Quinine: Difference between revisions

Jump to navigation Jump to search
Adeel Jamil (talk | contribs)
No edit summary
Adeel Jamil (talk | contribs)
No edit summary
Line 12: Line 12:


<!--FDA-Labeled Indications and Dosage (Adult)-->
<!--FDA-Labeled Indications and Dosage (Adult)-->
|fdaLIADAdult=* Quinine sulphate is an antimalarial drug indicated only for treatment of uncomplicated [[Plasmodium falciparum]] [[malaria]]. Quinine sulfate has been shown to be effective in geographical regions where resistance to [[chloroquine]] has been documented.
|fdaLIADAdult=* Quinine sulphate is an [[antimalarial drug]] indicated only for treatment of uncomplicated [[P. falciparum malaria|Plasmodium falciparum malaria]]. Quinine sulfate has been shown to be effective in geographical regions where resistance to [[chloroquine]] has been documented.


* Quinine sulphate oral capsules are not approved for:
* Quinine sulphate oral capsules are not approved for:

Revision as of 15:52, 3 March 2015

Quinine
Black Box Warning
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Adeel Jamil, M.D. [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Black Box Warning

WARNING
See full prescribing information for complete Boxed Warning.
* Quinine sulphate use for the treatment or prevention of nocturnal leg cramps may result in serious and life-threatening hematologic reactions, including thrombocytopenia and hemolytic uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP). Chronic renal impairment associated with the development of TTP has been reported. The risk associated with Quinine sulphate use in the absence of evidence of its effectiveness in the treatment or prevention of nocturnal leg cramps outweighs any potential benefit

Overview

Quinine is a cinchona alkaloid, antimalarial and anti-Infective Agent, that is FDA approved for the treatment of of uncomplicated Plasmodium falciparum malaria. There is a Black Box Warning for this drug as shown here. Common adverse reactions include cinchonism include headache, vasodilation and sweating, nausea, tinnitus, hearing impairment, vertigo or dizziness, blurred vision, and disturbance in color perception..

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

  • Quinine sulphate oral capsules are not approved for:

Dosing Information

  • Quinine sulphate should be taken with food to minimize gastric upset.
Renal Impairment
  • In patients with acute uncomplicated malaria and severe chronic renal impairment, the following dosage regimen is recommended: one loading dose of 648 mg Quinine sulphate followed 12 hours later by maintenance doses of 324 mg every 12 hours.
Hepatic Impairment

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Quinine sulphate in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding FDA-Labeled Use of Quinine sulphate in pediatric patients.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Quinine sulphate in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Quinine sulphate in pediatric patients.

Contraindications

Quinine sulphate is contraindicated in patients with the following:

Prolonged QT interval:
Glucose-6-phosphate dehydrogenase deficiency(G6PD):
Known hypersensitivity reactions to quinine:
  • These include, but are not limited to, the following:

Hemolytic uremic syndrome (HUS)

Warnings

WARNING
See full prescribing information for complete Boxed Warning.
* Quinine sulphate use for the treatment or prevention of nocturnal leg cramps may result in serious and life-threatening hematologic reactions, including thrombocytopenia and hemolytic uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP). Chronic renal impairment associated with the development of TTP has been reported. The risk associated with Quinine sulphate use in the absence of evidence of its effectiveness in the treatment or prevention of nocturnal leg cramps outweighs any potential benefit

Use of Quinine for Treatment or Prevention of Nocturnal Leg Cramps:=

Thrombocytopenia
  • Quinine-induced thrombocytopenia is an immune-mediated disorder. Severe cases of thrombocytopenia that are fatal or life threatening have been reported, including cases of HUS/TTP. Chronic renal impairment associated with the development of TTP has also been reported. Thrombocytopenia usually resolves within a week upon discontinuation of quinine. If quinine is not stopped, a patient is at risk for fatal hemorrhage. Upon re-exposure to quinine from any source, a patient with quinine-dependent antibodies could develop thrombocytopenia that is more rapid in onset and more severe than the original episode.
QT Prolongation and Ventricular Arrhythmias:
Concomitant Use of Rifampin:
  • Treatment failures may result from the concurrent use of rifampin with Quinine sulphate, due to decreased plasma concentrations of quinine, and concomitant use of these medications should be avoided.
Concomitant Use of Neuromuscular Blocking Agents:
Hypersensitivity
  • Quinine sulphate should be discontinued in case of any signs or symptoms of hypersensitivity.
Atrial Fibrillation and Flutter:
  • Quinine sulphate should be used with caution in patients with atrial fibrillation or atrial flutter. A paradoxical increase in ventricular response rate may occur with quinine, similar to that observed with quinidine. If digoxin is used to prevent a rapid ventricular response, serum digoxin levels should be closely monitored, because digoxin levels may be increased with use of quinine.
Hypoglycemia

Adverse Reactions

Clinical Trials Experience

Overall=

  • The following ADVERSE REACTIONS have been reported with quinine sulfate. Most of these reactions are thought to be uncommon, but the actual incidence is unknown:
General:
Hematologic:
Neuropsychiatric:
Dermatologic:
Respiratory:
Cardiovascular:
Gastrointestinal:
Hepatobiliary:
Metabolic:
Musculoskeletal:
Renal:
Special Senses:

Postmarketing Experience

There is limited information regarding Postmarketing Experience of Quinine sulphate in the drug label.

Drug Interactions

Effects of Drugs and Other Substances on Quinine Pharmacokinetics=

  • Antacids:
  • Antacids containing aluminum and/or magnesium may delay or decrease absorption of quinine. Concomitant administration of these antacids with Quinine sulphate should be avoided.
  • Cholestyramine:
  • In 8 healthy subjects who received quinine sulfate 600 mg with or without 8 grams of cholestyramine resin, no significant difference in quinine pharmacokinetic parameters was seen.
  • In healthy male heavy smokers, the mean quinine AUC following a single 600 mg dose was 44% lower, the mean Cmax was 18% lower, and the elimination half-life was shorter (7.5 hours versus 12 hours) than in their non-smoking counterparts. However, in malaria patients who received the full 7-day course of quinine therapy, cigarette smoking produced only a 25% decrease in median quinine AUC and a 16.5% decrease in median Cmax, suggesting that the already reduced clearance of quinine in acute malaria could have diminished the metabolic induction effect of smoking. Because smoking did not appear to influence the therapeutic outcome in malaria patients, it is not necessary to increase the dose of quinine in the treatment of acute malaria in heavy cigarette smokers.
  • In a pharmacokinetic study involving 10 healthy subjects, the administration of a single 600 mg dose of quinine sulfate with grapefruit juice (full-strength or half-strength) did not significantly alter the pharmacokinetic parameters of quinine. Quinine sulphate may be taken with grapefruit juice.
  • In healthy subjects who were given a single oral 600 mg dose of quinine sulfate after pretreatment with cimetidine (200 mg three times daily and 400 mg at bedtime for 7 days) or ranitidine (150 mg twice daily for 7 days), the apparent oral clearance of quinine decreased and the mean elimination half-life increased significantly when given with cimetidine but not with ranitidine. Compared to untreated controls, the mean AUC of quinine increased by 20% with ranitidine and by 42% with cimetidine (p<0.05) without a significant change in mean quinine Cmax. When quinine is to be given concomitantly with a Histamine H2-receptor blockers, the use of ranitidine is preferred over cimetidine. Although cimetidine and ranitidine may be used concomitantly with Quinine sulphate, patients should be monitored closely for adverse events associated with quinine.
  • Isoniazid:
  • Isoniazid 300 mg/day pretreatment for 1 week did not significantly alter the pharmacokinetic parameter values of quinine. Adjustment of Quinine sulphate dosage is not necessary when isoniazid is given concomitantly.
  • Ketoconazole (CYP3A4 inhibitor):
  • In a crossover study, healthy subjects (N=9) who received a single oral dose of quinine hydrochloride (500 mg) concomitantly with ketoconazole (100 mg twice daily for 3 days) had a mean quinine AUC that was higher by 45% and a mean oral clearance of quinine that was 31% lower than after receiving quinine alone. Although no change in the Quinine sulphate dosage regimen is necessary with concomitant ketoconazole, patients should be monitored closely for adverse reactions associated with quinine.
  • In a crossover study (N=10), healthy subjects who received a single oral 600 mg dose of quinine sulfate with the macrolide antibiotic, troleandomycin (500 mg every 8 hours) exhibited a 87% higher mean quinine AUC, a 45% lower mean oral clearance of quinine, and a 81% lower formation clearance of the main metabolite, 3-hydroxyquinine, than when quinine was given alone.
  • Erythromycin was shown to inhibit the in vitro metabolism of quinine in human liver microsomes, an observation confirmed by an in vivo interaction study. In a crossover study (N=10), healthy subjects who received a single oral 500 mg dose of quinine sulfate with erythromycin (600 mg every 8 hours for four days) showed a decrease in quinine oral clearance (CL/F), an increase in half-life, and a decreased metabolite (3-hydroxyquinine) to quinine AUC ratio, as compared to when quinine was given with placebo.
  • In 7 healthy females who were using single-ingredient progestin or combination estrogen-containing oral contraceptives, the pharmacokinetic parameters of a single 600 mg dose of quinine sulfate were not altered in comparison to those observed in 7 age-matched female control subjects not using oral contraceptives.
  • In patients with uncomplicated P. falciparum malaria who received quinine sulfate 10 mg/kg concomitantly with rifampin 15 mg/kg/day for 7 days (N=29), the median AUC of quinine between days 3 and 7 of therapy was 75% lower as compared to those who received quinine monotherapy. In healthy subjects (N=9) who received a single oral 600 mg dose of quinine sulfate after 2 weeks of pretreatment with rifampin 600 mg/day, the mean quinine AUC and Cmax decreased by 85% and 55%, respectively. Therefore, the concomitant administration of rifampin with Quinine sulphate should be avoided.
  • Ritonavir:
  • In healthy subjects who received a single oral 600 mg dose of quinine sulfate with the 15th dose of ritonavir (200 mg every 12 hours for 9 days), there were 4-fold increases in the mean quinine AUC and Cmax, and an increase in the mean elimination half-life (13.4 hours versus 11.2 hours), compared to when quinine was given alone. Therefore, the concomitant administration of ritonavir with Quinine sulphate capsules should be avoided.
  • In 8 patients with acute uncomplicated P. falciparum malaria who were treated with oral quinine sulfate (600 mg every 8 hours for 7 days) in combination with oral tetracycline (250 mg every 6 hours for 7 days), the mean plasma quinine concentrations were about two-fold higher than in 8 patients who received quinine monotherapy. Although tetracycline may be concomitantly administered with Quinine sulphate, patients should be monitored closely for adverse reactions associated with quinine sulfate.
  • In 20 healthy subjects who received multiple doses of Quinine sulphate (648 mg every 8 hours × 7 days) with a single 300 mg oral dose of theophylline, the quinine mean Cmax and AUC were increased by 13% and 14% respectively. Although no change in the Quinine sulphate dosage regimen is necessary with concomitant theophylline or aminophylline, patients should be monitored closely for adverse reactions associated with quinine.
  • Urinary alkalinizing agents may increase plasma quinine concentrations.
Effects of Quinine on the Pharmacokinetics of Other Drugs:
  • Results of in vivo drug interaction studies suggest that quinine has the potential to inhibit the metabolism of drugs that are substrates of CYP3A4 and CYP2D6. Quinine inhibits P-gp and has the potential to affect the transport of drugs that are P-gp substrates.
  • A single 600 mg oral dose of quinine sulfate increased the mean plasma Cmax, and AUC0–24 of single oral doses of carbamazepine (200 mg) and phenobarbital (120 mg) but not phenytoin (200 mg) in 8 healthy subjects. The mean AUC increases of carbamazepine, phenobarbital and phenytoin were 104%, 81% and 4%, respectively; the mean increases in Cmax were 56%, 53%, and 4%, respectively. Mean urinary recoveries of the three antiepileptics over 24 hours were also profoundly increased by quinine. If concomitant administration with carbamazepine or phenobarbital cannot be avoided, frequent monitoring of anticonvulsant drug concentrations is recommended. Additionally, patients should be monitored closely for adverse reactions associated with these anticonvulsants.
  • In 4 healthy subjects who received digoxin (0.5 to 0.75 mg/day) during treatment with quinine (750 mg/day), a 33% increase in mean steady state AUC of digoxin and a 35% reduction in the steady state biliary clearance of digoxin were observed compared to digoxin alone. Thus, if Quinine sulphate is administered to patients receiving digoxin, plasma digoxin concentrations should be closely monitored, and the digoxin dose adjusted, as necessary.
  • Although not studied clinically, quinine was shown to inhibit the metabolism of halofantrine in vitro using human liver microsomes. Therefore, concomitant administration of Quinine sulphate is likely to increase plasma halofantrine concentrations.
  • In 23 healthy subjects who received multiple doses of Quinine sulphate 324 mg three times daily × 7 days with a single oral 2 mg dose of midazolam, the mean AUC and Cmax of midazolam and 1-hydroxymidazolam were not significantly affected. This finding indicates that 7-day dosing with Quinine sulphate 324 mg every 8 hours did not induce the metabolism of midazolam.
  • In healthy subjects who received a single oral 600 mg dose of quinine sulfate with the 15th dose of ritonavir (200 mg every 12 hours for 9 days), the mean ritonavir AUC, Cmax, and elimination half-life were slightly but not significantly increased compared to when ritonavir was given alone. However, due to the significant effect of ritonavir on quinine pharmacokinetics, the concomitant administration of Quinine sulphate capsules with ritonavir should be avoided.
Drug/Laboratory Interactions:

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): C

  • There are extensive published data but few well-controlled studies of Quinine sulphate in pregnant women. Published data on over 1,000 pregnancy exposures to quinine did not show an increase in teratogenic effects over the background rate in the general population; however, the majority of these exposures were not in the first trimester. In developmental and reproductive toxicity studies, central nervous system (CNS) and ear abnormalities and increased fetal deaths occurred in some species when pregnant animals received quinine at doses about 1 to 4 times the human clinical dose. Quinine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
  • Quinine crosses the placenta with measurable blood concentrations in the fetus. In 8 women who delivered live infants 1 to 6 days after starting quinine therapy, umbilical cord plasma quinine concentrations were between 1.0 and 4.6 mg/L (mean 2.4 mg/L) and the mean (±SD) ratio of cord plasma to maternal plasma quinine concentrations was 0.32 ± 0.14. Quinine levels in the fetus may not be therapeutic. If congenital malaria is suspected after delivery, the infant should be evaluated and treated appropriately.
  • A study from Thailand (1999) of women with P. falciparum malaria who were treated with oral quinine sulfate 10 mg/kg 3 times daily for 7 days at anytime in pregnancy reported no significant difference in the rate of stillbirths at >28 weeks of gestation in women treated with quinine (10 of 633 women [1.6%]) as compared with a control group without malaria or exposure to antimalarial drugs during pregnancy (40 of 2201 women [1.8%]). The overall rate of congenital malformations (9 of 633 offspring [1.4%]) was not different for women who were treated with quinine sulfate compared with the control group (38 of 2201 offspring [1.7%]). The spontaneous abortion rate was higher in the control group (10.9%) than in women treated with quinine sulfate (3.5%) [OR = 3.1; 95% CI 2.1-4.7]. An epidemiologic survey that included 104 mother-child pairs exposed to quinine during the first 4 months of pregnancy, found no increased risk of structural birth defects was seen (2 fetal malformations [1.9%]). Rare and isolated case reports describe deafness and optic nerve hypoplasia in children exposed in utero due to maternal ingestion of high doses of quinine.
  • In animal developmental studies conducted in multiple animal species, pregnant animals received quinine by the subcutaneous or intramuscular route at dose levels similar to the maximum recommended human dose (MRHD; 32 mg/kg/day) based on body surface area (BSA) comparisons. There were increases in fetal death in utero in rabbits at maternal doses ≥ 100 mg/kg/day and in dogs at ≥ 15 mg/kg/day corresponding to dose levels approximately 0.5 and 0.25 times the MRHD respectively based on BSA comparisons. Rabbit offspring had increased rates of degenerated auditory nerve and spiral ganglion and increased rates of CNS anomalies such as anencephaly and microcephaly at a dose of 130 mg/kg/day corresponding to a maternal dose approximately 1.3 times the MRHD based on BSA comparison. Guinea pig offspring had increased rates of hemorrhage and mitochondrial change in the cochlea at maternal doses of 200 mg/kg corresponding to a dose level of approximately 1.4 times the MRHD based on BSA comparison. There were no teratogenic findings in rats at maternal doses up to 300 mg/kg/day and in monkeys at doses up to 200 mg/kg/day corresponding to doses approximately 1 and 2 times the MRHD respectively based on BSA comparisons.
  • In a pre- postnatal study in rats, an estimated oral dose of quinine sulfate of 20 mg/kg/day corresponding to approximately 0.1 times the MRHD based on BSA comparison resulted in offspring with impaired growth, lower body weights at birth and during the lactation period, and delayed physical development of teeth eruption and eye opening during the lactation period.


Pregnancy Category (AUS):

  • Australian Drug Evaluation Committee (ADEC) Pregnancy Category

There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Quinine sulphate in women who are pregnant.

Labor and Delivery

  • There is no evidence that quinine causes uterine contractions at the doses recommended for the treatment of malaria. In doses several-times higher than those used to treat malaria, quinine may stimulate the pregnant uterus.

Nursing Mothers

  • There is limited information on the safety of quinine in breastfed infants. No toxicity was reported in infants in a single study where oral quinine sulfate (10 mg/kg every 8 hours for 1 to 10 days) was administered to 25 lactating women. It is estimated from this study that breastfed infants would receive less than 2 to 3 mg per day of quinine base (< 0.4% of the maternal dose) via breast milk.
  • Although quinine is generally considered compatible with breastfeeding, the risks and benefits to infant and mother should be assessed. Caution should be exercised when administered to a nursing woman.
  • If malaria is suspected in the infant, appropriate evaluation and treatment should be provided. Plasma quinine levels may not be therapeutic in infants of nursing mothers receiving Quinine sulphate.

Pediatric Use

There is no FDA guidance on the use of Quinine sulphate with respect to pediatric patients.

Geriatic Use

There is no FDA guidance on the use of Quinine sulphate with respect to geriatric patients.

Gender

There is no FDA guidance on the use of Quinine sulphate with respect to specific gender populations.

Race

There is no FDA guidance on the use of Quinine sulphate with respect to specific racial populations.

Renal Impairment

  • Clearance of quinine is decreased in patients with severe chronic renal failure. The dosage and dosing frequency should be reduced

Hepatic Impairment

  • In patients with severe hepatic impairment (Child-Pugh C), quinine oral clearance (CL/F) is decreased, volume of distribution (Vd/F) is increased, and half-life is prolonged, relative to subjects with normal liver function. Therefore, quinine is not indicated in patients with severe hepatic impairment and alternate therapy should be administered.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Quinine sulphate in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Quinine sulphate in patients who are immunocompromised.

Administration and Monitoring

Administration

Monitoring

Hepatic Impairment=

  • In otherwise healthy subjects with mild hepatic impairment (Child-Pugh A; N=10), who received a single 500 mg dose of quinine sulfate, there was no significant difference in quinine pharmacokinetic parameters or exposure to the primary metabolite, 3-hydroxyquinine as compared to healthy controls (N=10). In otherwise healthy subjects with moderate hepatic impairment (Child-Pugh B; N=9) who received a single oral 600 mg dose of quinine sulfate, the mean AUC increased by 55% without a significant change in mean Cmax, as compared to healthy volunteer controls (N=6). In subjects with hepatitis, the absorption of quinine was prolonged, the elimination half-life was increased, the apparent volume of distribution was higher, but there was no significant difference in weight-adjusted clearance. Therefore, in patients with mild to moderate hepatic impairment, dosage adjustment is not needed, but patients should be monitored closely for adverse effects of quinine.
Atrial Fibrillation and Flutter
Histamine H2-receptor blockers i.e cimetidine, ranitidine (nonspecific CYP450 inhibitors)=
  • In healthy subjects who were given a single oral 600 mg dose of quinine sulfate after pretreatment with cimetidine (200 mg three times daily and 400 mg at bedtime for 7 days) or ranitidine (150 mg twice daily for 7 days), the apparent oral clearance of quinine decreased and the mean elimination half-life increased significantly when given with cimetidine but not with ranitidine. Compared to untreated controls, the mean AUC of quinine increased by 20% with ranitidine and by 42% with cimetidine (p<0.05) without a significant change in mean quinine Cmax. When quinine is to be given concomitantly with a histamine H2-receptor blocker, the use of ranitidine is preferred over cimetidine. Although cimetidine and ranitidine may be used concomitantly with Quinine sulphate, patients should be monitored closely for adverse events associated with quinine.
Ketoconazole (CYP3A4 inhibitor)
  • In a crossover study, healthy subjects (N=9) who received a single oral dose of quinine hydrochloride (500 mg) concomitantly with ketoconazole (100 mg twice daily for 3 days) had a mean quinine AUC that was higher by 45% and a mean oral clearance of quinine that was 31% lower than after receiving quinine alone. Although no change in the Quinine sulphate dosage regimen is necessary with concomitant ketoconazole, patients should be monitored closely for adverse reactions associated with quinine.
  • Tetracycline: In 8 patients with acute uncomplicated P. falciparum malaria who were treated with oral quinine sulfate (600 mg every 8 hours for 7 days) in combination with oral tetracycline (250 mg every 6 hours for 7 days), the mean plasma quinine concentrations were about two-fold higher than in 8 patients who received quinine monotherapy. Although tetracycline may be concomitantly administered with Quinine sulphate, patients should be monitored closely for adverse reactions associated with quinine sulfate.
  • Theophylline or aminophylline: In 20 healthy subjects who received multiple doses of Quinine sulphate (648 mg every 8 hours × 7 days) with a single 300 mg oral dose of theophylline, the quinine mean Cmax and AUC were increased by 13% and 14% respectively. Although no change in the Quinine sulphate dosage regimen is necessary with concomitant theophylline or aminophylline, patients should be monitored closely for adverse reactions associated with quinine.
  • Digoxin (P-gp substrate): In 4 healthy subjects who received digoxin (0.5 to 0.75 mg/day) during treatment with quinine (750 mg/day), a 33% increase in mean steady state AUC of digoxin and a 35% reduction in the steady state biliary clearance of digoxin were observed compared to digoxin alone. Thus, if Quinine sulphate is administered to patients receiving digoxin, plasma digoxin concentrations should be closely monitored, and the digoxin dose adjusted, as necessary.

IV Compatibility

There is limited information regarding IV Compatibility of Quinine sulphate in the drug label.

Overdosage

  • Most toxic reactions are dose-related; however, some reactions may be idiosyncratic because of the variable sensitivity of patients to the toxic effects of quinine. A lethal dose of quinine has not been clearly defined, but fatalities have been reported after the ingestion of 2 to 8 grams in adults.
  • Quinine is rapidly absorbed, and attempts to remove residual quinine sulfate from the stomach by gastric lavage may not be effective. Multiple-dose activated charcoal has been shown to decrease plasmaquinine concentrations.

Pharmacology

Template:Px
Template:Px
Quinine
Systematic (IUPAC) name
(R)-(6-Methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol
Identifiers
CAS number 130-95-0
ATC code M09AA01 P01BC01 (WHO)
PubChem 8549
DrugBank DB00468
Chemical data
Formula Template:OrganicBox atomTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox 
Mol. mass 324.417 g/mol
SMILES eMolecules & PubChem
Physical data
Melt. point 177 °C (351 °F)
Pharmacokinetic data
Bioavailability ?
Protein binding 70-95%[1]
Metabolism Hepatic (mostly CYP3A4 and CYP2C19-mediated)
Half life 8-14 hours (adults), 6-12 hours (children)[1]
Excretion Renal (20%)
Therapeutic considerations
Licence data

US

Pregnancy cat.

D(AU) C(US)

Legal status

Prescription Only (S4)(AU) ?(CA) POM(UK) [[Prescription drug|Template:Unicode-only]](US)

Routes Oral, intravenous

Mechanism of Action

  • Quinine is an antimalarial agent

Structure

  • Quinine sulphate (quinine sulfate) is a cinchona alkaloid chemically described as cinchonan-9-ol, 6'-methoxy-, (8α, 9R)-, sulfate (2:1) (salt), dihydrate with a molecular formula of (C20H24N2O2)2•H2SO4•2H2O and a molecular weight of 782.96.

The structural formula of quinine sulfate is:

This image is provided by the National Library of Medicine.

Pharmacodynamics

  • QTc interval prolongation was studied in a double-blind, multiple dose, placebo- and positive-controlled crossover study in young (N=13, 20 to 39 years) and elderly (N=13, 65 to 78 years) subjects. After 7 days of dosing with Quinine sulphate 648 mg three times daily, the maximum mean (95% upper confidence bound) differences in QTcI from placebo after baseline correction was 27.7 (32.2) ms.
  • Prolongation of the PR and QRS interval was also noted in subjects receiving Quinine sulphate. The maximum mean (95% upper confidence bound) difference in PR from placebo after baseline-correction was 14.5 (18.0) ms. The maximum mean (95% upper confidence bound) difference in QRS from placebo after baseline-correction was 11.5 (13.3) ms.

Pharmacokinetics

Absorption:=

  • The oral bioavailability of quinine is 76 to 88% in healthy adults. Quinine exposure is higher in patients with malaria than in healthy subjects. After a single oral dose of quinine sulfate, the mean quinine Tmax was longer, and mean AUC and Cmax were higher in patients with uncomplicated P. falciparum malaria than in healthy subjects, as shown in Table 1 below.
This image is provided by the National Library of Medicine.
  • Quinine sulphate capsules may be administered without regard to meals. When a single oral 324 mg capsule of Quinine sulphate was administered to healthy subjects (N=26) with a standardized high-fat breakfast, the mean Tmax of quinine was prolonged to about 4.0 hours, but the mean Cmax and AUC0-24h were similar to those achieved when Quinine sulphate capsule was given under fasted conditions.
Distribution:
  • In patients with malaria, the volume of distribution (Vd/F) decreases in proportion to the severity of the infection. In published studies with healthy subjects who received a single oral 600 mg dose of quinine sulfate, the mean Vd/F ranged from 2.5 to 7.1 L/kg.
  • Intra-erythrocytic levels of quinine are approximately 30 to 50% of the plasma concentration.
Metabolism:
  • Quinine is metabolized almost exclusively via hepatic oxidative cytochrome P450 (CYP) pathways, resulting in four primary metabolites, 3-hydroxyquinine, 2´-quinone, O-desmethylquinine, and 10,11-dihydroxydihydroquinine. Six secondary metabolites result from further biotransformation of the primary metabolites. The major metabolite, 3-hydroxyquinine, is less active than the parent drug.
Elimination/Excretion:
  • Quinine is eliminated primarily via hepatic biotransformation. Approximately 20% of quinine is excreted unchanged in urine. Because quinine is reabsorbed when the urine is alkaline, renal excretion of the drug is twice as rapid when the urine is acidic than when it is alkaline.
  • In various published studies, healthy subjects who received a single oral 600 mg dose of quinine sulfate exhibited a mean plasma clearance ranging from 0.08 to 0.47 L/h/kg (median value: 0.17 L/h/kg) with a mean plasma elimination half-life of 9.7 to 12.5 hours.
  • In 15 patients with uncomplicated malaria who received a 10 mg/kg oral dose of quinine sulfate, the mean total clearance of quinine was slower (approximately 0.09 L/h/kg) during the acute phase of the infection, and faster (approximately 0.16 L/h/kg) during the recovery or convalescent phase.
  • Administration of multiple-dose activated charcoal (50 grams administered 4 hours after quinine dosing followed by 3 further doses over the next 12 hours) decreased the mean quinine elimination half-life from 8.2 to 4.6 hours, and increased the mean quinine clearance by 56% (from 11.8 L/h to 18.4 L/h) in 7 healthy adult subjects who received a single oral 600 mg dose of quinine sulfate. Likewise, in 5 symptomatic patients with acute quinine poisoning who received multiple-dose activated charcoal (50 grams every 4 hours), the mean quinine elimination half-life was shortened to 8.1 hours in comparison to a half-life of approximately 26 hours in patients who did not receive activated charcoal.
  • In 6 patients with quinine poisoning, forced acid diuresis did not change the half-life of quinine elimination (25.1 ± 4.6 hours vs. 26.5 ± 5.8 hours), or the amount of unchanged quinine recovered in the urine, in comparison to 8 patients not treated in this manner.
  • Specific Populations:
This image is provided by the National Library of Medicine.
  • Geriatric Patients:
    • Following a single oral dose of 600 mg quinine sulfate, the mean AUC was about 38% higher in 8 healthy elderly subjects (65 to 78 years old) than in 12 younger subjects (20 to 35 years old). The mean Tmax and Cmax were similar in elderly and younger subjects after a single oral dose of quinine sulfate 600 mg. The mean oral clearance of quinine was significantly decreased, and the mean elimination half-life was significantly increased in elderly subjects compared with younger subjects (0.06 vs. 0.08 L/h/kg, and 18.4 hours vs. 10.5 hours, respectively). Although there was no significant difference in the renal clearance of quinine between the two age groups, elderly subjects excreted a larger proportion of the dose in urine as unchanged drug than younger subjects (16.6% vs. 11.2%).
    • After a single 648 mg dose or at steady state, following quinine sulfate 648 mg given three times daily for 7 days, no difference in the rate and extent of absorption or clearance of quinine was seen between 13 elderly subjects (65 to 78 years old) and 14 young subjects (20 to 39 years old). The mean elimination half-life was 20% longer in the elderly subjects (24.0 hours) than in younger subjects (20.0 hours). The steady state Cmax (±SD) and AUC0-8 (±SD) for healthy volunteers are 6.8 ± 1.24 mcg/mL and 48.8 ± 9.15 mcg*h/mL, respectively, following 7 days of oral quinine sulfate 648 mg three times daily. The steady state pharmacokinetic parameters in healthy elderly subjects were similar to the pharmacokinetic parameters in healthy young subjects.
  • Renal Impairment:
    • Following a single oral 600 mg dose of quinine sulfate in otherwise healthy subjects with severe chronic renal failure not receiving any form of dialysis (mean serum creatinine = 9.6 mg/dL), the median AUC was higher by 195% and the median Cmax was higher by 79% than in subjects with normal renal function (mean serum creatinine = 1 mg/dL). The mean plasma half-life in subjects with severe chronic renal impairment was prolonged to 26 hours compared to 9.7 hours in the healthy controls. Computer assisted modeling and simulation indicates that in patients with malaria and severe chronic renal failure, a dosage regimen consisting of one loading dose of 648 mg Quinine sulphate followed 12 hours later by a maintenance dosing regimen of 324 mg every 12 hours will provide adequate systemic exposure to quinine. The effects of mild and moderate renal impairment on the pharmacokinetics and safety of quinine sulfate are not known.
  • Hepatic Impairment:
    • In otherwise healthy subjects with mild hepatic impairment (Child-Pugh A; N=10), who received a single 500 mg dose of quinine sulfate, there was no significant difference in quinine pharmacokinetic parameters or exposure to the primary metabolite, 3-hydroxyquinine as compared to healthy controls (N=10). In otherwise healthy subjects with moderate hepatic impairmenT (Child-Pugh B; N=9) who received a single oral 600 mg dose of quinine sulfate, the mean AUC increased by 55% without a significant change in mean Cmax, as compared to healthy volunteer controls (N=6). In subjects with hepatitis, the absorption of quinine was prolonged, the elimination half-life was increased, the apparent volume of distribution was higher, but there was no significant difference in weight-adjusted clearance. Therefore, in patients with mild to moderate hepatic impairment, dosage adjustment is not needed, but patients should be monitored closely for adverse effects of quinine.
    • In subjects with severe hepatic impairment (Child-Pugh C; N=10), quinine oral clearance (CL/F) was reduced as was formation of the primary 3-hydroxyquinine metabolite. Volume of distribution (Vd/F) was higher and the plasma elimination half-life was increased. Therefore, quinine is not indicated in this population and alternate therapy should be administered.

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility=

  • Carcinogenesis:
  • Mutagenesis:
  • Impairment of Fertility:
  • Published studies indicate that quinine produces testicular toxicity in mice at a single intraperitoneal dose of 300 mg/kg corresponding to a dose of approximately 0.75 times the maximum recommended human dose (MRHD; 32 mg/kg/day) and in rats at an intramuscular dose of 10 mg/kg/day, 5 days/week, for 8 weeks corresponding to a daily dose of approximately 0.05 times the MRHD based on body surface area (BSA) comparisons. The findings include atrophy or degeneration of the seminiferous tubules, decreased sperm count and motility, and decreased testosterone levels in the serum and testes. There was no effect on testes weight in studies of oral doses of up to 500 mg/kg/day in mice and 700 mg/kg/day in rats (approximately 1.2 and 3.5 times the MRHD respectively based on BSA comparisons). In a published study in 5 men receiving 600 mg of quinine TID for one week, sperm motility was decreased and percent sperm with abnormal morphology was increased; sperm count and serum testosterone were unaffected.

Clinical Studies

  • Quinine has been used worldwide for hundreds of years in the treatment of malaria. Thorough searches of the published literature identified over 1300 references to the treatment of malaria with quinine, and from these, 21 randomized, active-controlled studies were identified which evaluated oral quinine monotherapy or combination therapy for treatment of uncomplicated P. falciparum malaria. Over 2900 patients from malaria-endemic areas were enrolled in these studies, and more than 1400 patients received oral quinine. The following conclusions were drawn from review of these studies:
  • In areas where multi-drug resistance of P. falciparum is increasing, such as Southeast Asia, cure rates with 7 days of oral quinine monotherapy were at least 80%; while cure rates for 7 days of oral quinine combined with an antimicrobial agent (tetracycline or clindamycin) were greater than 90%. In areas where multi-drug resistance of the parasite was not as widespread, cure rates with 7 days of quinine monotherapy ranged from 86 to 100%. Cure was defined as initial clearing of parasitemia within 7 days without recrudescence by day 28 after treatment initiation. P. falciparum malaria that is clinically resistant to quinine has been reported in some areas of South America, Southeast Asia, and Bangladesh, and quinine may not be as effective in those areas.
  • Completion of a 7-day oral quinine treatment regimen may be limited by drug intolerance, and shorter courses (3 days) of quinine combination therapy have been used. However, the published data from randomized, controlled clinical trials for shorter regimens of oral quinine in conjunction with tetracycline, doxycycline, or clindamycin for treatment of uncomplicated P. falciparum malaria is limited, and these shorter course combination regimens may not be as effective as the longer regimens.

How Supplied

  • Quinine sulphate capsules USP, 324 mg are available as clear/clear capsules imprinted AR 102:
This image is provided by the National Library of Medicine.

Storage

  • Store at 20° to 25°C (68° to 77°F).

Images

Drug Images

{{#ask: Page Name::Quinine |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Quinine |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

Dosing Instructions
  • Patients should be instructed to:
  • Take all of the medication as directed.
  • Take no more of the medication than the amount prescribed.
  • Take with food to minimize possible gastrointestinal irritation.
  • If a dose is missed, patients should also be instructed not to double the next dose. If more than 4 hours has elapsed since the missed dose, the patient should wait and take the next dose as previously scheduled.

Precautions with Alcohol

  • Alcohol-Quinine sulphate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

  • Quiphile®
  • Quinamm®
  • Qualaquin®

Look-Alike Drug Names

There is limited information regarding Quinine Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.

  1. 1.0 1.1 sulphate-quinine-342696#showall "Quinine sulphate (quinine) dosing, indications, interactions, adverse effects, and more" Check |url= value (help). Medscape Reference. WebMD. Retrieved 29 January 2014.

{{#subobject:

 |Page Name=Quinine
 |Pill Name=No image.jpg
 |Drug Name=
 |Pill Ingred=|+sep=;
 |Pill Imprint=
 |Pill Dosage={{{dosageValue}}} {{{dosageUnit}}}
 |Pill Color=|+sep=;
 |Pill Shape=
 |Pill Size (mm)=
 |Pill Scoring=
 |Pill Image=
 |Drug Author=
 |NDC=

}}

{{#subobject:

 |Label Page=Quinine
 |Label Name=Quinine drug label01.png

}}

{{#subobject:

 |Label Page=Quinine
 |Label Name=Quinine drug label02.png

}}

{{#subobject:

 |Label Page=Quinine
 |Label Name=

}}