Nicotine: Difference between revisions
m Protected "Nicotine": Protecting pages from unwanted edits ([edit=sysop] (indefinite) [move=sysop] (indefinite)) |
Rabin Bista (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox drug | |||
| Verifiedfields = changed | |||
| Watchedfields = changed | |||
| verifiedrevid = 420440849 | |||
| IUPAC_name = (''S'')-3-[1-Methylpyrrolidin-2-yl]pyridine | |||
| image = Nicotine.svg | |||
| image2 = Nicotine-3D-vdW.png | |||
< | <!-- Clinical data --> | ||
| tradename = Nicorette, Nicotrol | |||
| Drugs.com = {{drugs.com|monograph|nicotine}} | |||
| pregnancy_AU = D | |||
| pregnancy_US = D | |||
| legal_AU = S2 | |||
| legal_UK = GSL | |||
| legal_US = OTC | |||
| dependency_liability = Physical: moderate<br />Psychological: high<ref>{{cite journal|last1=Cosci|first1=F|last2=Pistelli|first2=F|last3=Lazzarini|first3=N|last4=Carrozzi|first4=L|title=Nicotine dependence and psychological distress: outcomes and clinical implications in smoking cessation.|journal=Psychology research and behavior management|date=2011|volume=4|pages=119–28|pmid=22114542|doi=10.2147/prbm.s14243}}</ref> | |||
| addiction_liability = High | |||
| routes_of_administration = [[Inhalation]]; [[Insufflation (medicine)|insufflation]]; [[Oral route|oral]] – buccal, sublingual, and ingestion; [[transdermal]]; [[suppository|rectal]], | |||
<!--Pharmacokinetic data--> | |||
| bioavailability = 20 to 45% (oral), 53% (intranasal), 68% (transdermal) | |||
| protein_bound = <5% | |||
| metabolism = [[Hepatic]] | |||
| elimination_half-life = 1-2 hours; 20 hours active metabolite (cotinine) | |||
| excretion = Urine (10-20% (gum), pH-dependent; 30% (inhaled); 10-30% (intranasal)) | |||
<!--Identifiers--> | |||
| CAS_number_Ref = {{cascite|correct|??}} | |||
| CAS_number = 54-11-5 | |||
| ATC_prefix = N07 | |||
| ATC_suffix = BA01 | |||
| ATC_supplemental = {{ATCvet|P53|AX13}} | |||
| ChEBI_Ref = {{ebicite|changed|EBI}} | |||
| ChEBI = 17688 | |||
| PubChem = 89594 | |||
| IUPHAR_ligand = 2585 | |||
| DrugBank_Ref = {{drugbankcite|correct|drugbank}} | |||
| DrugBank = DB00184 | |||
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | |||
| ChemSpiderID = 80863 | |||
| UNII_Ref = {{fdacite|correct|FDA}} | |||
| UNII = 6M3C89ZY6R | |||
| KEGG_Ref = {{keggcite|correct|kegg}} | |||
< | | KEGG = D03365 | ||
| ChEMBL_Ref = {{ebicite|correct|EBI}} | |||
| ChEMBL = 3 | |||
| PDB_ligand = NCT | |||
---- | |||
== | <!--Chemical data--> | ||
[ | | C=10 | H=14 | N=2 | ||
| molecular_weight = 162.23 g/mol | |||
| smiles = CN(CCC1)[C@@H]1C2=CC=CN=C2 | |||
| InChI = 1/C10H14N2/c1-12-7-3-5-10(12)9-4-2-6-11-8-9/h2,4,6,8,10H,3,5,7H2,1H3/t10-/m0/s1 | |||
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} | |||
| StdInChI = 1S/C10H14N2/c1-12-7-3-5-10(12)9-4-2-6-11-8-9/h2,4,6,8,10H,3,5,7H2,1H3/t10-/m0/s1 | |||
[[ | | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | ||
| StdInChIKey = SNICXCGAKADSCV-JTQLQIEISA-N | |||
| density = 1.01 | |||
[[ | | melting_point = -79 | ||
< | | boiling_point = 247 | ||
< | }} | ||
'''Nicotine''' is a [[potency (pharmacology)|potent]] [[parasympathomimetic]] [[alkaloid]] found in the [[nightshade]] family of plants ([[Solanaceae]]) and a [[stimulant]] [[drug]]. It is a [[Nicotinic agonist|nicotinic acetylcholine receptor (nAChR) agonist]],<ref name="IUPHAR" /><ref name="Malenka Nicotine">{{cite book | author = Malenka RC, Nestler EJ, Hyman SE | editor = Sydor A, Brown RY | title = Molecular Neuropharmacology: A Foundation for Clinical Neuroscience | year = 2009 | publisher = McGraw-Hill Medical | location = New York | isbn = 9780071481274 | page = 234 | edition = 2nd | chapter = Chapter 9: Autonomic Nervous System | quote=Nicotine ... is a natural alkaloid of the tobacco plant. Lobeline is a natural alkaloid of Indian tobacco. Both drugs are agonists are nicotinic cholinergic receptors ...}}</ref> except at [[nAChRα9]] and [[nAChRα10]] where it acts as an antagonist.<ref name="IUPHAR">{{cite web|title=Nicotinic acetylcholine receptors: Introduction|url=http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=76&familyType=IC|website=IUPHAR Database|publisher=International Union of Basic and Clinical Pharmacology|accessdate=1 September 2014}}</ref> It [[biosynthesis|is made]] in the roots of and accumulates in the leaves of the [[nightshade]] family of plants. | |||
< | It constitutes approximately 0.6–3.0% of the dry weight of [[tobacco]]<ref>{{cite web|url=http://dccps.nci.nih.gov/tcrb/monographs/9/m9_3.PDF |title=Smoking and Tobacco Control Monograph No. 9 |format=PDF |accessdate=2012-12-19}}</ref> and is present in the range of 2–7 µg/kg of various edible plants.<ref name="acs">{{cite web |url=http://pubs.acs.org/cgi-bin/abstract.cgi/jafcau/1999/47/i08/abs/jf990089w.html |title=Determination of the Nicotine Content of Various Edible Nightshades (Solanaceae) and Their Products and Estimation of the Associated Dietary Nicotine Intake |accessdate=2008-10-05}}</ref> | ||
It functions as an [[plant defense against herbivory|antiherbivore chemical]]; consequently, nicotine was widely used as an [[insecticide]] in the past<ref>{{Cite book | |||
[[ | | last = Rodgman | ||
| first = Alan | |||
| last2 = Perfetti | |||
[[ | | first2 = Thomas A. | ||
< | | title = The chemical components of tobacco and tobacco smoke | ||
| place = Boca Raton, FL | |||
| publisher = CRC Press | |||
< | | year = 2009 | ||
| lccn=2008018913 | |||
[[ | | isbn = 1-4200-7883-6 }}{{page needed|date=December 2013}} | ||
</ref><ref name=Ujvary>{{Cite book | |||
| first = István | last = Ujváry | |||
[[ | | contribution = Nicotine and Other Insecticidal Alkaloids | ||
< | | editor-first = Izuru | editor-last = Yamamoto | ||
| editor2-first = John | editor2-last = Casida | |||
| title = Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor | |||
| pages = 29–69 | |||
| publisher = Springer-Verlag | |||
</ | | location = Tokyo | ||
< | | year = 1999 | ||
}} | |||
</ref> | |||
and nicotine analogs such as [[imidacloprid]] are currently widely used. | |||
== | In lesser doses (an average [[cigarette]] yields about 2 mg of absorbed nicotine), the substance acts as a [[stimulant]] in [[mammal]]s, while high amounts (50–100 mg) can be harmful.<ref name=inchem>{{cite web|url=http://www.inchem.org/documents/pims/chemical/nicotine.htm#PartTitle:7.%20TOXICOLOGY |title=Nicotine (PIM) |publisher=Inchem.org |accessdate=2012-12-19}}</ref><ref name=overdose>{{cite web | author = Genetic Science Learning Center | title = How Drugs Can Kill | url = http://learn.genetics.utah.edu/content/addiction/drugskill/ }}</ref><ref name=MayerNewLethalDose2013/> | ||
This stimulant effect is likely to be a major contributing factor to the dependence-forming properties of [[tobacco smoking]]. Nicotine liquid can be used in [[vaporizer (inhalation device)|vaporizers]] or [[electronic cigarette]]s along with a wide variety of different flavors. | |||
< | |||
< | |||
< | |||
< | |||
[[ | |||
[ | |||
== | ==Uses== | ||
== | ===Medical=== | ||
[ | [[Image:Nicoderm.JPG|thumb|right|A 21 mg patch applied to the left arm. The [[Cochrane Collaboration]] finds that [[nicotine replacement therapy]] increases a quitter's chance of success by 50% to 70%.<ref name=CD000146>{{cite journal |author=Stead LF, Perera R, Bullen C, Mant D, Lancaster T |title=Nicotine replacement therapy for smoking cessation |journal=Cochrane Database Syst Rev |issue=1 |pages=CD000146 |year=2008 |pmid=18253970 |doi=10.1002/14651858.CD000146.pub3 |editor1-last=Stead |editor1-first=Lindsay F}}</ref>]] The primary therapeutic use of nicotine is in treating nicotine dependence in order to eliminate [[smoking]] with the damage it does to health. Controlled levels of nicotine are given to patients through gums, dermal patches, lozenges, electronic/substitute cigarettes or nasal sprays in an effort to wean them off their dependence. | ||
Studies have found that these therapies increase the chance of success of quitting by 50 to 70%,<ref name=CD000146/> though reductions in the population as a whole has not been demonstrated.<ref>{{cite journal |doi=10.1146/annurev-publhealth-031811-124624 |title=Quitlines and Nicotine Replacement for Smoking Cessation: Do We Need to Change Policy? |year=2012 |last1=Pierce |first1=John P. |last2=Cummins |first2=Sharon E. |last3=White |first3=Martha M. |last4=Humphrey |first4=Aimee |last5=Messer |first5=Karen |journal=Annual Review of Public Health |volume=33 |pages=341–56 |pmid=22224888}}</ref> | |||
[ | |||
</ | |||
< | |||
== | ===Recreational=== | ||
Nicotine is commonly consumed as a recreational drug for its stimulant effects. | |||
== | ==Psychoactive effects== | ||
[[Category: | Nicotine's [[mood (psychology)|mood]]-altering effects are different by report: in particular it is both a stimulant and a relaxant.<ref>{{cite journal |url=http://www.ti.ubc.ca/newsletter/effective-clinical-tobacco-intervention |title= Effective Clinical Tobacco Intervention |journal=Therapeutics Letter |issue=21 |date=September–October 1997 |pages=1–4}}</ref> First causing a release of [[glucose]] from the liver and [[epinephrine]] (adrenaline) from the [[adrenal medulla]], it causes [[stimulation]]. Users report feelings of [[relaxation (psychology)|relaxation]], sharpness, [[calmness]], and [[alertness]].<ref>{{cite journal |id={{INIST|1081618}} |last1=Lagrue |first1=Gilbert |last2=Cormier |first2=Anne |date=June 2001 |title=Des récepteurs nicotiniques à la dépendance tabagique : Perspectives thérapeutiques |trans_title=From nicotinic receptors to smoking dependence: Therapeutic prospects |language=fr |journal=Alcoologie et addictologie |issn=1620-4522 |volume=23 |issue=2 |pages=39S–42S}}</ref> Like any stimulant, it may very rarely cause the often uncomfortable [[neuropsychiatric]] effect of [[akathisia]]. By reducing the [[appetite]] and raising the [[metabolism]], some smokers may [[weight loss|lose weight]] as a consequence.<ref>{{cite journal |id={{INIST|1081638}} |last1=Orsini |first1=Jean-Claude |date=June 2001 |title=Dépendance tabagique et contrôle central de la glycémie et de l'appétit |trans_title=Dependence on tobacco smoking and brain systems controlling glycemia and appetite |language=fr |journal=Alcoologie et addictologie |issn=1620-4522 |volume=23 |issue=2 Suppl |pages=28S–36S}}</ref><ref>{{cite journal |doi=10.1038/sj.npp.1300597 |laysummary=http://archive.uninews.unimelb.edu.au/view-49206.html |laysource=The University of Melbourne |laydate=1 November 2004 |title=Effect of Short-Term Cigarette Smoke Exposure on Body Weight, Appetite and Brain Neuropeptide Y in Mice |year=2004 |last1=Chen |first1=Hui |last2=Vlahos |first2=Ross |last3=Bozinovski |first3=Steve |last4=Jones |first4=Jessica |last5=Anderson |first5=Gary P |last6=Morris |first6=Margaret J |journal=Neuropsychopharmacology |pmid=15508020 |volume=30 |issue=4 |pages=713–9}}</ref> | ||
When a [[cigarette]] is smoked, nicotine-rich blood passes from the [[human lung|lung]]s to the [[human brain|brain]] within seven seconds and immediately stimulates the release of many chemical messengers such as [[acetylcholine]], [[norepinephrine]], [[epinephrine]], [[arginine vasopressin]], [[serotonin]], [[dopamine]], and [[beta-endorphin]].<ref>{{cite journal | author = Pomerleau OF, Pomerleau CS | year = 1984 | title = Neuroregulators and the reinforcement of smoking: Towards a biobehavioral explanation | url = | journal = Neuroscience and Biobehavioral Reviews | volume = 8 | issue = | pages = 503–513 | doi=10.1016/0149-7634(84)90007-1}}</ref><ref>{{cite journal | author = Pomerleau OF, Rosecrans J | year = 1989 | title = Neuroregulatory effects of nicotine | url = | journal = Psychoneuroendocrinology | volume = 14 | issue = | pages = 407–423 | doi=10.1016/0306-4530(89)90040-1}}</ref> This release of neurotransmitters and hormones is responsible for most of nicotine's psychoactive effects. Nicotine appears to enhance [[attention|concentration]]<ref name="rusted">{{cite journal |author=Rusted J, Graupner L, O'Connell N, Nicholls C |title=Does nicotine improve cognitive function? |journal=Psychopharmacology (Berl.) |volume=115 |issue=4 |pages=547–9 |date=August 1994 |pmid=7871101 |doi=10.1007/BF02245580}}</ref> and memory due to the increase of [[acetylcholine]]. It also appears to enhance [[alertness]] due to the increases of [[acetylcholine]] and [[norepinephrine]]. [[Arousal]] is increased by the increase of [[norepinephrine]]. [[Pain]] is reduced by the increases of [[acetylcholine]] and beta-endorphin. [[Anxiety]] is reduced by the increase of [[beta-endorphin]]. Nicotine also extends the duration of positive effects of dopamine<ref>{{cite journal |author=Easton, John |title=Nicotine extends duration of pleasant effects of dopamine |journal=The University of Chicago Chronicle|volume=21 |issue=12 |date=March 28, 2002 |url=http://chronicle.uchicago.edu/020328/nicotine.shtml}}</ref> and increases sensitivity in brain reward systems.<ref name=Kenny>{{cite journal |author=Kenny PJ, Markou A |title=Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity |journal=Neuropsychopharmacology |volume=31 |issue=6 |pages=1203–11 |date=Jun 2006 |pmid=16192981 |doi=10.1038/sj.npp.1300905}}</ref> Most cigarettes (in the smoke inhaled) contain 1 to 3 milligrams of nicotine.<ref>{{cite web|author=|url=http://www.erowid.org/chemicals/nicotine/nicotine_dose.shtml|title=Erowid Nicotine Vault : Dosage |publisher=Erowid.org |date=2011-10-14 |accessdate=2012-12-19}}</ref> | |||
Research suggests that, when smokers wish to achieve a stimulating effect, they take short quick puffs, which produce a low level of blood nicotine.<ref>{{cite book |doi=10.1007/978-1-4899-0888-9_9 |chapter=Factors Governing Recruitment to and Maintenance of Smoking |title=Drug and Alcohol Use |year=1989 |last1=Golding |first1=J. F. |last2=Mangan |first2=G. L. |isbn=978-1-4899-0890-2 |pages=101–17 |chapterurl=http://books.google.com/books?id=s9_EWPshR4QC&pg=PA101 |editor1-first=Stanley |editor1-last=Einstein}}</ref> This stimulates [[action potential|nerve transmission]]. When they wish to relax, they take deep puffs, which produce a higher level of blood nicotine, which depresses the passage of [[nerve impulses]], producing a mild sedative effect. At low doses, nicotine potently enhances the actions of [[norepinephrine]] and [[dopamine]] in the brain, causing a drug effect typical of those of [[psychostimulants]]. At higher doses, nicotine enhances the effect of [[serotonin]] and [[opiate]] activity, producing a calming, [[analgesic|pain-killing]] effect. Nicotine is unique in comparison to most [[drug]]s, as its profile changes from [[stimulant]] to [[sedative]]/[[pain killer]] in increasing [[dose (biochemistry)|dosage]]s and use, a phenomenon described by Paul Nesbitt in his doctoral dissertation<ref>Nesbitt P (1969). Smoking, physiological arousal, and emotional response. Unpublished doctoral dissertation, Columbia University.</ref> and subsequently referred to as "Nesbitt's Paradox".<ref name="Addiction 1998">{{cite journal |author=Parrott AC |title=Nesbitt's Paradox resolved? Stress and arousal modulation during cigarette smoking |journal=Addiction |volume=93 |issue=1 |pages=27–39 |date=January 1998 |pmid=9624709 |doi=10.1046/j.1360-0443.1998.931274.x}}</ref> | |||
==Adverse effects== | |||
===Vascular=== | |||
[[File:Side effects of nicotine.svg|thumb|280px|Possible side effects of nicotine.{{medical citation needed|date=September 2013}}]] | |||
Nicotine increases blood pressure and heart rate.<ref name="pmid10976548">{{cite journal |author=Sabha M, Tanus-Santos JE, Toledo JC, Cittadino M, Rocha JC, Moreno H |title=Transdermal nicotine mimics the smoking-induced endothelial dysfunction |journal=Clinical Pharmacology and Therapeutics |volume=68 |issue=2 |pages=167–74 |date=August 2000 |pmid=10976548 |doi=10.1067/mcp.2000.108851}}</ref> Nicotine can also induce potentially atherogenic genes in human coronary artery endothelial cells.<ref name="pmid11166759">{{cite journal |author=Zhang S, Day I, Ye S |title=Nicotine induced changes in gene expression by human coronary artery endothelial cells |journal=Atherosclerosis |volume=154 |issue=2 |pages=277–83 |date=February 2001 |pmid=11166759 |doi=10.1016/S0021-9150(00)00475-5}}</ref> Microvascular injury can result through its action on nicotinic acetylcholine receptors (nAChRs).<ref name="pmid11830264">{{cite journal |author=Hawkins BT, Brown RC, Davis TP |title=Smoking and ischemic stroke: a role for nicotine? |journal=Trends in Pharmacological Sciences |volume=23 |issue=2 |pages=78–82 |date=February 2002 |pmid=11830264 |doi=10.1016/S0165-6147(02)01893-X}}</ref> | |||
===Carginogen=== | |||
Historically, nicotine has not been regarded as a [[carcinogen]].<ref>{{cite journal |author=Cardinale A, Nastrucci C, Cesario A, Russo P |title=Nicotine: specific role in angiogenesis, proliferation and apoptosis |journal=Critical Reviews in Toxicology |volume=42 |issue=1 |pages=68–89 |date=January 2012 |pmid=22050423 |doi=10.3109/10408444.2011.623150}}</ref> The [[International Agency for Research on Cancer|IARC]] has not evaluated nicotine in its standalone form or assigned it to an official carcinogen group. While no epidemiological evidence supports that nicotine alone acts as a carcinogen in the formation of human cancer, research over the last decade has identified nicotine's [[carcinogenic]] potential in animal models and cell culture.<ref>{{cite journal |author=Hecht SS |title=Tobacco smoke carcinogens and lung cancer |journal=J. Natl. Cancer Inst. |volume=91 |issue=14 |pages=1194–210 |date=July 1999 |pmid=10413421 |doi=10.1093/jnci/91.14.1194}}</ref><ref>{{cite journal |author=Wu WK, Cho CH |title=The pharmacological actions of nicotine on the gastrointestinal tract |journal=J. Pharmacol. Sci. |volume=94 |issue=4 |pages=348–58 |date=April 2004 |pmid=15107574 |doi=10.1254/jphs.94.348}}</ref><ref>{{cite journal |author=Chowdhury P, Udupa KB|title=Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation |journal=World J. Gastroenterol. |volume=12 |issue=46|pages=7428–32 |date=December 2006 |pmid=17167829 |url=http://www.wjgnet.com/1007-9327/full/v12/i46/7428.htm}}</ref> Indirectly, nicotine increases [[Nicotinic acetylcholine receptor|cholinergic]] signalling (and [[adrenergic receptor|adrenergic]] signalling in the case of colon cancer<ref>{{cite journal |author=Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH |title=Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation |journal=Toxicol. Sci. |volume=97 |issue=2 |pages=279–87 |date=June 2007 |pmid=17369603 |doi=10.1093/toxsci/kfm060}}</ref>), thereby impeding apoptosis ([[programmed cell death]]), promoting tumor growth, and activating [[growth factors]] and cellular [[mitogenic]] factors such as [[5-Lipoxygenase|5-LOX]], and [[Epidermal growth factor|EGF]]. Nicotine also promotes cancer growth by stimulating [[angiogenesis]] and [[neovascularization]].<ref>{{cite journal |author=Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M |title=Nicotine enhances neovascularization and promotes tumor growth |journal=Mol. Cells|volume=16 |issue=2 |pages=143–6 |date=October 2003 |pmid=14651253 }}</ref><ref>{{cite journal |author=Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH |title=Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway|journal=J. Pharmacol. Exp. Ther. |volume=308 |issue=1 |pages=66–72 |date=January 2004 |pmid=14569062 |doi=10.1124/jpet.103.058321}}</ref> In one study, nicotine administered to mice with tumors caused increases in tumor size (twofold increase), [[metastasis]] (nine-fold increase), and tumor recurrence (threefold increase).<ref name="plosone.org">{{cite journal |author=Davis R, Rizwani W, Banerjee S, et al. |title=Nicotine promotes tumor growth and metastasis in mouse models of lung cancer |journal=PLoS ONE |volume=4 |issue=10 |pages=e7524 |year=2009 |pmid=19841737 |pmc=2759510 |doi=10.1371/journal.pone.0007524 |editor1-last=Pao |editor1-first=William|bibcode = 2009PLoSO...4.7524D }}</ref> [[N-Nitrosonornicotine|''N''-Nitrosonornicotine]] (NNN), classified by the IARC as a Group 1 carcinogen, is produced endogenously from nitrite in saliva and nicotine.{{citation needed|date=November 2014}} | |||
Nicotine stimulates [[angiogenesis]] and promotes tumor growth and [[atherosclerosis]].<ref>{{cite journal|last1=Heeschen|first1=C|title=Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis.|journal=Nat Med.|date=July 2001|volume=7|pages=833–9.|pmid=11433349|url=http://www.ncbi.nlm.nih.gov/pubmed/11433349|accessdate=2 January 2015}}</ref> | |||
===Fetal development=== | |||
In pregnancy, a 2013 review noted that "nicotine is only 1 of more than 4000 compounds to which the fetus is exposed through maternal smoking. Of these, ∼30 compounds have been associated with adverse health outcomes. Although the exact mechanisms by which nicotine produces adverse fetal effects are unknown, it is likely that hypoxia, undernourishment of the fetus, and direct vasoconstrictor effects on the placental and umbilical vessels all play a role. Nicotine also has been shown to have significant deleterious effects on brain development, including alterations in brain metabolism and neurotransmitter systems and abnormal brain development." It also notes that "abnormalities of newborn neurobehavior, including impaired orientation and autonomic regulation and abnormalities of muscle tone, have been identified in a number of prenatal nicotine exposure studies" and that there is weak data associating fetal nicotine exposure with newborn facial clefts, and that there is no good evidence for newborns suffering nicotine withdrawal from fetal exposure to nicotine.<ref>{{cite journal |author=Behnke M, Smith VC |title=Prenatal substance abuse: short- and long-term effects on the exposed fetus |journal=Pediatrics |volume=131 |issue=3 |pages=e1009–24 |date=March 2013 |pmid=23439891 |doi=10.1542/peds.2012-3931}}</ref> | |||
Effective April 1, 1990, the Office of Environmental Health Hazard Assessment (OEHHA) of the [[California Environmental Protection Agency]] added nicotine to the list of chemicals known to cause developmental toxicity.<ref>http://oehha.ca.gov/prop65/prop65_list/files/P65single121809.pdf{{full|date=December 2013}}</ref> | |||
===Dependence and withdraw=== | |||
Difficulty concentrating and deficits in task performance are symptoms of nicotine withdrawal. These symptoms begin as soon as 30 minutes after tobacco cessation begins, and can last for several weeks.<ref name="HKS2010">{{cite journal | pmid=20414766 | url=http://www.ncbi.nlm.nih.gov/pubmed/20414766 | title=Meta-analysis of the acute effects of nicotine and smoking on human performance | author=Heishman, SJ, Kleykamp, BA, Singleton, EG | journal=Pharmacology |date=July 2010 | volume=210 | issue=4 | pages=453–69 | doi=10.1007/s00213-010-1848-1 | quote=The significant effects of nicotine on motor abilities, attention, and memory likely represent true performance enhancement because they are not confounded by withdrawal relief. The beneficial cognitive effects of nicotine have implications for initiation of smoking and maintenance of tobacco dependence. | pmc=3151730}}</ref> | |||
Nicotine appears to have significant performance enhancing effects, particularly in fine motor skills, attention, and memory. These beneficial cognitive effects may play a role in the initiation and maintenance of tobacco dependence.<ref name="HKS2010"/> | |||
Studies suggest a correlation between smoking and [[schizophrenia]], with estimates near 75% for the proportion of schizophrenic patients who smoke. Although the nature of this association remains unclear, it has been argued that the increased level of smoking in schizophrenia may be due to a desire to [[self-medication|self-medicate]] with nicotine.<ref>{{cite journal |author=de Leon J, Tracy J, McCann E, McGrory A, Diaz FJ|title=Schizophrenia and tobacco smoking: a replication study in another US psychiatric hospital |journal=Schizophr Res. |volume=56 |issue=1–2|pages=55–65 |date=Jul 2002 |pmid=12084420 |doi=10.1016/S0920-9964(01)00192-X}}</ref><ref>{{cite journal |author=de Leon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM|title=Schizophrenia and smoking: an epidemiological survey in a state hospital |journal=Am J Psychiatry |volume=152 |issue=3 |pages=453–5|date=Mar 1995 |pmid=7864277 |url=http://ajp.psychiatryonline.org/cgi/pmidlookup?view=long&pmid=7864277}}</ref> Other research found that mildly dependent users got some benefit from nicotine, but not those who were highly dependent.<ref>{{cite journal |author=Aguilar MC, Gurpegui M, Diaz FJ, de Leon J |title=Nicotine dependence and symptoms in schizophrenia: naturalistic study of complex interactions |journal=Br J Psychiatry|volume=186 |issue= 3|pages=215–21 |date=Mar 2005 |pmid=15738502 |doi=10.1192/bjp.186.3.215 }}</ref> | |||
==Overdose== | |||
{{See also|Nicotine poisoning}} | |||
{{NFPA 704|Health = 4|Flammability = 1|Reactivity = 0|caption=The fire diamond hazard sign for nicotine.<ref>http://www.nmsu.edu/safety/programs/chem_safety/NFPA-ratingJ-R.htm</ref>}} | |||
The {{LD50}} of nicotine is 50 mg/kg for [[rat]]s and 3 mg/kg for [[mouse|mice]]. 30–60 mg (0.5–1.0 mg/kg) can be a lethal dosage for adult humans.<ref name=inchem /><ref>{{cite journal |author=Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T |title=Effects of aging on acute toxicity of nicotine in rats |journal=Pharmacol Toxicol. |volume=75 |issue=1 |pages=1–6 |date=Jul 1994 |pmid=7971729|doi=10.1111/j.1600-0773.1994.tb00316.x}}</ref> However the widely used human LD<sub>50</sub> estimate of 0.5–1.0 mg/kg was questioned in a 2013 review, in light of several documented cases of humans surviving much higher doses; the 2013 review suggests that the lower limit causing fatal outcomes is 500–1000 mg of ingested nicotine, corresponding to 6.5–13 mg/kg orally.<ref name=MayerNewLethalDose2013>{{cite journal |author=Mayer B |title=How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century |journal=Archives of Toxicology |volume=88 |issue=1 |pages=5–7 |date=January 2014 |pmid=24091634 |pmc=3880486 |doi=10.1007/s00204-013-1127-0}}</ref> Nevertheless nicotine has a relatively high [[toxicity]] in comparison to many other alkaloids such as [[caffeine]], which has an LD<sub>50</sub>of 127 mg/kg when administered to mice.<ref>''[[Toxicology and Applied Pharmacology]].'' Vol. 44, Pg. 1, 1978.</ref> | |||
It is unlikely that a person would overdose on nicotine through smoking alone, the US [[Food and Drug Administration]] (FDA) states in 2013 "There are no significant safety concerns associated with using more than one [[Over-the-counter drug|OTC]] [[Nicotine replacement therapy|NRT]] at the same time, or using an OTC NRT at the same time as another nicotine-containing product—including a cigarette."<ref name=FDANRTLabels>{{cite web|title=Consumer Updates: Nicotine Replacement Therapy Labels May Change|url=http://www.fda.gov/forconsumers/consumerupdates/ucm345087.htm|publisher=FDA|date=April 1, 2013}}</ref> Spilling a high concentration of nicotine onto the skin can cause intoxication or even death, since nicotine readily passes into the bloodstream following dermal contact.<ref>{{cite journal |author=Lockhart LP |title=Nicotine poisoning |journal=Br Med J |volume=1 |issue= 3762|pages=246–7 |year=1933|doi=10.1136/bmj.1.3762.246-c}}</ref> | |||
===Addiction{{anchor|Dependence and withdrawal}}=== | |||
{{See also|Smoking cessation|ΔFosB}} | |||
Nicotine is [[addiction|addictive]].<ref name="Nestler 2013Rev" /><ref name="Addiction molecular neurobiology" /> Nicotine activates the [[mesolimbic pathway]] and induces long-term [[ΔFosB]] expression in the [[nucleus accumbens]] when inhaled or injected, but not necessarily when ingested.<ref name="Nestler 2013Rev">{{cite journal | author = Nestler EJ | title = Cellular basis of memory for addiction | journal = Dialogues Clin Neurosci | volume = 15 | issue = 4 | pages = 431–443 | date = December 2013 | pmid = 24459410 | pmc = 3898681 | doi = | url = }}</ref><ref name="Addiction molecular neurobiology">{{cite journal | author = Ruffle JK | title = Molecular neurobiology of addiction: what's all the (Δ)FosB about? | journal = Am J Drug Alcohol Abuse | volume = 40 | issue = 6 | pages = 428–437 | date = November 2014 | pmid = 25083822 | doi = 10.3109/00952990.2014.933840 | quote = The knowledge of DFosB induction in chronic drug exposure provides a novel method for the evaluation of substance addiction profiles (i.e. how addictive they are). Xiong et al. used this premise to evaluate the potential addictive profile of propofol (119). Propofol is a general anaesthetic, however its abuse for recreational purpose has been documented (120). Using control drugs implicated in both DFosB induction and addiction (ethanol and nicotine), ...<br /><br />Conclusions<br />ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. The formation of ΔFosB in multiple brain regions, and the molecular pathway leading to the formation of AP-1 complexes is well understood. The establishment of a functional purpose for ΔFosB has allowed further determination as to some of the key aspects of its molecular cascades, involving effectors such as GluR2 (87,88), Cdk5 (93) and NFkB (100). Moreover, many of these molecular changes identified are now directly linked to the structural, physiological and behavioral changes observed following chronic drug exposure (60,95,97,102). New frontiers of research investigating the molecular roles of ΔFosB have been opened by epigenetic studies, and recent advances have illustrated the role of ΔFosB acting on DNA and histones, truly as a ‘‘molecular switch’’ (34). As a consequence of our improved understanding of ΔFosB in addiction, it is possible to evaluate the addictive potential of current medications (119), as well as use it as a biomarker for assessing the efficacy of therapeutic interventions (121,122,124).}}</ref><ref name="RouteDFosB Primary">{{cite journal | author = Marttila K, Raattamaa H, Ahtee L | title = Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice | journal = Neuropharmacology | volume = 51 | issue = 1 | pages = 44–51 | date = July 2006 | pmid = 16631212 | doi = 10.1016/j.neuropharm.2006.02.014 | url = }}</ref> Consequently, repeated daily exposure (possibly excluding [[oral route]]) to nicotine can result in accumbal ΔFosB overexpression, in turn causing nicotine addiction.<ref name="Nestler 2013Rev" /><ref name="Addiction molecular neurobiology" /> | |||
==Pharmacology== | |||
===Pharmacodynamics=== | |||
====Central nervous system==== | |||
[[File:NicotineDopaminergic WP1602.png|thumb|right|Effect of nicotine on dopaminergic neurons.]] | |||
By binding to [[nicotinic acetylcholine receptor]]s, nicotine increases the levels of several [[neurotransmitter]]s – acting as a sort of "volume control". It is thought that increased levels of [[dopamine]] in the [[reward circuit]]s of the [[human brain|brain]] are a major contributor to the apparent [[euphoria (emotion)|euphoria]] and [[relaxation (psychology)|relaxation]], and addiction caused by nicotine consumption. Nicotine-induced dopamine release occurs via the [[cholinergic–dopaminergic reward link]], which is mediated by the neuropeptide [[ghrelin]] in the [[ventral tegmentum]].<ref>{{cite journal |doi=10.1016/j.mce.2011.02.017 |title=The role of the central ghrelin system in reward from food and chemical drugs |year=2011 |last1=Dickson |first1=Suzanne L. |last2=Egecioglu |first2=Emil |last3=Landgren |first3=Sara |last4=Skibicka |first4=Karolina P. |last5=Engel |first5=Jörgen A. |last6=Jerlhag |first6=Elisabet |journal=Molecular and Cellular Endocrinology |volume=340 |pages=80–7 |pmid=21354264 |issue=1}}</ref> Nicotine has a higher affinity for [[acetylcholine]] receptors in the brain than those in [[skeletal muscle]], though at toxic doses it can induce contractions and respiratory paralysis.<ref>{{cite book |author=Katzung, Bertram G. |title=Basic and Clinical Pharmacology |publisher=McGraw-Hill Medical |location=New York |year=2006 |pages=99–105 }}</ref> Nicotine's selectivity is thought to be due to a particular amino acid difference on these receptor subtypes.<ref name="pmid19252481">{{cite journal |author=Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA |title=Nicotine binding to brain receptors requires a strong cation-pi interaction |journal=Nature |volume=458 |issue=7237 |pages=534–7 |date=March 2009 |pmid=19252481 |pmc=2755585 |doi=10.1038/nature07768 |bibcode=2009Natur.458..534X}}</ref> | |||
Tobacco smoke contains [[anabasine]], [[anatabine]], and [[nornicotine]]. It also contains the [[monoamine oxidase inhibitor]]s [[Harmala alkaloid|harman]] and norharman.<ref name=pmid15582589>{{cite journal |author=Herraiz T, Chaparro C |title=Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors |journal=Biochem. Biophys. Res. Commun. |volume=326 |issue=2 |pages=378–86 |year=2005 |pmid=15582589 |doi=10.1016/j.bbrc.2004.11.033 }}</ref> These [[beta-carboline]] compounds significantly decrease [[MAO]] activity in smokers.<ref name="pmid15582589"/><ref name="pmid9549600">{{cite journal |author=Fowler JS, Volkow ND, Wang GJ, et al. |title=Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition |journal=J Addict Dis |volume=17 |issue=1 |pages=23–34 |year=1998 |pmid=9549600 |doi= 10.1300/J069v17n01_03 }}</ref> MAO [[enzyme]]s break down [[monoamine|monoaminergic neurotransmitters]] such as [[dopamine]], [[norepinephrine]], and [[serotonin]]. It is thought that the powerful interaction between the MAOIs and the nicotine is responsible for most of the addictive properties of tobacco smoking.<ref name="pmid14592678">{{cite journal |author=Villégier AS, Blanc G, Glowinski J, Tassin JP |title=Transient behavioral sensitization to nicotine becomes long-lasting with monoamine oxidases inhibitors |journal=Pharmacology, Biochemistry, and Behavior |volume=76 |issue=2 |pages=267–74 |date=September 2003 |pmid=14592678 |doi=10.1016/S0091-3057(03)00223-5}}</ref> The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats.<ref name="pmid16395299">{{cite journal |author=Villégier AS, Salomon L, Granon S, et al. |title=Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine |journal=Neuropsychopharmacology |volume=31 |issue=8 |pages=1704–13 |date=August 2006 |pmid=16395299 |doi=10.1038/sj.npp.1300987}}</ref> | |||
Chronic nicotine exposure via tobacco smoking [[up-regulation|up-regulates]] [[alpha-4 beta-2 nicotinic receptor|alpha4beta2]]* nAChR in [[cerebellum]] and [[brainstem]] regions<ref name="pmid17997038">{{cite journal |author=Wüllner U, Gündisch D, Herzog H, et al. |title=Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain |journal=Neuroscience Letters |volume=430 |issue=1 |pages=34–7 |date=January 2008 |pmid=17997038 |doi=10.1016/j.neulet.2007.10.011}}</ref><ref name="pmid18174175">{{cite journal |author=Walsh H, Govind AP, Mastro R, et al. |title=Up-regulation of nicotinic receptors by nicotine varies with receptor subtype |journal=J. Biol. Chem. |volume=283 |issue=10 |pages=6022–32 |year=2008 |pmid=18174175 |doi=10.1074/jbc.M703432200 }}</ref> but not [[habenula|habenulopeduncular]] structures.<ref name="pmid14560040">{{cite journal |author=Nguyen HN, Rasmussen BA, Perry DC |title=Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography |journal=J. Pharmacol. Exp. Ther. |volume=307 |issue=3 |pages=1090–7 |year=2003 |pmid=14560040 |doi=10.1124/jpet.103.056408 }}</ref> Alpha4beta2 and alpha6beta2 receptors, present in the [[ventral tegmental area]], play a crucial role in mediating the reinforcement effects of nicotine.<ref name="pmid19020025">{{cite journal |author=Pons S, Fattore L, Cossu G, et al. |title=Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration |journal=J. Neurosci. |volume=28 |issue=47 |pages=12318–27 |date=November 2008 |pmid=19020025 |doi=10.1523/JNEUROSCI.3918-08.2008 |pmc=2819191}}</ref> | |||
Research published in 2011 found that nicotine inhibits class I and II [[histone deacetylases]], [[chromatin]]-modifying enzymes involved in [[epigenetics]]. This inhibition has been shown to increase susceptibility to [[cocaine]] addiction in rodents.<ref>{{cite journal | |||
| title = Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine | |||
| journal = Sci Transl Med | |||
| volume = 3 | |||
| issue = 107 | |||
| pages = 107ra109 | |||
| year = 2011 | |||
| doi = 10.1126/scitranslmed.3003062 | |||
| author1 = Amir Levine et al.}}</ref><ref>{{cite journal |author=Volkow ND |title=Epigenetics of nicotine: another nail in the coughing |journal=Sci Transl Med |volume=3 |issue=107 |pages=107ps43 |date=November 2011 |pmid=22049068 |doi=10.1126/scitranslmed.3003278 |pmc=3492949}}</ref> | |||
====Sympathetic nervous system==== | |||
Nicotine also activates the [[sympathetic nervous system]],<ref>{{cite journal |author=Yoshida T, Sakane N, Umekawa T, Kondo M |title=Effect of nicotine on sympathetic nervous system activity of mice subjected to immobilization stress |journal=Physiol. Behav. |volume=55 |issue=1 |pages=53–7 |date=Jan 1994 |pmid=8140174 |doi=10.1016/0031-9384(94)90009-4}}</ref> acting via [[splanchnic nerves]] to the adrenal medulla, stimulating the release of epinephrine. Acetylcholine released by preganglionic sympathetic fibers of these nerves acts on nicotinic acetylcholine receptors, causing the release of epinephrine (and noradrenaline) into the [[bloodstream]]. Nicotine also has an affinity for [[melanin]]-containing tissues due to its precursor function in melanin synthesis or due to the irreversible binding of melanin and nicotine. This has been suggested to underlie the increased [[nicotine dependence]] and lower [[smoking cessation]] rates in darker pigmented individuals. However, further research is warranted before a definite conclusive link can be inferred.<ref>{{cite journal |author=King G, Yerger VB, Whembolua GL, Bendel RB, Kittles R, Moolchan ET |title=Link between facultative melanin and tobacco use among African Americans |journal=Pharmacol. Biochem. Behav. |volume=92 |issue=4 |pages=589–96 |date=June 2009 |pmid=19268687 |doi=10.1016/j.pbb.2009.02.011}}</ref> | |||
====Adrenal medulla==== | |||
[[File:NicotineChromaffinCells WP1603.png|thumb|300px|Effect of nicotine on chromaffin cells.]] | |||
By binding to [[ganglion type nicotinic receptor]]s in the adrenal medulla, nicotine increases flow of [[adrenaline]] (epinephrine), a stimulating [[hormone]] and neurotransmitter. By binding to the receptors, it causes cell depolarization and an influx of [[calcium]] through voltage-gated calcium channels. Calcium triggers the [[exocytosis]] of [[Chromaffin cell|chromaffin granules]] and thus the release of [[epinephrine]] (and norepinephrine) into the [[bloodstream]]. The release of [[epinephrine]] (adrenaline) causes an increase in [[heart rate]], [[blood pressure]] and [[breathing|respiration]], as well as higher [[blood glucose]] levels.<ref name="Marieb" >{{cite book | author = Elaine N. Marieb and Katja Hoehn | title = Human Anatomy & Physiology (7th Ed.) | publisher = Pearson | pages = ? | year = 2007 | isbn = 0-8053-5909-5}}{{page needed|date=December 2013}}</ref> | |||
Nicotine has a half-life of 1 to 2 hours. [[Cotinine]] is an active metabolite of nicotine that remains in the blood for 18 to 20 hours, making it easier to analyze due to its longer half-life.<ref>{{cite journal |last=Bhalala |first=Oneil |title=Detection of Cotinine in Blood Plasma by HPLC MS/MS |journal=MIT Undergraduate Research Journal |volume=8 |date=Spring 2003 |pages=45–50 |url=http://www.docstoc.com/docs/89426297/Detection-of-Cotinine-in-Blood-Plasma-by-HPLC-MS-MS}}</ref> | |||
===Pharmacokinetics=== | |||
As nicotine enters the body, it is distributed quickly through the [[blood]]stream and crosses the [[blood–brain barrier]] reaching the [[human brain|brain]] within 10–20 seconds after inhalation.<ref name="pmid12971663">{{cite journal |author=Le Houezec J |title=Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review |journal=The International Journal of Tuberculosis and Lung Disease |volume=7 |issue=9 |pages=811–9 |date=September 2003 |pmid=12971663 |url=http://openurl.ingenta.com/content/nlm?genre=article&issn=1027-3719&volume=7&issue=9&spage=811&aulast=Le%20Houezec}}</ref> The [[elimination half-life]] of nicotine in the body is around two hours.<ref name="pmid7077531">{{cite journal |author=Benowitz NL, Jacob P, Jones RT, Rosenberg J |title=Interindividual variability in the metabolism and cardiovascular effects of nicotine in man |journal=The Journal of Pharmacology and Experimental Therapeutics |volume=221 |issue=2 |pages=368–72 |date=May 1982 |pmid=7077531 |url=http://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=7077531}}</ref> | |||
The amount of nicotine absorbed by the body from smoking can depend on many factors, including the types of tobacco, whether the smoke is inhaled, and whether a filter is used. However, it has been found that the nicotine yield of individual products has only a small effect (4.4%) on the blood concentration of nicotine,<ref>Russell MA, Jarvis M, Iyer R, Feyerabend C. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J. 1980 April 5; 280(6219): 972–976.</ref> suggesting "the assumed health advantage of switching to lower-tar and lower-nicotine cigarettes may be largely offset by the tendency of smokers to compensate by increasing inhalation". | |||
Nicotine acts on [[nicotinic acetylcholine receptor]]s, specifically the [[Α3β4-nAChR|α3β4]] [[ganglion type nicotinic receptor]], present in the [[autonomic ganglia]] and [[adrenal medulla]], and a [[central nervous system]] (CNS) [[α4β2]] [[nicotinic receptor]]. In small concentrations, nicotine increases the activity of these [[cholinergic]] receptors and indirectly on a variety of other neurotransmitters such as [[Dopamine agonist|dopamine]]. | |||
Nicotine is [[metabolized]] in the [[liver]] by [[cytochrome P450]] enzymes (mostly [[CYP2A6]], and also by [[CYP2B6]]). A major metabolite is [[cotinine]]. Other primary metabolites include nicotine ''N'''-oxide, nornicotine, nicotine isomethonium ion, 2-hydroxynicotine and nicotine glucuronide.<ref name="pmid15734728">{{cite journal |author=Hukkanen J, Jacob P, Benowitz NL |title=Metabolism and disposition kinetics of nicotine |journal=Pharmacological Reviews |volume=57 |issue=1 |pages=79–115 |date=March 2005 |pmid=15734728 |doi=10.1124/pr.57.1.3}}</ref> Under some conditions, other substances may be formed such as [[myosmine]].<ref>{{cite journal |title=The danger of third-hand smoke |journal=Chromatography Online |volume=7 |issue=3 |date=22 February 2011 |url=http://chromatographyonline.findanalytichem.com/lcgc/News/The-danger-of-third-hand-smoke/ArticleStandard/Article/detail/713385}}</ref> | |||
[[Glucuronidation]] and oxidative metabolism of nicotine to cotinine are both inhibited by [[menthol]], an additive to [[menthol cigarettes|mentholated cigarettes]], thus increasing the half-life of nicotine ''in vivo''.<ref>{{cite journal |doi=10.1124/jpet.104.066902 |title=Mentholated Cigarette Smoking Inhibits Nicotine Metabolism |year=2004 |last1=Benowitz |first1=N. L. |journal=Journal of Pharmacology and Experimental Therapeutics |volume=310 |issue=3 |pages=1208–15 |pmid=15084646 |last2=Herrera |first2=B |last3=Jacob p |first3=3rd}}</ref> | |||
==Physical and chemical properties== | |||
Nicotine is a [[hygroscopy|hygroscopic]], colorless oily liquid that is readily soluble in alcohol, ether or light petroleum. It is [[miscible]] with [[water (molecule)|water]] in its [[base (chemistry)|base]] form between 60 °C and 210 °C. As a [[nitrogenous base]], nicotine forms [[salt]]s with [[acid]]s that are usually solid and water soluble. Its [[flash point]] is 95 °C and its auto-ignition temperature is 244 °C.<ref name=SLMSDS>[http://www.sciencelab.com/msds.php?msdsId=9926222 www.sciencelab.com/msds.php?msdsId=9926222] Material Safety Data Sheet | |||
L-Nicotine MSDS</ref> | |||
Nicotine is [[optically active]], having two [[enantiomer]]ic forms. The naturally occurring form of nicotine is [[levorotatory]] with a [[specific rotation]] of [α]<sub>D</sub> = –166.4° ((−)-nicotine). The [[dextrorotatory]] form, (+)-nicotine is physiologically less active than (–)-nicotine. (−)-nicotine is more toxic than (+)-nicotine.<ref>{{cite book|last=Gause|first=G. F.|title=Optical Activity and Living Matter|url=http://www.archive.org/stream/opticalactivityl00gauz/opticalactivityl00gauz_djvu.txt|editor=Luyet, B. J.|publisher=Biodynamica|location= Normandy, Missouri |year=1941|chapter=Chapter V: Analysis of various biological processes by the study of the differential action of optical isomers|volume=2|series= A series of monographs on general physiology}}</ref> The salts of (+)-nicotine are usually dextrorotatory. The hydrochloride and sulphate salts become optically inactive if heated in a closed vessel above 180 °C.<ref name="library.sciencemadness.org">http://library.sciencemadness.org/library/books/the_plant_alkaloids.pdf</ref> | |||
On exposure to ultraviolet light or various oxidizing agents, nicotine is converted to nicotine oxide, nicotinic acid (vitamin B3), and methylamine.<ref name="library.sciencemadness.org"/> | |||
===Occurrence and biosynthesis=== | |||
[[File:Nicotine biosynthesis june 2012.png|thumb|300px|Nicotine biosynthesis]] | |||
Nicotine is a natural product of tobacco, occurring in the leaves in a range of 0.5 to 7.5% depending on variety.<ref>{{cite web | url = http://www.tis-gdv.de/tis_e/ware/genuss/tabak/tabak.htm | title = Tobacco (leaf tobacco) | publisher = Transportation Information Service}}</ref> Nicotine also naturally occurs in smaller amounts in plants from the family [[Solanaceae]] (such as [[potato]]es, [[tomato]]es, and [[eggplant]]).<ref>{{cite journal |title=The Nicotine Content of Common Vegetables |journal=The New England Journal of Medicine |date=August 1993 |volume = 329 | pages = 437 | doi = 10.1056/NEJM199308053290619}}</ref> | |||
The biosynthetic pathway of nicotine involves a coupling reaction between the two cyclic structures that compose nicotine. Metabolic studies show that the [[pyridine]] ring of nicotine is derived from [[niacin]] (nicotinic acid) while the pyrrolidone is derived from N-methyl-Δ<sup>1</sup>-pyrrollidium cation.<ref>{{cite journal |doi=10.1016/0006-3002(59)90492-5 |title=Ornithine as a precursor for the pyrrolidine ring of nicotine |year=1959 |last1=Lamberts |first1=Burton L. |last2=Dewey |first2=Lovell J. |last3=Byerrum |first3=Richard U. |journal=Biochimica et Biophysica Acta |volume=33 |pages=22–6 |pmid=13651178 |issue=1}}</ref><ref>{{cite journal |doi=10.1021/ja01495a059 |title=The Biosynthesis of Nicotine from Isotopically Labeled Nicotinic Acids1 |year=1960 |last1=Dawson |first1=R. F. |last2=Christman |first2=D. R. |last3=d'Adamo |first3=A. |last4=Solt |first4=M. L. |last5=Wolf |first5=A. P. |journal=Journal of the American Chemical Society |volume=82 |issue=10 |pages=2628}}</ref> Biosynthesis of the two component structures proceeds via two independent syntheses, the NAD pathway for niacin and the tropane pathway for N-methyl-Δ<sup>1</sup>-pyrrollidium cation. | |||
The NAD pathway in the genus ''[[nicotiana]]'' begins with the oxidation of aspartic acid into α-imino succinate by aspartate oxidase (AO). This is followed by a condensation with [[glyceraldehyde-3-phosphate]] and a cyclization catalyzed by quinolinate synthase (QS) to give [[quinolinic acid]]. Quinolinic acid then reacts with phosphoriboxyl pyrophosphate catalyzed by quinolinic acid phosphoribosyl transferase (QPT) to form niacin mononucleotide (NaMN). The reaction now proceeds via the NAD salvage cycle to produce niacin via the conversion of [[nicotinamide]] by the enzyme [[nicotinamidase]].{{citation needed|date=December 2013}} | |||
The N-methyl-Δ<sup>1</sup>-pyrrollidium cation used in the synthesis of nicotine is an intermediate in the synthesis of tropane-derived alkaloids. Biosynthesis begins with [[decarboxylation]] of [[ornithine]] by ornithine decarboxylase (ODC) to produce [[putrescine]]. Putrescine is then converted into N-methyl putrescine via [[methylation]] by SAM catalyzed by putrescine N-methyltransferase (PMT). N-methylputrescine then undergoes [[deamination]] into 4-methylaminobutanal by the N-methylputrescine oxidase (MPO) enzyme, 4-methylaminobutanal then spontaneously cyclize into N-methyl-Δ<sup>1</sup>-pyrrollidium cation.{{citation needed|date=December 2013}} | |||
The final step in the synthesis of nicotine is the coupling between N-methyl-Δ<sup>1</sup>-pyrrollidium cation and niacin. Although studies conclude some form of coupling between the two component structures, the definite process and mechanism remains undetermined. The current agreed theory involves the conversion of niacin into 2,5-dihydropyridine through 3,6-dihydronicotinic acid. The 2,5-dihydropyridine intermediate would then react with N-methyl-Δ<sup>1</sup>-pyrrollidium cation to form [[enantiomer]]ically pure (–)-nicotine.<ref name=plant-meta>{{cite book |editor1-first=Hiroshi |editor1-last=Ashihara |editor2-first=Alan |editor2-last=Crozier |editor3-first=Atsushi |editor3-last=Komamine |title=Plant metabolism and biotechnology |publisher=Wiley |location=Cambridge |isbn=978-0-470-74703-2}}{{page needed|date=December 2013}}</ref> | |||
===Measurement in body fluids=== | |||
Nicotine can be quantified in blood, plasma, or urine to confirm a diagnosis of poisoning or to facilitate a medicolegal death investigation. Urinary or salivary cotinine concentrations are frequently measured for the purposes of pre-employment and health insurance medical screening programs. Careful interpretation of results is important, since passive exposure to cigarette smoke can result in significant accumulation of nicotine, followed by the appearance of its metabolites in various body fluids.<ref>{{cite journal |author=Benowitz NL, Hukkanen J, Jacob P |title=Nicotine Psychopharmacology |pages=29–60 |year=2009 |pmid=19184645 |pmc=2953858 |doi=10.1007/978-3-540-69248-5_2 |series=Handbook of Experimental Pharmacology |isbn=978-3-540-69246-1 |volume=192 |chapter=Nicotine Chemistry, Metabolism, Kinetics and Biomarkers |issue=192 |journal=Handbook of experimental pharmacology }}</ref><ref>{{cite book |first=Randall Clint |last=Baselt |title=Disposition of Toxic Drugs and Chemicals in Man |year=2014 |publisher=Biomedical Publications |isbn=978-0-9626523-9-4 |edition=10th |pages=1452–6}}</ref> Nicotine use is not regulated in competitive sports programs.<ref>{{cite journal |author=Mündel T, Jones DA |title=Effect of transdermal nicotine administration on exercise endurance in men |journal=Experimental Physiology |volume=91 |issue=4 |pages=705–13 |date=July 2006 |pmid=16627574 |doi=10.1113/expphysiol.2006.033373}}</ref> | |||
==History== | |||
Nicotine is named after the tobacco plant ''[[Nicotiana tabacum]],'' which in turn is named after the [[France|French]] ambassador in [[Portugal]], [[Jean Nicot|Jean Nicot de Villemain]], who sent tobacco and seeds to [[Paris]] in 1560, presented to the French King,<ref name="Rang H. P 2007, page 598">Rang H. P et al., Rang and Dale's Pharmacology 6th Edition, 2007, Elsevier, page 598</ref> and who promoted their medicinal use. The tobacco and its seeds were brought to Ambassador Nicot from [[Brazil]] by [[Luis de Gois]], a Portuguese colonist in [[São Paulo]].{{citation needed|date=December 2013}}Smoking was believed to protect against illness, particularly the plague.<ref name="Rang H. P 2007, page 598"/> | |||
[[Tobacco]] was introduced to [[Europe]] in 1559, and by the late 17th century, it was used not only for [[smoking]] but also as an [[insecticide]]. After [[World War II]], over 2,500 tons of nicotine insecticide were used worldwide, but by the 1980s the use of nicotine insecticide had declined below 200 tons. This was due to the availability of other insecticides that are cheaper and less harmful to [[mammal]]s.<ref name=Ujvary /> | |||
Currently, nicotine, even in the form of tobacco dust, is prohibited as a [[pesticide]] for [[organic farming]] in the United States.<ref>US Code of Federal Regulations. [http://www.law.cornell.edu/cfr/text/7/205.602 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production]</ref><ref>Staff, IFOAM. [http://classic.ifoam.org/growing_organic/1_arguments_for_oa/criticisms_misconceptions/misconceptions_no7.html Criticisms and Frequent Misconceptions about Organic Agriculture: The Counter-Arguments: Misconception Number 7] {{dead link|date=February 2014}}</ref> | |||
In 2008, the [[United States Environmental Protection Agency|EPA]] received a request, from the registrant, to cancel the registration of the last nicotine pesticide registered in the United States.<ref name=epacancel1>{{Cite journal | author = USEPA | title = Nicotine; Notice of Receipt of Request to Voluntarily Cancel a Pesticide Registration | journal = Federal Register | pages = 64320–64322 | date = 29 October 2008 | url = https://federalregister.gov/a/E8-25831| accessdate = 8 April 2012 }}</ref> This request was granted, and since 1 January 2014, this pesticide has not been available for sale.<ref name=epacancel2>{{Cite journal | author = USEPA | title = Nicotine; Product Cancellation Order | journal = Federal Register | pages = 26695–26696 | url =https://federalregister.gov/a/E9-12561 | date = 3 June 2009 | accessdate = 8 April 2012 }}</ref> | |||
===Chemical identification=== | |||
Nicotine was first isolated from the tobacco plant in 1828 by physician Wilhelm Heinrich Posselt and chemist Karl Ludwig Reimann of [[Germany]], who considered it a poison.<ref>{{cite journal |author=Posselt, W.; Reimann, L. |title=Chemische Untersuchung des Tabaks und Darstellung eines eigenthümlich wirksamen Prinzips dieser Pflanze |trans_title=Chemical investigation of tobacco and preparation of a characteristically active constituent of this plant|language=German |journal=Magazin für Pharmacie |volume=6 |issue=24 |pages=138–161 |year=1828 |url=http://books.google.com/books?id=cgkCAAAAYAAJ&pg=RA1-PA138}}</ref><ref name="pmid16463054">{{cite journal |author=Henningfield JE, Zeller M |title=Nicotine psychopharmacology research contributions to United States and global tobacco regulation: a look back and a look forward |journal=Psychopharmacology |volume=184 |issue=3-4 |pages=286–91 |date=March 2006 |pmid=16463054 |doi=10.1007/s00213-006-0308-4}}</ref> Its chemical [[empirical formula]] was described by [[Louis Melsens|Melsens]] in 1843,<ref>Melsens, Louis-Henri-Frédéric (1843) [http://books.google.com/books?id=j-E3AAAAMAAJ&pg=PA465#v=onepage&q&f=false "Note sur la nicotine,"] ''Annales de chimie et de physique'', third series, vol. 9, pages 465-479; see especially page 470. [Note: The empirical formula that Melsens provides is incorrect because at that time, chemists used the wrong atomic mass for carbon (6 instead of 12).]</ref> its structure was | |||
discovered by [[Adolf Pinner]] and [[Richard Wolffenstein (chemist)|Richard Wolffenstein]] in 1893,<ref>{{cite journal |doi=10.1002/cber.189102401242 |title=Ueber Nicotin |year=1891 |last1=Pinner |first1=A. |last2=Wolffenstein |first2=R. |journal=Berichte der deutschen chemischen Gesellschaft |volume=24 |pages=1373}}</ref><ref>{{cite journal |doi=10.1002/cber.18930260165 |title=Ueber Nicotin. Die Constitution des Alkaloïds |year=1893 |last1=Pinner |first1=A. |journal=Berichte der deutschen chemischen Gesellschaft |volume=26 |pages=292}}</ref><ref>{{cite journal |doi=10.1002/ardp.18932310508 |title=Ueber Nicotin. I. Mitteilung |year=1893 |last1=Pinner |first1=A. |journal=Archiv der Pharmazie |volume=231 |issue=5–6 |pages=378}}</ref>{{Clarify|reason=It's not clear that Wolffenstein should be attributed credit for identifying the structure of nicotine. Please see the talk page.|date=March 2013}} and it was first synthesized by Amé Pictet and A. Rotschy in 1904.<ref>{{cite journal |doi=10.1002/cber.19040370206 |title=Synthese des Nicotins |year=1904 |last1=Pictet |first1=Amé |last2=Rotschy |first2=A. |journal=Berichte der deutschen chemischen Gesellschaft |volume=37 |issue=2 |pages=1225}}</ref> | |||
==Society and culture== | |||
The nicotine content of popular American-brand cigarettes has slowly increased over the years, and one study found that there was an average increase of 1.78% per year between the years of 1998 and 2005.<ref>{{cite journal |author=Connolly GN, Alpert HR, Wayne GF, Koh H |title=Trends in nicotine yield in smoke and its relationship with design characteristics among popular US cigarette brands, 1997-2005 |journal=Tobacco Control |volume=16 |issue=5 |pages=e5 |date=October 2007 |pmid=17897974 |pmc=2598548 |doi=10.1136/tc.2006.019695}}</ref> | |||
==Research== | |||
While acute/initial nicotine intake causes activation of nicotine receptors, chronic low doses of nicotine use leads to desensitisation of nicotine receptors (due to the development of tolerance) and results in an antidepressant effect, with research showing low dose nicotine patches being an effective treatment of [[major depressive disorder]] in non-smokers.<ref name="pmid20965579">{{cite journal |author=Mineur YS, Picciotto MR |title=Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis |journal=Trends Pharmacol. Sci. |volume=31|issue=12 |pages=580–6 |date=December 2010 |pmid=20965579 |pmc=2991594 |doi=10.1016/j.tips.2010.09.004 }}</ref> | |||
Though tobacco smoking is associated with an increased risk of [[Alzheimer's disease]],<ref name="pmid19105840">{{cite journal|author=Peters R, Poulter R, Warner J, Beckett N, Burch L, Bulpitt C |title=Smoking, dementia and cognitive decline in the elderly, a systematic review |journal=BMC Geriatr |volume=8 |page=36 |year=2008 |pmid=19105840 |pmc=2642819 |doi=10.1186/1471-2318-8-36 }}</ref> there is evidence that nicotine itself has the potential to prevent and treat Alzheimer's disease.<ref name="pmid19184661">{{cite journal |author=Henningfield JE, Zeller M |title=Nicotine psychopharmacology: policy and regulatory |journal=Handb Exp Pharmacol |pages=511–34 |year=2009 |pmid=19184661|doi=10.1007/978-3-540-69248-5_18 |series=Handbook of Experimental Pharmacology |isbn=978-3-540-69246-1 |volume=192 |issue=192 }}</ref> | |||
==See also== | |||
{{colbegin|2}} | |||
*''[[Nicotiana rustica]]'' | |||
*''[[Nicotiana tabacum]]'' | |||
*[[Substance dependence]] | |||
*[[Tobacco products]] | |||
*[[Puke weed]] | |||
*[[ABT-418]] | |||
*[[Cytisine]] | |||
*[[Anabasine]] | |||
{{colend}} | |||
==References== | |||
{{Reflist|35em}} | |||
==Further reading== | |||
{{refbegin|30em}} | |||
*{{Cite journal |author=Bilkei-Gorzo A, Rácz I, Michel K, Darvas M, Rafael Maldonado López, Zimmer A.|title=A common genetic predisposition to stress sensitivity and stress-induced nicotine craving|journal=Biol. Psychiatry |year=2008 |volume=63 |pages= 164–71 |pmid=17570348 |doi=10.1016/j.biopsych.2007.02.010 |issue=2}} | |||
*{{cite book | |||
| editor1-last =Gorrod | |||
| editor1-first =John W. | |||
| editor2-last =Peyton | |||
| editor2-first =Jacob,III | |||
| title =Analytical Determination of Nicotine and Related Compounds and their Metabolites | |||
| date =November 16, 1999 | |||
| publisher =Elsevier | |||
| location =Amsterdam | |||
| isbn =978-0-08-052551-8 | |||
}} | |||
*{{Cite journal |author=Willoughby JO, Pope KJ, Eaton V |title=Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study |journal=Epilepsia |volume=44 |issue=9 |pages=1238–40 |date=Sep 2003 |pmid=12919397 |doi=10.1046/j.1528-1157.2003.11903.x}} | |||
*{{Cite journal |author=Minna JD |title=Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer |journal=J Clin Invest. |volume=111 |issue=1 |pages=31–3 |date=Jan 2003 |pmid=12511585 |pmc=151841 |doi=10.1172/JCI17492 }} | |||
*{{Cite journal |author=[[James H. Fallon|Fallon JH]], Keator DB, Mbogori J, Taylor D, Potkin SG |title=Gender: a major determinant of brain response to nicotine |journal=Int J Neuropsychopharmacol. |volume=8 |issue=1 |pages=17–26 |date=Mar 2005 |pmid=15579215 |doi=10.1017/S1461145704004730}} | |||
*{{Cite journal |author=West KA, Brognard J, Clark AS, et al. |title=Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells |journal=J Clin Invest. |volume=111 |issue=1 |pages=81–90 |date=Jan 2003 |pmid=12511591 |pmc=151834 |doi=10.1172/JCI16147 }} | |||
*[http://www.nida.nih.gov/researchreports/nicotine/nicotine.html National Institute on Drug Abuse] | |||
*[http://www.erowid.org/plants/tobacco/tobacco.shtml Erowid information on tobacco] | |||
{{refend}} | |||
==External links== | |||
{{commons category|Nicotine}} | |||
*[http://www.howstuffworks.com/nicotine.htm Description of nicotine mechanisms] | |||
*[http://www.erowid.org/chemicals/nicotine/nicotine_data_sheet1.shtml Erowid Nicotine Vault : Nicotine Material Safety Data Sheet] | |||
*{{cite journal |doi=10.1038/ncpgasthep0316 |title=Mechanisms of Disease: Nicotine—a review of its actions in the context of gastrointestinal disease |year=2005 |last1=Thomas |first1=Gareth AO |last2=Rhodes |first2=John |last3=Ingram |first3=John R |journal=Nature Clinical Practice Gastroenterology & Hepatology |volume=2 |issue=11 |pages=536}} | |||
*[http://www.cdc.gov/niosh/npg/npgd0446.html CDC - NIOSH Pocket Guide to Chemical Hazards] | |||
{{Addiction}} | |||
{{Drug use}} | |||
{{Stimulants}} | |||
{{Nootropics}} | |||
{{Euphoriants}} | |||
{{Antiaddictives}} | |||
{{Cholinergics}} | |||
{{Cigarettes}} | |||
[[Category:Pyrrolidine alkaloids]] | |||
[[Category:Neurotoxins]] | |||
[[Category:Nicotinic agonists]] | |||
[[Category:Plant toxin insecticides]] | |||
[[Category:Pyridines]] | |||
[[Category:Smoking]] | |||
[[Category:Stimulants]] | |||
[[Category:Pollinator decline pesticides]] | |||
[[Category:Alkaloids found in Nicotiana]] | |||
[[Category:Alkaloids found in Erythroxylum coca]] |
Revision as of 15:14, 6 April 2015
File:Nicotine.svg | |
Clinical data | |
---|---|
Trade names | Nicorette, Nicotrol |
AHFS/Drugs.com | Monograph |
Pregnancy category | |
Dependence liability | Physical: moderate Psychological: high[1] |
Addiction liability | High |
Routes of administration | Inhalation; insufflation; oral – buccal, sublingual, and ingestion; transdermal; rectal, |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 20 to 45% (oral), 53% (intranasal), 68% (transdermal) |
Protein binding | <5% |
Metabolism | Hepatic |
Elimination half-life | 1-2 hours; 20 hours active metabolite (cotinine) |
Excretion | Urine (10-20% (gum), pH-dependent; 30% (inhaled); 10-30% (intranasal)) |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
PDB ligand | |
E number | {{#property:P628}} |
ECHA InfoCard | {{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value). |
Chemical and physical data | |
Formula | C10H14N2 |
Molar mass | 162.23 g/mol |
3D model (JSmol) | |
Density | 1.01 g/cm3 |
Melting point | −79 °C (−110.2 °F) |
Boiling point | 247 °C (476.6 °F) |
| |
| |
(what is this?) (verify) |
Nicotine is a potent parasympathomimetic alkaloid found in the nightshade family of plants (Solanaceae) and a stimulant drug. It is a nicotinic acetylcholine receptor (nAChR) agonist,[2][3] except at nAChRα9 and nAChRα10 where it acts as an antagonist.[2] It is made in the roots of and accumulates in the leaves of the nightshade family of plants. It constitutes approximately 0.6–3.0% of the dry weight of tobacco[4] and is present in the range of 2–7 µg/kg of various edible plants.[5] It functions as an antiherbivore chemical; consequently, nicotine was widely used as an insecticide in the past[6][7] and nicotine analogs such as imidacloprid are currently widely used.
In lesser doses (an average cigarette yields about 2 mg of absorbed nicotine), the substance acts as a stimulant in mammals, while high amounts (50–100 mg) can be harmful.[8][9][10] This stimulant effect is likely to be a major contributing factor to the dependence-forming properties of tobacco smoking. Nicotine liquid can be used in vaporizers or electronic cigarettes along with a wide variety of different flavors.
Uses
Medical
The primary therapeutic use of nicotine is in treating nicotine dependence in order to eliminate smoking with the damage it does to health. Controlled levels of nicotine are given to patients through gums, dermal patches, lozenges, electronic/substitute cigarettes or nasal sprays in an effort to wean them off their dependence.
Studies have found that these therapies increase the chance of success of quitting by 50 to 70%,[11] though reductions in the population as a whole has not been demonstrated.[12]
Recreational
Nicotine is commonly consumed as a recreational drug for its stimulant effects.
Psychoactive effects
Nicotine's mood-altering effects are different by report: in particular it is both a stimulant and a relaxant.[13] First causing a release of glucose from the liver and epinephrine (adrenaline) from the adrenal medulla, it causes stimulation. Users report feelings of relaxation, sharpness, calmness, and alertness.[14] Like any stimulant, it may very rarely cause the often uncomfortable neuropsychiatric effect of akathisia. By reducing the appetite and raising the metabolism, some smokers may lose weight as a consequence.[15][16]
When a cigarette is smoked, nicotine-rich blood passes from the lungs to the brain within seven seconds and immediately stimulates the release of many chemical messengers such as acetylcholine, norepinephrine, epinephrine, arginine vasopressin, serotonin, dopamine, and beta-endorphin.[17][18] This release of neurotransmitters and hormones is responsible for most of nicotine's psychoactive effects. Nicotine appears to enhance concentration[19] and memory due to the increase of acetylcholine. It also appears to enhance alertness due to the increases of acetylcholine and norepinephrine. Arousal is increased by the increase of norepinephrine. Pain is reduced by the increases of acetylcholine and beta-endorphin. Anxiety is reduced by the increase of beta-endorphin. Nicotine also extends the duration of positive effects of dopamine[20] and increases sensitivity in brain reward systems.[21] Most cigarettes (in the smoke inhaled) contain 1 to 3 milligrams of nicotine.[22]
Research suggests that, when smokers wish to achieve a stimulating effect, they take short quick puffs, which produce a low level of blood nicotine.[23] This stimulates nerve transmission. When they wish to relax, they take deep puffs, which produce a higher level of blood nicotine, which depresses the passage of nerve impulses, producing a mild sedative effect. At low doses, nicotine potently enhances the actions of norepinephrine and dopamine in the brain, causing a drug effect typical of those of psychostimulants. At higher doses, nicotine enhances the effect of serotonin and opiate activity, producing a calming, pain-killing effect. Nicotine is unique in comparison to most drugs, as its profile changes from stimulant to sedative/pain killer in increasing dosages and use, a phenomenon described by Paul Nesbitt in his doctoral dissertation[24] and subsequently referred to as "Nesbitt's Paradox".[25]
Adverse effects
Vascular
Nicotine increases blood pressure and heart rate.[26] Nicotine can also induce potentially atherogenic genes in human coronary artery endothelial cells.[27] Microvascular injury can result through its action on nicotinic acetylcholine receptors (nAChRs).[28]
Carginogen
Historically, nicotine has not been regarded as a carcinogen.[29] The IARC has not evaluated nicotine in its standalone form or assigned it to an official carcinogen group. While no epidemiological evidence supports that nicotine alone acts as a carcinogen in the formation of human cancer, research over the last decade has identified nicotine's carcinogenic potential in animal models and cell culture.[30][31][32] Indirectly, nicotine increases cholinergic signalling (and adrenergic signalling in the case of colon cancer[33]), thereby impeding apoptosis (programmed cell death), promoting tumor growth, and activating growth factors and cellular mitogenic factors such as 5-LOX, and EGF. Nicotine also promotes cancer growth by stimulating angiogenesis and neovascularization.[34][35] In one study, nicotine administered to mice with tumors caused increases in tumor size (twofold increase), metastasis (nine-fold increase), and tumor recurrence (threefold increase).[36] N-Nitrosonornicotine (NNN), classified by the IARC as a Group 1 carcinogen, is produced endogenously from nitrite in saliva and nicotine.[citation needed]
Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis.[37]
Fetal development
In pregnancy, a 2013 review noted that "nicotine is only 1 of more than 4000 compounds to which the fetus is exposed through maternal smoking. Of these, ∼30 compounds have been associated with adverse health outcomes. Although the exact mechanisms by which nicotine produces adverse fetal effects are unknown, it is likely that hypoxia, undernourishment of the fetus, and direct vasoconstrictor effects on the placental and umbilical vessels all play a role. Nicotine also has been shown to have significant deleterious effects on brain development, including alterations in brain metabolism and neurotransmitter systems and abnormal brain development." It also notes that "abnormalities of newborn neurobehavior, including impaired orientation and autonomic regulation and abnormalities of muscle tone, have been identified in a number of prenatal nicotine exposure studies" and that there is weak data associating fetal nicotine exposure with newborn facial clefts, and that there is no good evidence for newborns suffering nicotine withdrawal from fetal exposure to nicotine.[38]
Effective April 1, 1990, the Office of Environmental Health Hazard Assessment (OEHHA) of the California Environmental Protection Agency added nicotine to the list of chemicals known to cause developmental toxicity.[39]
Dependence and withdraw
Difficulty concentrating and deficits in task performance are symptoms of nicotine withdrawal. These symptoms begin as soon as 30 minutes after tobacco cessation begins, and can last for several weeks.[40]
Nicotine appears to have significant performance enhancing effects, particularly in fine motor skills, attention, and memory. These beneficial cognitive effects may play a role in the initiation and maintenance of tobacco dependence.[40]
Studies suggest a correlation between smoking and schizophrenia, with estimates near 75% for the proportion of schizophrenic patients who smoke. Although the nature of this association remains unclear, it has been argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine.[41][42] Other research found that mildly dependent users got some benefit from nicotine, but not those who were highly dependent.[43]
Overdose
The Template:LD50 of nicotine is 50 mg/kg for rats and 3 mg/kg for mice. 30–60 mg (0.5–1.0 mg/kg) can be a lethal dosage for adult humans.[8][44] However the widely used human LD50 estimate of 0.5–1.0 mg/kg was questioned in a 2013 review, in light of several documented cases of humans surviving much higher doses; the 2013 review suggests that the lower limit causing fatal outcomes is 500–1000 mg of ingested nicotine, corresponding to 6.5–13 mg/kg orally.[10] Nevertheless nicotine has a relatively high toxicity in comparison to many other alkaloids such as caffeine, which has an LD50of 127 mg/kg when administered to mice.[45]
It is unlikely that a person would overdose on nicotine through smoking alone, the US Food and Drug Administration (FDA) states in 2013 "There are no significant safety concerns associated with using more than one OTC NRT at the same time, or using an OTC NRT at the same time as another nicotine-containing product—including a cigarette."[46] Spilling a high concentration of nicotine onto the skin can cause intoxication or even death, since nicotine readily passes into the bloodstream following dermal contact.[47]
Addiction
Nicotine is addictive.[48][49] Nicotine activates the mesolimbic pathway and induces long-term ΔFosB expression in the nucleus accumbens when inhaled or injected, but not necessarily when ingested.[48][49][50] Consequently, repeated daily exposure (possibly excluding oral route) to nicotine can result in accumbal ΔFosB overexpression, in turn causing nicotine addiction.[48][49]
Pharmacology
Pharmacodynamics
Central nervous system
By binding to nicotinic acetylcholine receptors, nicotine increases the levels of several neurotransmitters – acting as a sort of "volume control". It is thought that increased levels of dopamine in the reward circuits of the brain are a major contributor to the apparent euphoria and relaxation, and addiction caused by nicotine consumption. Nicotine-induced dopamine release occurs via the cholinergic–dopaminergic reward link, which is mediated by the neuropeptide ghrelin in the ventral tegmentum.[51] Nicotine has a higher affinity for acetylcholine receptors in the brain than those in skeletal muscle, though at toxic doses it can induce contractions and respiratory paralysis.[52] Nicotine's selectivity is thought to be due to a particular amino acid difference on these receptor subtypes.[53]
Tobacco smoke contains anabasine, anatabine, and nornicotine. It also contains the monoamine oxidase inhibitors harman and norharman.[54] These beta-carboline compounds significantly decrease MAO activity in smokers.[54][55] MAO enzymes break down monoaminergic neurotransmitters such as dopamine, norepinephrine, and serotonin. It is thought that the powerful interaction between the MAOIs and the nicotine is responsible for most of the addictive properties of tobacco smoking.[56] The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats.[57]
Chronic nicotine exposure via tobacco smoking up-regulates alpha4beta2* nAChR in cerebellum and brainstem regions[58][59] but not habenulopeduncular structures.[60] Alpha4beta2 and alpha6beta2 receptors, present in the ventral tegmental area, play a crucial role in mediating the reinforcement effects of nicotine.[61]
Research published in 2011 found that nicotine inhibits class I and II histone deacetylases, chromatin-modifying enzymes involved in epigenetics. This inhibition has been shown to increase susceptibility to cocaine addiction in rodents.[62][63]
Sympathetic nervous system
Nicotine also activates the sympathetic nervous system,[64] acting via splanchnic nerves to the adrenal medulla, stimulating the release of epinephrine. Acetylcholine released by preganglionic sympathetic fibers of these nerves acts on nicotinic acetylcholine receptors, causing the release of epinephrine (and noradrenaline) into the bloodstream. Nicotine also has an affinity for melanin-containing tissues due to its precursor function in melanin synthesis or due to the irreversible binding of melanin and nicotine. This has been suggested to underlie the increased nicotine dependence and lower smoking cessation rates in darker pigmented individuals. However, further research is warranted before a definite conclusive link can be inferred.[65]
Adrenal medulla
By binding to ganglion type nicotinic receptors in the adrenal medulla, nicotine increases flow of adrenaline (epinephrine), a stimulating hormone and neurotransmitter. By binding to the receptors, it causes cell depolarization and an influx of calcium through voltage-gated calcium channels. Calcium triggers the exocytosis of chromaffin granules and thus the release of epinephrine (and norepinephrine) into the bloodstream. The release of epinephrine (adrenaline) causes an increase in heart rate, blood pressure and respiration, as well as higher blood glucose levels.[66]
Nicotine has a half-life of 1 to 2 hours. Cotinine is an active metabolite of nicotine that remains in the blood for 18 to 20 hours, making it easier to analyze due to its longer half-life.[67]
Pharmacokinetics
As nicotine enters the body, it is distributed quickly through the bloodstream and crosses the blood–brain barrier reaching the brain within 10–20 seconds after inhalation.[68] The elimination half-life of nicotine in the body is around two hours.[69]
The amount of nicotine absorbed by the body from smoking can depend on many factors, including the types of tobacco, whether the smoke is inhaled, and whether a filter is used. However, it has been found that the nicotine yield of individual products has only a small effect (4.4%) on the blood concentration of nicotine,[70] suggesting "the assumed health advantage of switching to lower-tar and lower-nicotine cigarettes may be largely offset by the tendency of smokers to compensate by increasing inhalation".
Nicotine acts on nicotinic acetylcholine receptors, specifically the α3β4 ganglion type nicotinic receptor, present in the autonomic ganglia and adrenal medulla, and a central nervous system (CNS) α4β2 nicotinic receptor. In small concentrations, nicotine increases the activity of these cholinergic receptors and indirectly on a variety of other neurotransmitters such as dopamine.
Nicotine is metabolized in the liver by cytochrome P450 enzymes (mostly CYP2A6, and also by CYP2B6). A major metabolite is cotinine. Other primary metabolites include nicotine N'-oxide, nornicotine, nicotine isomethonium ion, 2-hydroxynicotine and nicotine glucuronide.[71] Under some conditions, other substances may be formed such as myosmine.[72]
Glucuronidation and oxidative metabolism of nicotine to cotinine are both inhibited by menthol, an additive to mentholated cigarettes, thus increasing the half-life of nicotine in vivo.[73]
Physical and chemical properties
Nicotine is a hygroscopic, colorless oily liquid that is readily soluble in alcohol, ether or light petroleum. It is miscible with water in its base form between 60 °C and 210 °C. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Its flash point is 95 °C and its auto-ignition temperature is 244 °C.[74]
Nicotine is optically active, having two enantiomeric forms. The naturally occurring form of nicotine is levorotatory with a specific rotation of [α]D = –166.4° ((−)-nicotine). The dextrorotatory form, (+)-nicotine is physiologically less active than (–)-nicotine. (−)-nicotine is more toxic than (+)-nicotine.[75] The salts of (+)-nicotine are usually dextrorotatory. The hydrochloride and sulphate salts become optically inactive if heated in a closed vessel above 180 °C.[76]
On exposure to ultraviolet light or various oxidizing agents, nicotine is converted to nicotine oxide, nicotinic acid (vitamin B3), and methylamine.[76]
Occurrence and biosynthesis
Nicotine is a natural product of tobacco, occurring in the leaves in a range of 0.5 to 7.5% depending on variety.[77] Nicotine also naturally occurs in smaller amounts in plants from the family Solanaceae (such as potatoes, tomatoes, and eggplant).[78]
The biosynthetic pathway of nicotine involves a coupling reaction between the two cyclic structures that compose nicotine. Metabolic studies show that the pyridine ring of nicotine is derived from niacin (nicotinic acid) while the pyrrolidone is derived from N-methyl-Δ1-pyrrollidium cation.[79][80] Biosynthesis of the two component structures proceeds via two independent syntheses, the NAD pathway for niacin and the tropane pathway for N-methyl-Δ1-pyrrollidium cation.
The NAD pathway in the genus nicotiana begins with the oxidation of aspartic acid into α-imino succinate by aspartate oxidase (AO). This is followed by a condensation with glyceraldehyde-3-phosphate and a cyclization catalyzed by quinolinate synthase (QS) to give quinolinic acid. Quinolinic acid then reacts with phosphoriboxyl pyrophosphate catalyzed by quinolinic acid phosphoribosyl transferase (QPT) to form niacin mononucleotide (NaMN). The reaction now proceeds via the NAD salvage cycle to produce niacin via the conversion of nicotinamide by the enzyme nicotinamidase.[citation needed]
The N-methyl-Δ1-pyrrollidium cation used in the synthesis of nicotine is an intermediate in the synthesis of tropane-derived alkaloids. Biosynthesis begins with decarboxylation of ornithine by ornithine decarboxylase (ODC) to produce putrescine. Putrescine is then converted into N-methyl putrescine via methylation by SAM catalyzed by putrescine N-methyltransferase (PMT). N-methylputrescine then undergoes deamination into 4-methylaminobutanal by the N-methylputrescine oxidase (MPO) enzyme, 4-methylaminobutanal then spontaneously cyclize into N-methyl-Δ1-pyrrollidium cation.[citation needed]
The final step in the synthesis of nicotine is the coupling between N-methyl-Δ1-pyrrollidium cation and niacin. Although studies conclude some form of coupling between the two component structures, the definite process and mechanism remains undetermined. The current agreed theory involves the conversion of niacin into 2,5-dihydropyridine through 3,6-dihydronicotinic acid. The 2,5-dihydropyridine intermediate would then react with N-methyl-Δ1-pyrrollidium cation to form enantiomerically pure (–)-nicotine.[81]
Measurement in body fluids
Nicotine can be quantified in blood, plasma, or urine to confirm a diagnosis of poisoning or to facilitate a medicolegal death investigation. Urinary or salivary cotinine concentrations are frequently measured for the purposes of pre-employment and health insurance medical screening programs. Careful interpretation of results is important, since passive exposure to cigarette smoke can result in significant accumulation of nicotine, followed by the appearance of its metabolites in various body fluids.[82][83] Nicotine use is not regulated in competitive sports programs.[84]
History
Nicotine is named after the tobacco plant Nicotiana tabacum, which in turn is named after the French ambassador in Portugal, Jean Nicot de Villemain, who sent tobacco and seeds to Paris in 1560, presented to the French King,[85] and who promoted their medicinal use. The tobacco and its seeds were brought to Ambassador Nicot from Brazil by Luis de Gois, a Portuguese colonist in São Paulo.[citation needed]Smoking was believed to protect against illness, particularly the plague.[85]
Tobacco was introduced to Europe in 1559, and by the late 17th century, it was used not only for smoking but also as an insecticide. After World War II, over 2,500 tons of nicotine insecticide were used worldwide, but by the 1980s the use of nicotine insecticide had declined below 200 tons. This was due to the availability of other insecticides that are cheaper and less harmful to mammals.[7]
Currently, nicotine, even in the form of tobacco dust, is prohibited as a pesticide for organic farming in the United States.[86][87]
In 2008, the EPA received a request, from the registrant, to cancel the registration of the last nicotine pesticide registered in the United States.[88] This request was granted, and since 1 January 2014, this pesticide has not been available for sale.[89]
Chemical identification
Nicotine was first isolated from the tobacco plant in 1828 by physician Wilhelm Heinrich Posselt and chemist Karl Ludwig Reimann of Germany, who considered it a poison.[90][91] Its chemical empirical formula was described by Melsens in 1843,[92] its structure was discovered by Adolf Pinner and Richard Wolffenstein in 1893,[93][94][95][clarification needed] and it was first synthesized by Amé Pictet and A. Rotschy in 1904.[96]
Society and culture
The nicotine content of popular American-brand cigarettes has slowly increased over the years, and one study found that there was an average increase of 1.78% per year between the years of 1998 and 2005.[97]
Research
While acute/initial nicotine intake causes activation of nicotine receptors, chronic low doses of nicotine use leads to desensitisation of nicotine receptors (due to the development of tolerance) and results in an antidepressant effect, with research showing low dose nicotine patches being an effective treatment of major depressive disorder in non-smokers.[98]
Though tobacco smoking is associated with an increased risk of Alzheimer's disease,[99] there is evidence that nicotine itself has the potential to prevent and treat Alzheimer's disease.[100]
See also
References
- ↑ Cosci, F; Pistelli, F; Lazzarini, N; Carrozzi, L (2011). "Nicotine dependence and psychological distress: outcomes and clinical implications in smoking cessation". Psychology research and behavior management. 4: 119–28. doi:10.2147/prbm.s14243. PMID 22114542.
- ↑ 2.0 2.1 "Nicotinic acetylcholine receptors: Introduction". IUPHAR Database. International Union of Basic and Clinical Pharmacology. Retrieved 1 September 2014.
- ↑ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 9: Autonomic Nervous System". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. 234. ISBN 9780071481274.
Nicotine ... is a natural alkaloid of the tobacco plant. Lobeline is a natural alkaloid of Indian tobacco. Both drugs are agonists are nicotinic cholinergic receptors ...
- ↑ "Smoking and Tobacco Control Monograph No. 9" (PDF). Retrieved 2012-12-19.
- ↑ "Determination of the Nicotine Content of Various Edible Nightshades (Solanaceae) and Their Products and Estimation of the Associated Dietary Nicotine Intake". Retrieved 2008-10-05.
- ↑ Rodgman, Alan; Perfetti, Thomas A. (2009). The chemical components of tobacco and tobacco smoke. Boca Raton, FL: CRC Press. ISBN 1-4200-7883-6. LCCN 2008018913.[page needed]
- ↑ 7.0 7.1 Ujváry, István (1999). "Nicotine and Other Insecticidal Alkaloids". In Yamamoto, Izuru; Casida, John. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Tokyo: Springer-Verlag. pp. 29–69.
- ↑ 8.0 8.1 "Nicotine (PIM)". Inchem.org. Retrieved 2012-12-19.
- ↑ Genetic Science Learning Center. "How Drugs Can Kill".
- ↑ 10.0 10.1 Mayer B (January 2014). "How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century". Archives of Toxicology. 88 (1): 5–7. doi:10.1007/s00204-013-1127-0. PMC 3880486. PMID 24091634.
- ↑ 11.0 11.1 Stead LF, Perera R, Bullen C, Mant D, Lancaster T (2008). Stead, Lindsay F, ed. "Nicotine replacement therapy for smoking cessation". Cochrane Database Syst Rev (1): CD000146. doi:10.1002/14651858.CD000146.pub3. PMID 18253970.
- ↑ Pierce, John P.; Cummins, Sharon E.; White, Martha M.; Humphrey, Aimee; Messer, Karen (2012). "Quitlines and Nicotine Replacement for Smoking Cessation: Do We Need to Change Policy?". Annual Review of Public Health. 33: 341–56. doi:10.1146/annurev-publhealth-031811-124624. PMID 22224888.
- ↑ "Effective Clinical Tobacco Intervention". Therapeutics Letter (21): 1–4. September–October 1997.
- ↑ Lagrue, Gilbert; Cormier, Anne (June 2001). "Des récepteurs nicotiniques à la dépendance tabagique : Perspectives thérapeutiques". Alcoologie et addictologie (in français). 23 (2): 39S–42S. ISSN 1620-4522. INIST:1081618. Unknown parameter
|trans_title=
ignored (help) - ↑ Orsini, Jean-Claude (June 2001). "Dépendance tabagique et contrôle central de la glycémie et de l'appétit". Alcoologie et addictologie (in français). 23 (2 Suppl): 28S–36S. ISSN 1620-4522. INIST:1081638. Unknown parameter
|trans_title=
ignored (help) - ↑ Chen, Hui; Vlahos, Ross; Bozinovski, Steve; Jones, Jessica; Anderson, Gary P; Morris, Margaret J (2004). "Effect of Short-Term Cigarette Smoke Exposure on Body Weight, Appetite and Brain Neuropeptide Y in Mice". Neuropsychopharmacology. 30 (4): 713–9. doi:10.1038/sj.npp.1300597. PMID 15508020. Lay summary – The University of Melbourne (1 November 2004).
- ↑ Pomerleau OF, Pomerleau CS (1984). "Neuroregulators and the reinforcement of smoking: Towards a biobehavioral explanation". Neuroscience and Biobehavioral Reviews. 8: 503–513. doi:10.1016/0149-7634(84)90007-1.
- ↑ Pomerleau OF, Rosecrans J (1989). "Neuroregulatory effects of nicotine". Psychoneuroendocrinology. 14: 407–423. doi:10.1016/0306-4530(89)90040-1.
- ↑ Rusted J, Graupner L, O'Connell N, Nicholls C (August 1994). "Does nicotine improve cognitive function?". Psychopharmacology (Berl.). 115 (4): 547–9. doi:10.1007/BF02245580. PMID 7871101.
- ↑ Easton, John (March 28, 2002). "Nicotine extends duration of pleasant effects of dopamine". The University of Chicago Chronicle. 21 (12).
- ↑ Kenny PJ, Markou A (Jun 2006). "Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity". Neuropsychopharmacology. 31 (6): 1203–11. doi:10.1038/sj.npp.1300905. PMID 16192981.
- ↑ "Erowid Nicotine Vault : Dosage". Erowid.org. 2011-10-14. Retrieved 2012-12-19.
- ↑ Golding, J. F.; Mangan, G. L. (1989). "Factors Governing Recruitment to and Maintenance of Smoking". In Einstein, Stanley. Drug and Alcohol Use. pp. 101–17. doi:10.1007/978-1-4899-0888-9_9. ISBN 978-1-4899-0890-2.
- ↑ Nesbitt P (1969). Smoking, physiological arousal, and emotional response. Unpublished doctoral dissertation, Columbia University.
- ↑ Parrott AC (January 1998). "Nesbitt's Paradox resolved? Stress and arousal modulation during cigarette smoking". Addiction. 93 (1): 27–39. doi:10.1046/j.1360-0443.1998.931274.x. PMID 9624709.
- ↑ Sabha M, Tanus-Santos JE, Toledo JC, Cittadino M, Rocha JC, Moreno H (August 2000). "Transdermal nicotine mimics the smoking-induced endothelial dysfunction". Clinical Pharmacology and Therapeutics. 68 (2): 167–74. doi:10.1067/mcp.2000.108851. PMID 10976548.
- ↑ Zhang S, Day I, Ye S (February 2001). "Nicotine induced changes in gene expression by human coronary artery endothelial cells". Atherosclerosis. 154 (2): 277–83. doi:10.1016/S0021-9150(00)00475-5. PMID 11166759.
- ↑ Hawkins BT, Brown RC, Davis TP (February 2002). "Smoking and ischemic stroke: a role for nicotine?". Trends in Pharmacological Sciences. 23 (2): 78–82. doi:10.1016/S0165-6147(02)01893-X. PMID 11830264.
- ↑ Cardinale A, Nastrucci C, Cesario A, Russo P (January 2012). "Nicotine: specific role in angiogenesis, proliferation and apoptosis". Critical Reviews in Toxicology. 42 (1): 68–89. doi:10.3109/10408444.2011.623150. PMID 22050423.
- ↑ Hecht SS (July 1999). "Tobacco smoke carcinogens and lung cancer". J. Natl. Cancer Inst. 91 (14): 1194–210. doi:10.1093/jnci/91.14.1194. PMID 10413421.
- ↑ Wu WK, Cho CH (April 2004). "The pharmacological actions of nicotine on the gastrointestinal tract". J. Pharmacol. Sci. 94 (4): 348–58. doi:10.1254/jphs.94.348. PMID 15107574.
- ↑ Chowdhury P, Udupa KB (December 2006). "Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation". World J. Gastroenterol. 12 (46): 7428–32. PMID 17167829.
- ↑ Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (June 2007). "Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation". Toxicol. Sci. 97 (2): 279–87. doi:10.1093/toxsci/kfm060. PMID 17369603.
- ↑ Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M (October 2003). "Nicotine enhances neovascularization and promotes tumor growth". Mol. Cells. 16 (2): 143–6. PMID 14651253.
- ↑ Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH (January 2004). "Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway". J. Pharmacol. Exp. Ther. 308 (1): 66–72. doi:10.1124/jpet.103.058321. PMID 14569062.
- ↑ Davis R, Rizwani W, Banerjee S; et al. (2009). Pao, William, ed. "Nicotine promotes tumor growth and metastasis in mouse models of lung cancer". PLoS ONE. 4 (10): e7524. Bibcode:2009PLoSO...4.7524D. doi:10.1371/journal.pone.0007524. PMC 2759510. PMID 19841737.
- ↑ Heeschen, C (July 2001). "Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis". Nat Med. 7: 833–9. PMID 11433349. Retrieved 2 January 2015.
- ↑ Behnke M, Smith VC (March 2013). "Prenatal substance abuse: short- and long-term effects on the exposed fetus". Pediatrics. 131 (3): e1009–24. doi:10.1542/peds.2012-3931. PMID 23439891.
- ↑ http://oehha.ca.gov/prop65/prop65_list/files/P65single121809.pdf[full citation needed]
- ↑ 40.0 40.1 Heishman, SJ, Kleykamp, BA, Singleton, EG (July 2010). "Meta-analysis of the acute effects of nicotine and smoking on human performance". Pharmacology. 210 (4): 453–69. doi:10.1007/s00213-010-1848-1. PMC 3151730. PMID 20414766.
The significant effects of nicotine on motor abilities, attention, and memory likely represent true performance enhancement because they are not confounded by withdrawal relief. The beneficial cognitive effects of nicotine have implications for initiation of smoking and maintenance of tobacco dependence.
- ↑ de Leon J, Tracy J, McCann E, McGrory A, Diaz FJ (Jul 2002). "Schizophrenia and tobacco smoking: a replication study in another US psychiatric hospital". Schizophr Res. 56 (1–2): 55–65. doi:10.1016/S0920-9964(01)00192-X. PMID 12084420.
- ↑ de Leon J, Dadvand M, Canuso C, White AO, Stanilla JK, Simpson GM (Mar 1995). "Schizophrenia and smoking: an epidemiological survey in a state hospital". Am J Psychiatry. 152 (3): 453–5. PMID 7864277.
- ↑ Aguilar MC, Gurpegui M, Diaz FJ, de Leon J (Mar 2005). "Nicotine dependence and symptoms in schizophrenia: naturalistic study of complex interactions". Br J Psychiatry. 186 (3): 215–21. doi:10.1192/bjp.186.3.215. PMID 15738502.
- ↑ Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (Jul 1994). "Effects of aging on acute toxicity of nicotine in rats". Pharmacol Toxicol. 75 (1): 1–6. doi:10.1111/j.1600-0773.1994.tb00316.x. PMID 7971729.
- ↑ Toxicology and Applied Pharmacology. Vol. 44, Pg. 1, 1978.
- ↑ "Consumer Updates: Nicotine Replacement Therapy Labels May Change". FDA. April 1, 2013.
- ↑ Lockhart LP (1933). "Nicotine poisoning". Br Med J. 1 (3762): 246–7. doi:10.1136/bmj.1.3762.246-c.
- ↑ 48.0 48.1 48.2 Nestler EJ (December 2013). "Cellular basis of memory for addiction". Dialogues Clin Neurosci. 15 (4): 431–443. PMC 3898681. PMID 24459410.
- ↑ 49.0 49.1 49.2 Ruffle JK (November 2014). "Molecular neurobiology of addiction: what's all the (Δ)FosB about?". Am J Drug Alcohol Abuse. 40 (6): 428–437. doi:10.3109/00952990.2014.933840. PMID 25083822.
The knowledge of DFosB induction in chronic drug exposure provides a novel method for the evaluation of substance addiction profiles (i.e. how addictive they are). Xiong et al. used this premise to evaluate the potential addictive profile of propofol (119). Propofol is a general anaesthetic, however its abuse for recreational purpose has been documented (120). Using control drugs implicated in both DFosB induction and addiction (ethanol and nicotine), ...
Conclusions
ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. The formation of ΔFosB in multiple brain regions, and the molecular pathway leading to the formation of AP-1 complexes is well understood. The establishment of a functional purpose for ΔFosB has allowed further determination as to some of the key aspects of its molecular cascades, involving effectors such as GluR2 (87,88), Cdk5 (93) and NFkB (100). Moreover, many of these molecular changes identified are now directly linked to the structural, physiological and behavioral changes observed following chronic drug exposure (60,95,97,102). New frontiers of research investigating the molecular roles of ΔFosB have been opened by epigenetic studies, and recent advances have illustrated the role of ΔFosB acting on DNA and histones, truly as a ‘‘molecular switch’’ (34). As a consequence of our improved understanding of ΔFosB in addiction, it is possible to evaluate the addictive potential of current medications (119), as well as use it as a biomarker for assessing the efficacy of therapeutic interventions (121,122,124). - ↑ Marttila K, Raattamaa H, Ahtee L (July 2006). "Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice". Neuropharmacology. 51 (1): 44–51. doi:10.1016/j.neuropharm.2006.02.014. PMID 16631212.
- ↑ Dickson, Suzanne L.; Egecioglu, Emil; Landgren, Sara; Skibicka, Karolina P.; Engel, Jörgen A.; Jerlhag, Elisabet (2011). "The role of the central ghrelin system in reward from food and chemical drugs". Molecular and Cellular Endocrinology. 340 (1): 80–7. doi:10.1016/j.mce.2011.02.017. PMID 21354264.
- ↑ Katzung, Bertram G. (2006). Basic and Clinical Pharmacology. New York: McGraw-Hill Medical. pp. 99–105.
- ↑ Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA (March 2009). "Nicotine binding to brain receptors requires a strong cation-pi interaction". Nature. 458 (7237): 534–7. Bibcode:2009Natur.458..534X. doi:10.1038/nature07768. PMC 2755585. PMID 19252481.
- ↑ 54.0 54.1 Herraiz T, Chaparro C (2005). "Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors". Biochem. Biophys. Res. Commun. 326 (2): 378–86. doi:10.1016/j.bbrc.2004.11.033. PMID 15582589.
- ↑ Fowler JS, Volkow ND, Wang GJ; et al. (1998). "Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition". J Addict Dis. 17 (1): 23–34. doi:10.1300/J069v17n01_03. PMID 9549600.
- ↑ Villégier AS, Blanc G, Glowinski J, Tassin JP (September 2003). "Transient behavioral sensitization to nicotine becomes long-lasting with monoamine oxidases inhibitors". Pharmacology, Biochemistry, and Behavior. 76 (2): 267–74. doi:10.1016/S0091-3057(03)00223-5. PMID 14592678.
- ↑ Villégier AS, Salomon L, Granon S; et al. (August 2006). "Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine". Neuropsychopharmacology. 31 (8): 1704–13. doi:10.1038/sj.npp.1300987. PMID 16395299.
- ↑ Wüllner U, Gündisch D, Herzog H; et al. (January 2008). "Smoking upregulates alpha4beta2* nicotinic acetylcholine receptors in the human brain". Neuroscience Letters. 430 (1): 34–7. doi:10.1016/j.neulet.2007.10.011. PMID 17997038.
- ↑ Walsh H, Govind AP, Mastro R; et al. (2008). "Up-regulation of nicotinic receptors by nicotine varies with receptor subtype". J. Biol. Chem. 283 (10): 6022–32. doi:10.1074/jbc.M703432200. PMID 18174175.
- ↑ Nguyen HN, Rasmussen BA, Perry DC (2003). "Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography". J. Pharmacol. Exp. Ther. 307 (3): 1090–7. doi:10.1124/jpet.103.056408. PMID 14560040.
- ↑ Pons S, Fattore L, Cossu G; et al. (November 2008). "Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration". J. Neurosci. 28 (47): 12318–27. doi:10.1523/JNEUROSCI.3918-08.2008. PMC 2819191. PMID 19020025.
- ↑ Amir Levine; et al. (2011). "Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine". Sci Transl Med. 3 (107): 107ra109. doi:10.1126/scitranslmed.3003062.
- ↑ Volkow ND (November 2011). "Epigenetics of nicotine: another nail in the coughing". Sci Transl Med. 3 (107): 107ps43. doi:10.1126/scitranslmed.3003278. PMC 3492949. PMID 22049068.
- ↑ Yoshida T, Sakane N, Umekawa T, Kondo M (Jan 1994). "Effect of nicotine on sympathetic nervous system activity of mice subjected to immobilization stress". Physiol. Behav. 55 (1): 53–7. doi:10.1016/0031-9384(94)90009-4. PMID 8140174.
- ↑ King G, Yerger VB, Whembolua GL, Bendel RB, Kittles R, Moolchan ET (June 2009). "Link between facultative melanin and tobacco use among African Americans". Pharmacol. Biochem. Behav. 92 (4): 589–96. doi:10.1016/j.pbb.2009.02.011. PMID 19268687.
- ↑ Elaine N. Marieb and Katja Hoehn (2007). Human Anatomy & Physiology (7th Ed.). Pearson. pp. ?. ISBN 0-8053-5909-5.[page needed]
- ↑ Bhalala, Oneil (Spring 2003). "Detection of Cotinine in Blood Plasma by HPLC MS/MS". MIT Undergraduate Research Journal. 8: 45–50.
- ↑ Le Houezec J (September 2003). "Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review". The International Journal of Tuberculosis and Lung Disease. 7 (9): 811–9. PMID 12971663.
- ↑ Benowitz NL, Jacob P, Jones RT, Rosenberg J (May 1982). "Interindividual variability in the metabolism and cardiovascular effects of nicotine in man". The Journal of Pharmacology and Experimental Therapeutics. 221 (2): 368–72. PMID 7077531.
- ↑ Russell MA, Jarvis M, Iyer R, Feyerabend C. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J. 1980 April 5; 280(6219): 972–976.
- ↑ Hukkanen J, Jacob P, Benowitz NL (March 2005). "Metabolism and disposition kinetics of nicotine". Pharmacological Reviews. 57 (1): 79–115. doi:10.1124/pr.57.1.3. PMID 15734728.
- ↑ "The danger of third-hand smoke". Chromatography Online. 7 (3). 22 February 2011.
- ↑ Benowitz, N. L.; Herrera, B; Jacob p, 3rd (2004). "Mentholated Cigarette Smoking Inhibits Nicotine Metabolism". Journal of Pharmacology and Experimental Therapeutics. 310 (3): 1208–15. doi:10.1124/jpet.104.066902. PMID 15084646.
- ↑ www.sciencelab.com/msds.php?msdsId=9926222 Material Safety Data Sheet L-Nicotine MSDS
- ↑ Gause, G. F. (1941). "Chapter V: Analysis of various biological processes by the study of the differential action of optical isomers". In Luyet, B. J. Optical Activity and Living Matter. A series of monographs on general physiology. 2. Normandy, Missouri: Biodynamica.
- ↑ 76.0 76.1 http://library.sciencemadness.org/library/books/the_plant_alkaloids.pdf
- ↑ "Tobacco (leaf tobacco)". Transportation Information Service.
- ↑ "The Nicotine Content of Common Vegetables". The New England Journal of Medicine. 329: 437. August 1993. doi:10.1056/NEJM199308053290619.
- ↑ Lamberts, Burton L.; Dewey, Lovell J.; Byerrum, Richard U. (1959). "Ornithine as a precursor for the pyrrolidine ring of nicotine". Biochimica et Biophysica Acta. 33 (1): 22–6. doi:10.1016/0006-3002(59)90492-5. PMID 13651178.
- ↑ Dawson, R. F.; Christman, D. R.; d'Adamo, A.; Solt, M. L.; Wolf, A. P. (1960). "The Biosynthesis of Nicotine from Isotopically Labeled Nicotinic Acids1". Journal of the American Chemical Society. 82 (10): 2628. doi:10.1021/ja01495a059.
- ↑ Ashihara, Hiroshi; Crozier, Alan; Komamine, Atsushi (eds.). Plant metabolism and biotechnology. Cambridge: Wiley. ISBN 978-0-470-74703-2.[page needed]
- ↑ Benowitz NL, Hukkanen J, Jacob P (2009). "Nicotine Psychopharmacology". Handbook of experimental pharmacology. Handbook of Experimental Pharmacology. 192 (192): 29–60. doi:10.1007/978-3-540-69248-5_2. ISBN 978-3-540-69246-1. PMC 2953858. PMID 19184645.
|chapter=
ignored (help) - ↑ Baselt, Randall Clint (2014). Disposition of Toxic Drugs and Chemicals in Man (10th ed.). Biomedical Publications. pp. 1452–6. ISBN 978-0-9626523-9-4.
- ↑ Mündel T, Jones DA (July 2006). "Effect of transdermal nicotine administration on exercise endurance in men". Experimental Physiology. 91 (4): 705–13. doi:10.1113/expphysiol.2006.033373. PMID 16627574.
- ↑ 85.0 85.1 Rang H. P et al., Rang and Dale's Pharmacology 6th Edition, 2007, Elsevier, page 598
- ↑ US Code of Federal Regulations. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production
- ↑ Staff, IFOAM. Criticisms and Frequent Misconceptions about Organic Agriculture: The Counter-Arguments: Misconception Number 7 [dead link]
- ↑ USEPA (29 October 2008). "Nicotine; Notice of Receipt of Request to Voluntarily Cancel a Pesticide Registration". Federal Register: 64320–64322. Retrieved 8 April 2012.
- ↑ USEPA (3 June 2009). "Nicotine; Product Cancellation Order". Federal Register: 26695–26696. Retrieved 8 April 2012.
- ↑ Posselt, W.; Reimann, L. (1828). "Chemische Untersuchung des Tabaks und Darstellung eines eigenthümlich wirksamen Prinzips dieser Pflanze". Magazin für Pharmacie (in German). 6 (24): 138–161. Unknown parameter
|trans_title=
ignored (help) - ↑ Henningfield JE, Zeller M (March 2006). "Nicotine psychopharmacology research contributions to United States and global tobacco regulation: a look back and a look forward". Psychopharmacology. 184 (3–4): 286–91. doi:10.1007/s00213-006-0308-4. PMID 16463054.
- ↑ Melsens, Louis-Henri-Frédéric (1843) "Note sur la nicotine," Annales de chimie et de physique, third series, vol. 9, pages 465-479; see especially page 470. [Note: The empirical formula that Melsens provides is incorrect because at that time, chemists used the wrong atomic mass for carbon (6 instead of 12).]
- ↑ Pinner, A.; Wolffenstein, R. (1891). "Ueber Nicotin". Berichte der deutschen chemischen Gesellschaft. 24: 1373. doi:10.1002/cber.189102401242.
- ↑ Pinner, A. (1893). "Ueber Nicotin. Die Constitution des Alkaloïds". Berichte der deutschen chemischen Gesellschaft. 26: 292. doi:10.1002/cber.18930260165.
- ↑ Pinner, A. (1893). "Ueber Nicotin. I. Mitteilung". Archiv der Pharmazie. 231 (5–6): 378. doi:10.1002/ardp.18932310508.
- ↑ Pictet, Amé; Rotschy, A. (1904). "Synthese des Nicotins". Berichte der deutschen chemischen Gesellschaft. 37 (2): 1225. doi:10.1002/cber.19040370206.
- ↑ Connolly GN, Alpert HR, Wayne GF, Koh H (October 2007). "Trends in nicotine yield in smoke and its relationship with design characteristics among popular US cigarette brands, 1997-2005". Tobacco Control. 16 (5): e5. doi:10.1136/tc.2006.019695. PMC 2598548. PMID 17897974.
- ↑ Mineur YS, Picciotto MR (December 2010). "Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis". Trends Pharmacol. Sci. 31 (12): 580–6. doi:10.1016/j.tips.2010.09.004. PMC 2991594. PMID 20965579.
- ↑ Peters R, Poulter R, Warner J, Beckett N, Burch L, Bulpitt C (2008). "Smoking, dementia and cognitive decline in the elderly, a systematic review". BMC Geriatr. 8: 36. doi:10.1186/1471-2318-8-36. PMC 2642819. PMID 19105840.
- ↑ Henningfield JE, Zeller M (2009). "Nicotine psychopharmacology: policy and regulatory". Handb Exp Pharmacol. Handbook of Experimental Pharmacology. 192 (192): 511–34. doi:10.1007/978-3-540-69248-5_18. ISBN 978-3-540-69246-1. PMID 19184661.
Further reading
- Bilkei-Gorzo A, Rácz I, Michel K, Darvas M, Rafael Maldonado López, Zimmer A. (2008). "A common genetic predisposition to stress sensitivity and stress-induced nicotine craving". Biol. Psychiatry. 63 (2): 164–71. doi:10.1016/j.biopsych.2007.02.010. PMID 17570348.
- Gorrod, John W.; Peyton, Jacob,III, eds. (November 16, 1999). Analytical Determination of Nicotine and Related Compounds and their Metabolites. Amsterdam: Elsevier. ISBN 978-0-08-052551-8.
- Willoughby JO, Pope KJ, Eaton V (Sep 2003). "Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study". Epilepsia. 44 (9): 1238–40. doi:10.1046/j.1528-1157.2003.11903.x. PMID 12919397.
- Minna JD (Jan 2003). "Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer". J Clin Invest. 111 (1): 31–3. doi:10.1172/JCI17492. PMC 151841. PMID 12511585.
- Fallon JH, Keator DB, Mbogori J, Taylor D, Potkin SG (Mar 2005). "Gender: a major determinant of brain response to nicotine". Int J Neuropsychopharmacol. 8 (1): 17–26. doi:10.1017/S1461145704004730. PMID 15579215.
- West KA, Brognard J, Clark AS; et al. (Jan 2003). "Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells". J Clin Invest. 111 (1): 81–90. doi:10.1172/JCI16147. PMC 151834. PMID 12511591.
- National Institute on Drug Abuse
- Erowid information on tobacco
External links
Wikimedia Commons has media related to Nicotine. |
- Description of nicotine mechanisms
- Erowid Nicotine Vault : Nicotine Material Safety Data Sheet
- Thomas, Gareth AO; Rhodes, John; Ingram, John R (2005). "Mechanisms of Disease: Nicotine—a review of its actions in the context of gastrointestinal disease". Nature Clinical Practice Gastroenterology & Hepatology. 2 (11): 536. doi:10.1038/ncpgasthep0316.
- CDC - NIOSH Pocket Guide to Chemical Hazards
Template:Drug use Template:Stimulants Template:Nootropics Template:Euphoriants Template:Antiaddictives
- Pages with script errors
- CS1 maint: Multiple names: authors list
- Wikipedia articles needing page number citations from December 2013
- Articles with invalid date parameter in template
- Pages with citations using unsupported parameters
- CS1 français-language sources (fr)
- CS1 maint: Explicit use of et al.
- Articles with incomplete citations from December 2013
- All articles with incomplete citations
- CS1 errors: chapter ignored
- All articles with dead external links
- Articles with dead external links from February 2014
- CS1 maint: Unrecognized language
- Pages with broken file links
- Template:drugs.com link with non-standard subpage
- Articles with changed EBI identifier
- E number from Wikidata
- ECHA InfoCard ID from Wikidata
- Chemical articles with unknown parameter in Infobox drug
- Drugboxes which contain changes to verified fields
- Drugboxes which contain changes to watched fields
- All articles with unsourced statements
- Articles with unsourced statements from September 2013
- Articles with unsourced statements from November 2014
- Articles with unsourced statements from December 2013
- Wikipedia articles needing clarification from March 2013
- Pages using div col with unknown parameters
- Commons category link is defined as the pagename
- Pyrrolidine alkaloids
- Neurotoxins
- Nicotinic agonists
- Plant toxin insecticides
- Pyridines
- Smoking
- Stimulants
- Pollinator decline pesticides
- Alkaloids found in Nicotiana
- Alkaloids found in Erythroxylum coca