Stavudine clinical pharmacology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:


Following oral administration, stavudine is rapidly absorbed, with peak plasma concentrations occurring within 1 hour after dosing. The systemic exposure to stavudine is the same following administration as capsules or solution. Steady-state pharmacokinetic parameters of ZERIT (stavudine) in HIV-1-infected adults are shown in Table 7.
Following oral administration, stavudine is rapidly absorbed, with peak plasma concentrations occurring within 1 hour after dosing. The systemic exposure to stavudine is the same following administration as capsules or solution. Steady-state pharmacokinetic parameters of ZERIT (stavudine) in HIV-1-infected adults are shown in Table 7.
{|
|[[File:7.JPG|600px|thumb]]
|}


===Distribution===
===Distribution===
Line 31: Line 35:
In HIV-1-infected patients, renal elimination of unchanged drug accounts for about 40% of the overall clearance regardless of the route of administration (Table 8). The mean renal clearance was about twice the average endogenous creatinine clearance, indicating active tubular secretion in addition to glomerular filtration.
In HIV-1-infected patients, renal elimination of unchanged drug accounts for about 40% of the overall clearance regardless of the route of administration (Table 8). The mean renal clearance was about twice the average endogenous creatinine clearance, indicating active tubular secretion in addition to glomerular filtration.


?
{|
|[[File:8.JPG|600px|thumb]]
|}


===Special Populations===
===Special Populations===
Line 39: Line 45:
Pharmacokinetic parameters of stavudine in pediatric patients are presented in Table 9.
Pharmacokinetic parameters of stavudine in pediatric patients are presented in Table 9.


?
{|
|[[File:9.JPG|600px|thumb]]
|}


===Renal Impairment===
===Renal Impairment===
Line 59: Line 67:


A population pharmacokinetic analysis of data collected during a controlled clinical study in HIV-1-infected patients showed no clinically important differences between races (n=233 Caucasian, 39 African-American, 41 Hispanic, 1 Asian, and 4 other).
A population pharmacokinetic analysis of data collected during a controlled clinical study in HIV-1-infected patients showed no clinically important differences between races (n=233 Caucasian, 39 African-American, 41 Hispanic, 1 Asian, and 4 other).
<ref name="dailymed.nlm.nih.gov">{{Cite web  | last =  | first =  | title = ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) POWDER, FOR SOLUTION [E.R. SQUIBB & SONS, L.L.C.] | url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=7745cad8-720d-4755-87c7-9147c0915b0f | publisher =  | date =  | accessdate =  }}</ref>
 
===Drug Interaction Studies===
 
Stavudine does not inhibit the major cytochrome P450 isoforms CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways. Because stavudine is not protein-bound, it is not expected to affect the pharmacokinetics of protein-bound drugs.
 
Tables 11 and 12 summarize the effects on AUC and Cmax, with a 95% confidence interval (CI) when available, following coadministration of ZERIT with didanosine, lamivudine, and nelfinavir. No clinically significant pharmacokinetic interactions were observed.<ref name="dailymed.nlm.nih.gov">{{Cite web  | last =  | first =  | title = ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) POWDER, FOR SOLUTION [E.R. SQUIBB & SONS, L.L.C.] | url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=7745cad8-720d-4755-87c7-9147c0915b0f | publisher =  | date =  | accessdate =  }}</ref>
 
{|
|[[File:11,12.JPG|600px|thumb]]
|}


==References==
==References==

Revision as of 06:19, 3 January 2014

Stavudine
Zerit® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Clinical Studies
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ahmed Zaghw, M.D. [2]

CLINICAL PHARMACOLOGY

Mechanism of Action

Stavudine is an antiviral drug.

Pharmacokinetics

The pharmacokinetics of stavudine have been evaluated in HIV-1-infected adult and pediatric patients (Tables 7, 8, and 9). Peak plasma concentrations (Cmax) and area under the plasma concentration-time curve (AUC) increased in proportion to dose after both single and multiple doses ranging from 0.03 to 4 mg/kg. There was no significant accumulation of stavudine with repeated administration every 6, 8, or 12 hours.

Absorption

Following oral administration, stavudine is rapidly absorbed, with peak plasma concentrations occurring within 1 hour after dosing. The systemic exposure to stavudine is the same following administration as capsules or solution. Steady-state pharmacokinetic parameters of ZERIT (stavudine) in HIV-1-infected adults are shown in Table 7.

Distribution

Binding of stavudine to serum proteins was negligible over the concentration range of 0.01 to 11.4 µg/mL. Stavudine distributes equally between red blood cells and plasma. Volume of distribution is shown in Table 8.

Metabolism

Metabolism plays a limited role in the clearance of stavudine. Unchanged stavudine was the major drug-related component circulating in plasma after an 80-mg dose of 14C-stavudine, while metabolites constituted minor components of the circulating radioactivity. Minor metabolites include oxidized stavudine, glucuronide conjugates of stavudine and its oxidized metabolite, and an N‑acetylcysteine conjugate of the ribose after glycosidic cleavage, suggesting that thymine is also a metabolite of stavudine.

Elimination

Following an 80-mg dose of 14C-stavudine to healthy subjects, approximately 95% and 3% of the total radioactivity was recovered in urine and feces, respectively. Radioactivity due to parent drug in urine and feces was 73.7% and 62.0%, respectively. The mean terminal elimination half-life is approximately 2.3 hours following single oral doses. Mean renal clearance of the parent compound is approximately 272 mL/min, accounting for approximately 67% of the apparent oral clearance.

In HIV-1-infected patients, renal elimination of unchanged drug accounts for about 40% of the overall clearance regardless of the route of administration (Table 8). The mean renal clearance was about twice the average endogenous creatinine clearance, indicating active tubular secretion in addition to glomerular filtration.

Special Populations

Pediatric

Pharmacokinetic parameters of stavudine in pediatric patients are presented in Table 9.

Renal Impairment

Data from two studies in adults indicated that the apparent oral clearance of stavudine decreased and the terminal elimination half-life increased as creatinine clearance decreased (see Table 10). Cmax and Tmax were not significantly altered by renal impairment. The mean ± SD hemodialysis clearance value of stavudine was 120 ± 18 mL/min (n=12); the mean ± SD percentage of the stavudine dose recovered in the dialysate, timed to occur between 2–6 hours post-dose, was 31 ± 5%. Based on these observations, it is recommended that ZERIT (stavudine) dosage be modified in patients with reduced creatinine clearance and in patients receiving maintenance hemodialysis [see Dosage and Administration (2.3)].

Hepatic Impairment

Stavudine pharmacokinetics were not altered in five non-HIV-infected patients with hepatic impairment secondary to cirrhosis (Child-Pugh classification B or C) following the administration of a single 40-mg dose.

Geriatric

Stavudine pharmacokinetics have not been studied in patients >65 years of age. [See Use in Specific Populations (8.5).]

Gender

A population pharmacokinetic analysis of data collected during a controlled clinical study in HIV-1-infected patients showed no clinically important differences between males (n=291) and females (n=27).

Race

A population pharmacokinetic analysis of data collected during a controlled clinical study in HIV-1-infected patients showed no clinically important differences between races (n=233 Caucasian, 39 African-American, 41 Hispanic, 1 Asian, and 4 other).

Drug Interaction Studies

Stavudine does not inhibit the major cytochrome P450 isoforms CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways. Because stavudine is not protein-bound, it is not expected to affect the pharmacokinetics of protein-bound drugs.

Tables 11 and 12 summarize the effects on AUC and Cmax, with a 95% confidence interval (CI) when available, following coadministration of ZERIT with didanosine, lamivudine, and nelfinavir. No clinically significant pharmacokinetic interactions were observed.[1]

References

  1. "ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) CAPSULE, GELATIN COATED ZERIT (STAVUDINE) POWDER, FOR SOLUTION [E.R. SQUIBB & SONS, L.L.C.]".

Adapted from the FDA Package Insert.