Systemic lupus erythematosus pathophysiology: Difference between revisions

Jump to navigation Jump to search
Mmir (talk | contribs)
Mmir (talk | contribs)
Line 146: Line 146:


== Microscopic Pathology ==
== Microscopic Pathology ==
On microscopic [[histopathological]] analysis, [[apoptotic]] [[keratinocytes]], [[vacuolization]] of the [[basement membrane]], and dermal mucin [[Deposition (chemistry)|deposition]] are characteristic findings of SLE [[dermatitis]], and active or inactive [[Endocapillary proliferative glomerulonephritis|endocapillary]] or extracapillary segmental [[glomerulonephritis]] are characteristic findings of SLE nephritis.
On microscopic [[histopathological]] analysis, [[apoptotic]] [[keratinocytes]], [[vacuolization]] of the [[basement membrane]], and dermal mucin [[Deposition (chemistry)|deposition]] are characteristic findings of SLE [[dermatitis]], and active or inactive [[Endocapillary proliferative glomerulonephritis|endocapillary]] or extracapillary segmental [[glomerulonephritis]] are characteristic findings of [[Lupus nephritis|SLE nephritis]].


=== Skin involvement histopathology: ===
=== Skin involvement histopathology: ===
Common shared [[histopathologic]] features among all different subtypes of cutaneous lupus include:
Common shared [[histopathologic]] features among all different subtypes of cutaneous lupus include:
* [[Hyperkeratosis]]
* [[Hyperkeratosis]]
* [[Epidermal]] atrophy
* [[Epidermal]] [[atrophy]]
* Dermal mucin deposition
* Dermal mucin [[Deposition (chemistry)|deposition]]
* [[Liquefactive necrosis|Liquefactive]] degeneration of the basal layer of the [[epidermis]] and [[vacuolization]]
* [[Liquefactive necrosis|Liquefactive]] degeneration of the basal layer of the [[epidermis]] and [[vacuolization]]
* Thickening of the [[basement membrane]]
* Thickening of the [[basement membrane]]
Line 168: Line 168:
|Subacute cutaneous lupus erythematosus
|Subacute cutaneous lupus erythematosus
|
|
* Less follicular plugging and [[hyperkeratosis]] in comparison with dischoid lupus erythematosus
* Less [[Follicular cell|follicular]] plugging and [[hyperkeratosis]] in comparison with dischoid lupus erythematosus
* Superficial appendageal and [[Perivascular cell|perivascular]] lymphocytic infiltration
* Superficial appendageal and [[Perivascular cell|perivascular]] lymphocytic infiltration
* Absence or minimal change of [[basement membrane]] thickening
* Absence or minimal change of [[basement membrane]] thickening
Line 175: Line 175:
|
|
* [[Discoid lupus erythematosus]] :
* [[Discoid lupus erythematosus]] :
** Follicular plugging
** [[Follicular Hyperkeratosis|Follicular plugging]]
** [[Mononuclear cell]] infiltration near the dermal-epidermal junction, dermal blood vessels, and appendages
** [[Mononuclear cell]] infiltration near the dermal-epidermal junction, [[Blood vessels|dermal blood vessel]]<nowiki/>s, and appendages
* Lupus erythematosus tumidus:  
* Lupus erythematosus tumidus:  
** Consisting of predominately CD3+/CD4+ [[lymphocytes]]
** Consisting of predominately CD3+/CD4+ [[lymphocytes]]
Line 183: Line 183:
** [[Perivascular cell|Perivascular]] infiltrates of [[mononuclear cells]] plus [[panniculitis]]
** [[Perivascular cell|Perivascular]] infiltrates of [[mononuclear cells]] plus [[panniculitis]]
** [[Hyaline]] fat necrosis
** [[Hyaline]] fat necrosis
** Direct immunofluorescence: Immune deposits in the dermal-epidermal junction
** Direct [[immunofluorescence]]: Immune deposits in the dermal-epidermal junction
|}
|}


Line 197: Line 197:
|<nowiki>-</nowiki>
|<nowiki>-</nowiki>
|
|
* Mesangial immune deposits
* Mesangial [[immune]] deposits
|-
|-
|II
|II
|Mesangial proliferative lupus nephritis  
|Mesangial proliferative lupus nephritis  
|
|
* Mesangial hyper cellularity (of any degree)
* [[Mesangial proliferative glomerulonephritis|Mesangial hyper cellularity]] (of any degree)
* Mesangial matrix expansion
* [[Mesangial cells|Mesangial]] matrix expansion
|
|
* Isolated subepithelial or subendothelial deposits
* Isolated [[Subepithelial connective tissue graft|subepithelial]] or subendothelial deposits
|-
|-
|III
|III
|Focal lupus nephritis
|Focal lupus nephritis
|
|
* Active or inactive endocapillary or extracapillary segmental [[glomerulonephritis]]  
* Active or inactive [[Endocapillary proliferative glomerulonephritis|endocapillary]] or extracapillary segmental [[glomerulonephritis]]  
* Involvement of glomeruli < 50%
* Involvement of glomeruli < 50%
|
|
* Immune deposits in the subendothelial space of the glomerular capillary and [[mesangium]]
* Immune deposits in the subendothelial space of the [[Glomerular capillaries|glomerular capillary]] and [[mesangium]]
* [[Fibrinoid necrosis]] and crescents in glomeruli
* [[Fibrinoid necrosis]] and crescents in glomeruli
* [[Tubulointerstitial diseases of the kidney|Tubulointerstitial]] or vascular abnormalities
* [[Tubulointerstitial diseases of the kidney|Tubulointerstitial]] or vascular abnormalities
Line 231: Line 231:
|Lupus membranous nephropathy
|Lupus membranous nephropathy
|
|
* Diffuse thickening of the glomerular capillary wall
* Diffuse thickening of the [[Glomerular capillaries|glomerular capillary wall]]
* Immunofluorescence or electron microscopy
* [[Immunofluorescence]] or [[electron microscopy]]
|
|
* Global or segmental subepithelial immune deposits
* Global or segmental [[Subepithelial connective tissue graft|subepithelial]] immune deposits
|-
|-
|VI
|VI
|Advanced sclerosing lupus nephritis
|Advanced sclerosing lupus nephritis
|
|
* Global sclerosis
* Global [[sclerosis]]
* Involvement of glomeruli > 90%
* Involvement of [[glomeruli]] > 90%
|
|
* Global or segmental [[Subepithelial connective tissue graft|subepithelial]] immune deposits
* Global or segmental [[Subepithelial connective tissue graft|subepithelial]] immune deposits
Line 249: Line 249:
* Superficial [[fibrin]]-like material
* Superficial [[fibrin]]-like material
* Local or diffuse synovial cell lining proliferation
* Local or diffuse synovial cell lining proliferation
* Vascular changes:
* [[Vascular]] changes:
** [[Perivascular cell|Perivascular]] [[mononuclear cells]]
** [[Perivascular cell|Perivascular]] [[mononuclear cells]]
** Lumen obliteration
** [[Lumen]] obliteration
** Enlarged [[endothelial cells]]
** Enlarged [[endothelial cells]]
** [[Thrombi]]
** [[Thrombi]]
Line 257: Line 257:
=== Mucosal involvement histopathology ===
=== Mucosal involvement histopathology ===
* [[Hyperkeratosis]]
* [[Hyperkeratosis]]
* Atrophy of rete processes
* [[Atrophy]] of rete processes
* Superficial and deep inflammatory infiltrates
* [[Superficial]] and deep inflammatory infiltrates
* Edema in the [[lamina propria]]
* [[Edema]] in the [[lamina propria]]
* Continuous or patchy periodic acid-Schiff ([[PASK|PAS]])-positive deposits in the basement membrane zone
* Continuous or patchy [[Periodic acid-Schiff stain|periodic acid-Schiff]] ([[PASK|PAS]])-positive deposits in the [[basement membrane]] zone
* Deposition of intercellular mucin
* Deposition of intercellular [[mucin]]
* Deposits of [[immunoglobulin]] and [[complement]] at the dermal-epidermal junction
* Deposition of [[immunoglobulin]] and [[complement]] at the dermal-epidermal junction





Revision as of 20:11, 25 July 2017

https://https://www.youtube.com/watch?v=0junqD4BLH4&wmode=transparent%7C350}}

Systemic lupus erythematosus Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Systemic lupus erythematosus from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Lupus and Quality of Life

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Systemic lupus erythematosus pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Systemic lupus erythematosus pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

National Guidelines Clearinghouse

NICE Guidance

FDA on Systemic lupus erythematosus pathophysiology

on Systemic lupus erythematosus pathophysiology

Systemic lupus erythematosus pathophysiology in the news

Blogs onSystemic lupus erythematosus pathophysiology

Directions to Hospitals Treating Systemic lupus erythematosus

Risk calculators and risk factors for Systemic lupus erythematosus pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mahshid Mir, M.D. [2] Cafer Zorkun, M.D., Ph.D. [3] Raviteja Guddeti, M.B.B.S. [4]

Overview

The pathophysiology of systemic lupus erythematosus involves the immune system. There are other factors like genetic factors, hormonal abnormalities, and environmental factors that play some roles as well. The most prominent events involving immune abnormalities are related to persistent activation of B cells and plasma cells that make auto-antibodies during disease progression. The most prominent events involving hormonal abnormalities are due to prolactin and estrogen. The most important environmental factors related to disease progression are ultraviolet (UV) light and some infections. On microscopic histopathological analysis, apoptotic keratinocytes, vacuolization of the basement membrane, and dermal mucin deposition are characteristic findings of SLE dermatitis, and active or inactive endocapillary or extracapillary segmental glomerulonephritis are characteristic findings of SLE nephritis.

Pathogenesis

The progression of systemic lupus erythematosus (SLE) involves the immune system. Nearly all of the pathological manifestation of SLE are due to antibody formation and the creation and deposition of immune complexes in different organs of the body. When the immune complexes are formed, they will deposit in different body tissues and vessels, which may lead to complement activation and more organ damage. There are other factors like genetic factors, hormonal abnormalities, and environmental factors that play some roles as well.

Immune abnormalities

Development of systemic lupus erythematosus (SLE) is the due to activation of different mechanisms that may result in auto-immunity. As a result, body tissues lose their self-tolerance. Affected patients are no longer entirely tolerant to all of their self-antigens, consequently progress to an autoimmune disease and develop auto antibodies as a response. During disease progression, B cells and plasma cells that make autoantibodies are more persistently activated and thus make more autoantibodies. These autoantibodies are targeted predominantly to intracellular nucleoprotein particles.[1] [2]


This increase in autoantibody production and persistence is supposed to be downregulated by anti-idiotypic antibodies or regulatory immune cells, but the massive immunologic response in SLE prevents this downregulation to take place. 

The most important immune abnormalities that are related to SLE development and progression are: 

Hormonal abnormalities

The following evidence is suggestive of the hormonal predisposition to SLE:

Hormones that are related to disease progression:[7]

Environmental factors

Genetics

Systemic lupus erythematosus is transmitted in polygenic inheritance pattern. Genes involved in the pathogenesis of systemic lupus erythematosus include HLA class polymorphism, complement system related genes, and other genes related to immunologic system as well.

The following evidence is also suggestive of the genetic predisposition of SLE:[10]

  • Increase of disease occurrence in identical twins
  • Increased disease frequency among first degree relatives
  • The increased risk of developing the disease in siblings of SLE patients
Gene class Gene subtype
HLA DR2, DR3, DR4, DR7, DR8, DRw12, DQw2, DQA1,

DQB1, DQ6, DQw6, DQ7, DQw7, DQw8, DQw9, B61, B8

Non-HLA Mannose binding lectin polymorphisms

Tumour necrosis factor α

T cell receptor

Interleukin 6

CR1

Immunoglobulin Gm and Km

FcγRIIA (IgG Fc receptor)

FcγRIIIA (IgG Fc receptor)

PARP (poly-ADP ribose polymerase)

Heat shock protein 70

Humhr 3005

Complement System C2, C4, C1q

Associated Conditions

Gross Pathology

On gross pathology of kidney, bilateral pallor, and hypertrophy of kidneys are characteristic findings of systemic lupus erythematosus.

On gross pathology of brain, infarct regions and hemorrhages are characteristic findings of systemic lupus erythematosus.

On gross pathology of cardiac valves, cardiomegaly and valvular vegetation are characteristic findings of systemic lupus erythematosus.

On gross pathology of pleura, pleuritis and pleural fibrosis are characteristic findings of systemic lupus erythematosus.

Microscopic Pathology

On microscopic histopathological analysis, apoptotic keratinocytes, vacuolization of the basement membrane, and dermal mucin deposition are characteristic findings of SLE dermatitis, and active or inactive endocapillary or extracapillary segmental glomerulonephritis are characteristic findings of SLE nephritis.

Skin involvement histopathology:

Common shared histopathologic features among all different subtypes of cutaneous lupus include:

SLE dermatitis subtype Specific microscopic findings
Acute cutaneous lupus erythematosus
Subacute cutaneous lupus erythematosus
Chronic cutaneous lupus erythematosus

Glomerulonephritis histopathology:

Class SLE nephritis subtype Light microscopy findings Electron microscopy/Immunofluorescence findings
I Minimal mesangial lupus nephritis -
II Mesangial proliferative lupus nephritis
III Focal lupus nephritis
IV Diffuse lupus nephritis
  • Subendothelial deposits specially during the active phase
  • Diffuse wire loop deposits with little or no glomerular proliferation
V Lupus membranous nephropathy
VI Advanced sclerosing lupus nephritis

Synovial involvement histopathology

Mucosal involvement histopathology


Videos

{{#ev:youtube|Tw07BFaDEo0}}

References

  1. Elkon K (1995). "Autoantibodies in systemic lupus erythematosus". Curr Opin Rheumatol. 7 (5): 384–8. PMID 8519610.
  2. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, Komisar O, Slonimsky E, Klang E, Lotan E, Welt M, Marai I, Shina A, Amital H, Shoenfeld Y (2015). "A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients". Autoimmun Rev. 14 (1): 75–9. doi:10.1016/j.autrev.2014.10.003. PMID 25449682.
  3. Kirou KA, Lee C, George S, Louca K, Papagiannis IG, Peterson MG, Ly N, Woodward RN, Fry KE, Lau AY, Prentice JG, Wohlgemuth JG, Crow MK (2004). "Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus". Arthritis Rheum. 50 (12): 3958–67. doi:10.1002/art.20798. PMID 15593221.
  4. Dye JR, Ullal AJ, Pisetsky DS (2013). "The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus". Scand. J. Immunol. 78 (2): 140–8. doi:10.1111/sji.12068. PMID 23672591.
  5. Barnado A, Crofford LJ, Oates JC (2016). "At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases". J. Leukoc. Biol. 99 (2): 265–78. doi:10.1189/jlb.5BT0615-234R. PMID 26658004.
  6. Costenbader KH, Feskanich D, Stampfer MJ, Karlson EW (2007). "Reproductive and menopausal factors and risk of systemic lupus erythematosus in women". Arthritis Rheum. 56 (4): 1251–62. doi:10.1002/art.22510. PMID 17393454.
  7. 7.0 7.1 Lahita RG (1999). "The role of sex hormones in systemic lupus erythematosus". Curr Opin Rheumatol. 11 (5): 352–6. PMID 10503654.
  8. Hughes GC, Choubey D (2014). "Modulation of autoimmune rheumatic diseases by oestrogen and progesterone". Nat Rev Rheumatol. 10 (12): 740–51. doi:10.1038/nrrheum.2014.144. PMID 25155581.
  9. Cohen-Solal JF, Jeganathan V, Grimaldi CM, Peeva E, Diamond B (2006). "Sex hormones and SLE: influencing the fate of autoreactive B cells". Curr. Top. Microbiol. Immunol. 305: 67–88. PMID 16724801.
  10. Sullivan KE (2000). "Genetics of systemic lupus erythematosus. Clinical implications". Rheum. Dis. Clin. North Am. 26 (2): 229–56, v–vi. PMID 10768211.
  11. Petry F, Botto M, Holtappels R, Walport MJ, Loos M (2001). "Reconstitution of the complement function in C1q-deficient (C1qa-/-) mice with wild-type bone marrow cells". J. Immunol. 167 (7): 4033–7. PMID 11564823.
  12. Li R, Peng H, Chen GM, Feng CC, Zhang YJ, Wen PF, Qiu LJ, Leng RX, Pan HF, Ye DQ (2014). "Association of FCGR2A-R/H131 polymorphism with susceptibility to systemic lupus erythematosus among Asian population: a meta-analysis of 20 studies". Arch. Dermatol. Res. 306 (9): 781–91. doi:10.1007/s00403-014-1483-5. PMID 24997134.
  13. Sepehr A, Wenson S, Tahan SR (2010). "Histopathologic manifestations of systemic diseases: the example of cutaneous lupus erythematosus". J. Cutan. Pathol. 37 Suppl 1: 112–24. doi:10.1111/j.1600-0560.2010.01510.x. PMID 20482683.

Template:WH Template:WS