EDIT)

Class I

1. In young adults and others without significantly calcified aortic valves and no AR, aortic balloon valvotomy is indicated in the following patients:

a. Those with symptoms of angina, syncope, dyspnea on exertion, and peak-to-peak gradients at catheterization greater than 50 mm Hg. (Level of Evidence: C)

b. Asymptomatic adolescents or young adults who demonstrate ST or T-wave abnormalities in the left precordial leads on ECG at rest or with exercise and a peak-to-peak catheter gradient greater than 60 mm Hg. (Level of Evidence: C)

Class III

1. In older adults, aortic balloon valvotomy is not recommended as an alternative to AVR, although certain younger patients may be an exception and should be referred to a center with experience in aortic balloon valvuloplasties. (Level of Evidence: B)

2. In asymptomatic adolescents and young adults, aortic balloon valvotomy should not be performed with a peak-to-peak gradient less than 40 mm Hg without symptoms or ECG changes. (Level of Evidence: B)

Class II a

1. Aortic balloon valvotomy is reasonable in the asymptomatic adolescent or young adult with AS and a peak-to-peak gradient on catheterization greater than 50 mm Hg when the patient is interested in playing competitive sports or becoming pregnant. (Level of Evidence: C)

Class II b

1. Aortic balloon valvotomy may be considered as a bridge to surgery in hemodynamically unstable adults with AS, adults at high risk for AVR, or when AVR cannot be performed secondary to significant comorbidities. (Level of Evidence: C)

ACC/AHA 2008 Guidelines- Recommendations for Aortic Valve Repair/Replacement and Aortic Root Replacement (DO NOT EDIT)

Class I

1. Aortic valvuloplasty, AVR, or Ross repair is indicated in patients with severe AS or chronic severe AR while they undergo coronary artery bypass grafting surgery on the aorta, or surgery on other heart valves. (Level of Evidence: C)

2. AVR is indicated for patients with severe AS and LV dysfunction (LV ejection fraction less than 50%). (Level of Evidence: C)

3. AVR is indicated in adolescents or young adults with severe AR who have:

a. Development of symptoms. (Level of Evidence: C)

b. Development of persistent LV dysfunction (LV ejection fraction less than 50%) or progressive LV dilatation (LV end-diastolic diameter 4 standard deviations above normal). (Level of Evidence: C)

4. Surgery to repair or replace the ascending aorta in a patient with a BAV is recommended when the ascending aorta diameter is 5.0 cm or more or when there is progressive dilation at a rate greater than or equal to 5 mm per year.73 (Level of Evidence: B)

Class III

1. AVR is not useful for prevention of sudden death in asymptomatic adults with AS who have none of the findings listed under the Class IIa/IIb indications. (Level of Evidence: B)

2. AVR is not indicated in asymptomatic patients with AR who have normal LV size and function. (Level of Evidence: B)

Class IIa

1. AVR is reasonable for asymptomatic patients with severe AR and normal systolic function (ejection fraction greater than 50%) but with severe LV dilatation (LV end-diastolic diameter greater than 75 mm or end-systolic dimension greater than 55 mm*). (Level of Evidence: B)

2. Surgical aortic valve repair or replacement is reasonable in patients with moderate AS undergoing coro- nary artery bypass grafting or other cardiac or aortic root surgery. (Level of Evidence: B)

Class IIb

1. AVR may be considered for asymptomatic patients with any of the following indications: a. Severe AS and abnormal response to exercise. (Level of Evidence: C)

b. Evidence of rapid progression of AS or AR. (Level of Evidence: C)

c. Mild AS while undergoing coronary artery bypass grafting or other cardiac surgery and evidence of a calcific aortic valve. (Level of Evidence: C)

d. Extremely severe AS (aortic valve area less than 0.6 cm and/or mean Doppler systolic AV gradient greater than 60 mm Hg) in an otherwise good operative candidate. (Level of Evidence: C)

e. Moderate AR undergoing coronary artery bypass grafting or other cardiac surgery. (Level of Evidence: C)

f. Severe AR with rapidly progressive LV dilation, when the degree of LV dilation exceeds an end-diastolic dimension of 70 mm or end-systolic dimension of 50 mm, with declining exercise tolerance, or with abnormal hemodynamic response to exercise. (Level of Evidence: C)

2. Surgical repair may be considered in adults with AS or AR and concomitant ascending aortic dilatation (ascending aorta diameter greater than 4.5 cm) coexisting with AS or AR. (Level of Evidence: B)

3. Early surgical repair may be considered in adults with the following indications:

a. AS and a progressive increase in ascending aortic size. (Level of Evidence: C)

b. Mild AR if valve-sparing aortic root replacement is being considered. (Level of Evidence: C)

Percutaneous Aortic Balloon Valvotomy (PABV) Technique

  • After preparing the patient, a guide wire is inserted through the femoral artery into the aorta (retrograde technique). 8 French femoral sheath can usually accommodate a 20 mm balloon and minimizes vascular complications. Alternatively two 6 Fr sheath from bilateral femoral approach and two smaller balloons can be used. the latter may be necessary in female elderly patients with concomitant peripheral vascular disease.
  • 0.035” straight wire is commonly used to cross the valve and advance via pig-tail or Amplatz catheter; right heart catheterization is done and transaortic gradient is typically measured pre-procedure. The 0.035” wire is then exchanged for a stiffer 0.038”Amplatz exchange length wire with the tip shaped into a pig-tail shape so as not to injure the left ventricle.
  • A long sheath is introduced over the guide wire, through the sheath a Mansfield balloon is introduced and 20-23 mmX 6 cm balloon is advance over the wire and positioned to straddle the aortic valve.
  • The balloon is manually inflated with a 60 cc syringe containing diluted contrast (slowly). Meticulous control of balloon position must be maintained at all times by backward traction on the balloon to prevent jumping forward and injuring/perforating the left ventricular apex.
  • If there is difficulty in maintaining the balloon across the aortic valve during inflation, temporary ventricular pacing at high rate can reduce the cardiac output and give stability to the balloon.
  • Balloon is deflated and the trans valvar gradient reassessed for success of the procedure. Repeated dilatations can be given if necessary.
  • The balloon should be de-aired and filled with dilute contrast to avoid the chance of air embolism in case of balloon rupture during dilatation.

Outcome

  • Immediately after the procedure a moderate reduction in the transvalvular pressure gradient is usually observed. The aortic valve area after the procedure rarely exceeds 1.0 cm2 but an early symptomatic improvement is usually observed.
  • Patient survival after repeat PABV is higher than that of untreated patients.

Complications

  • Vascular complications are most common thus suture (Perclose) or Angioseal closure after the procedure in this tenuous patient population is preferable.
  • It follows that attention to meticulous access technique is mandatory.
  • Antegrade approach ie venous access with transseptal approach can be done in select patients, however, hemodynamic effects of mitral valve incompetence as a stiff wire is placed across the mitral valve are often poorly tolerated; mitral valve injury has been reported in this approach.
  • There is a small but significant risk of development of aortic regurgitation as a result of the procedure which can lead to pulmonary edema.
  • The balloon may rupture while dilation of a calcified valve is performed.

Sources

  • 2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease [1].

References

  1. 1.0 1.1 Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD; et al. (2008). "2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". J Am Coll Cardiol. 52 (13): e1–142. doi:10.1016/j.jacc.2008.05.007. PMID 18848134.


Template:WikiDoc Sources