Irritable bowel syndrome pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
*'''Environmental factors'''
*'''Environmental factors'''
**Diet
**Diet
***Fermentable oligosaccharides, monosaccharides,  disaccharides, and polyols (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and legumes. Changes in diet such as increased amounts  (FODMAPs) can alter gut microflora.
***Fermentable oligosaccharides, monosaccharides,  disaccharides, and polyols (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and legumes. Changes in diet such as increased amounts  (FODMAPs) can alter gut microflora.<ref name="pmid23935555">{{cite journal |vauthors=Muir JG, Gibson PR |title=The Low FODMAP Diet for Treatment of Irritable Bowel Syndrome and Other Gastrointestinal Disorders |journal=Gastroenterol Hepatol (N Y) |volume=9 |issue=7 |pages=450–2 |year=2013 |pmid=23935555 |pmc=3736783 |doi= |url=}}</ref>
***Fermentation and osmotic effects of FODMAPs produce abdominal discomfort and diarrhea in IBS.
***Fermentation and osmotic effects of FODMAPs produce abdominal discomfort and diarrhea in IBS.
***FODMAPs yield carbon dioxide, methane, and hydrogen that are responsible for bloating.
***FODMAPs yield carbon dioxide, methane, and hydrogen that are responsible for bloating.
***Osmotically active carbohydrate by products lead to diarrhea by enhancing intestinal contractions and precipitating fluid secretion.<ref name="pmid7910231">{{cite journal |vauthors=Young E, Stoneham MD, Petruckevitch A, Barton J, Rona R |title=A population study of food intolerance |journal=Lancet |volume=343 |issue=8906 |pages=1127–30 |year=1994 |pmid=7910231 |doi= |url=}}</ref><ref name="pmid24336217">{{cite journal |vauthors=David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ |title=Diet rapidly and reproducibly alters the human gut microbiome |journal=Nature |volume=505 |issue=7484 |pages=559–63 |year=2014 |pmid=24336217 |pmc=3957428 |doi=10.1038/nature12820 |url=}}</ref><ref name="pmid7912305">{{cite journal |vauthors=Francis CY, Whorwell PJ |title=Bran and irritable bowel syndrome: time for reappraisal |journal=Lancet |volume=344 |issue=8914 |pages=39–40 |year=1994 |pmid=7912305 |doi= |url=}}</ref><ref name="pmid26867199">{{cite journal |vauthors=Elli L, Tomba C, Branchi F, Roncoroni L, Lombardo V, Bardella MT, Ferretti F, Conte D, Valiante F, Fini L, Forti E, Cannizzaro R, Maiero S, Londoni C, Lauri A, Fornaciari G, Lenoci N, Spagnuolo R, Basilisco G, Somalvico F, Borgatta B, Leandro G, Segato S, Barisani D, Morreale G, Buscarini E |title=Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge |journal=Nutrients |volume=8 |issue=2 |pages=84 |year=2016 |pmid=26867199 |pmc=4772047 |doi=10.3390/nu8020084 |url=}}</ref><ref name="pmid26522233">{{cite journal |vauthors=Coletta M, Gates FK, Marciani L, Shiwani H, Major G, Hoad CL, Chaddock G, Gowland PA, Spiller RC |title=Effect of bread gluten content on gastrointestinal function: a crossover MRI study on healthy humans |journal=Br. J. Nutr. |volume=115 |issue=1 |pages=55–61 |year=2016 |pmid=26522233 |doi=10.1017/S0007114515004183 |url=}}</ref>
***Osmotically active carbohydrate by products lead to diarrhea by enhancing intestinal contractions and precipitating fluid secretion.<ref name="pmid23644955">{{cite journal |vauthors=Böhn L, Störsrud S, Törnblom H, Bengtsson U, Simrén M |title=Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life |journal=Am. J. Gastroenterol. |volume=108 |issue=5 |pages=634–41 |year=2013 |pmid=23644955 |doi=10.1038/ajg.2013.105 |url=}}</ref><ref name="pmid7910231">{{cite journal |vauthors=Young E, Stoneham MD, Petruckevitch A, Barton J, Rona R |title=A population study of food intolerance |journal=Lancet |volume=343 |issue=8906 |pages=1127–30 |year=1994 |pmid=7910231 |doi= |url=}}</ref><ref name="pmid24336217">{{cite journal |vauthors=David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ |title=Diet rapidly and reproducibly alters the human gut microbiome |journal=Nature |volume=505 |issue=7484 |pages=559–63 |year=2014 |pmid=24336217 |pmc=3957428 |doi=10.1038/nature12820 |url=}}</ref><ref name="pmid7912305">{{cite journal |vauthors=Francis CY, Whorwell PJ |title=Bran and irritable bowel syndrome: time for reappraisal |journal=Lancet |volume=344 |issue=8914 |pages=39–40 |year=1994 |pmid=7912305 |doi= |url=}}</ref><ref name="pmid26867199">{{cite journal |vauthors=Elli L, Tomba C, Branchi F, Roncoroni L, Lombardo V, Bardella MT, Ferretti F, Conte D, Valiante F, Fini L, Forti E, Cannizzaro R, Maiero S, Londoni C, Lauri A, Fornaciari G, Lenoci N, Spagnuolo R, Basilisco G, Somalvico F, Borgatta B, Leandro G, Segato S, Barisani D, Morreale G, Buscarini E |title=Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge |journal=Nutrients |volume=8 |issue=2 |pages=84 |year=2016 |pmid=26867199 |pmc=4772047 |doi=10.3390/nu8020084 |url=}}</ref><ref name="pmid26522233">{{cite journal |vauthors=Coletta M, Gates FK, Marciani L, Shiwani H, Major G, Hoad CL, Chaddock G, Gowland PA, Spiller RC |title=Effect of bread gluten content on gastrointestinal function: a crossover MRI study on healthy humans |journal=Br. J. Nutr. |volume=115 |issue=1 |pages=55–61 |year=2016 |pmid=26522233 |doi=10.1017/S0007114515004183 |url=}}</ref><ref name="pmid24308871">{{cite journal |vauthors=Yang J, Fox M, Cong Y, Chu H, Zheng X, Long Y, Fried M, Dai N |title=Lactose intolerance in irritable bowel syndrome patients with diarrhoea: the roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity |journal=Aliment. Pharmacol. Ther. |volume=39 |issue=3 |pages=302–11 |year=2014 |pmid=24308871 |doi=10.1111/apt.12582 |url=}}</ref><ref name="pmid24445613">{{cite journal |vauthors=Staudacher HM, Irving PM, Lomer MC, Whelan K |title=Mechanisms and efficacy of dietary FODMAP restriction in IBS |journal=Nat Rev Gastroenterol Hepatol |volume=11 |issue=4 |pages=256–66 |year=2014 |pmid=24445613 |doi=10.1038/nrgastro.2013.259 |url=}}</ref>
** Infection  
** Infection  
***Infectious gastroenteritis triggers micro inflammation, and up to one third of irritable bowel syndrome cases follow acute gastroenteritis.
***Infectious gastroenteritis triggers micro inflammation, and up to one third of irritable bowel syndrome cases follow acute gastroenteritis.

Revision as of 19:59, 30 October 2017

Irritable bowel syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Irritable bowel syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Monitoring

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Case Studies

Case #1

Irritable bowel syndrome pathophysiology On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Irritable bowel syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Irritable bowel syndrome pathophysiology

CDC on Irritable bowel syndrome pathophysiology

Irritable bowel syndrome pathophysiology in the news

Blogs on Irritable bowel syndrome pathophysiology

Directions to Hospitals Treating Irritable bowel syndrome

Risk calculators and risk factors for Irritable bowel syndrome pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

The exact pathogenesis of Irritable bowel syndrome (IBS) is not fully understood.

IBS is caused by the complex interaction of various factors such as intrinsic gastrointestinal factors, CNS dysregulation and psychosocial factors, genetic and environmental factors. Intrinsic gastrointestinal factors include motor abnormalities, visceral hypersensitivity, immune activation and mucosal inflammation, altered gut microbiota and abnormal serotonin pathways. Visceral hypersensitivity affects spinal excitability brainstem and cortical modulation, activation of specific gastrointestinal mediators and recruitment of peripheral silent nociceptors. Immune activation and mucosal inflammation involves an interaction of lymphocytes, mast cells and proinflammatory cytokines.

Pathophysiology

Pathogenesis

IBS is an interplay between four main factors:


 
 
 
 
 
CNS dysregulation and psychosocial factors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Intrinsic gastrointestinal factors:
• Motor abnormalities
• Visceral hypersensitivity
• Immune activation and mucosal inflammation
• Altered gut microbiota
• Abnormal serotonin pathways
 
 
IRRITABLE BOWEL SYNDROME
 
 
 
Genetic factors:
• Twin concordance
• Familial aggregation
• Single Nucleotide Polymorphisms(SNPs)
• TNF polymorphism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Environmental factors
 
 
 
  • Environmental factors
    • Diet
      • Fermentable oligosaccharides, monosaccharides, disaccharides, and polyols (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and legumes. Changes in diet such as increased amounts (FODMAPs) can alter gut microflora.[1]
      • Fermentation and osmotic effects of FODMAPs produce abdominal discomfort and diarrhea in IBS.
      • FODMAPs yield carbon dioxide, methane, and hydrogen that are responsible for bloating.
      • Osmotically active carbohydrate by products lead to diarrhea by enhancing intestinal contractions and precipitating fluid secretion.[2][3][4][5][6][7][8][9]
    •  Infection
      • Infectious gastroenteritis triggers micro inflammation, and up to one third of irritable bowel syndrome cases follow acute gastroenteritis.
      • Micro inflammation of the gut causes activation of the lymphocytes, mast cells and pro inflammatory cytokines that stimulate the enteric nervous system and lead to abnormal visceral and motor responses within the gastrointestinal tract.
      • Immune activation due to GI infection also increases enteroendocrine cells, calprotectin-positive macrophages, intraepithelial lymphocytes, and lamina propria T cells which contribute directly to abdominal pain perception. [10][11][12][13][14][15][16][17][18]
  • Intrinsic gastrointestinal factors
    • Motor abnormalities:
      • IBS is referred to as ‘spastic colon’ due to changes in colonic motor function.
      • Manometry recordings from the transverse, descending and sigmoid colon have shown that IBS leads to changed patterns of colonic and small intestinal motor function, such as increased frequency and irregularity of luminal contractions.
      • Motor changes lead to symptoms of diarrhea and constipation.[19][20][21]
      • Diarrhea-prone IBS patients have increased responses to ingestion, CRH (corticotropin releasing hormone), CCK (cholecystokinin), which increase the peak amplitude of high-amplitude propagating contractions (HAPCs) and lead to abdominal discomfort with accelerated transit through the colon. [22][23][24][25][26]
      • Constipation-prone IBS patients show fewer high-amplitude propagating contractions (HAPCs) as compared to diarrhea prone IBS patients, delayed transit through the colon and decreased motility.
      • Changes in the motor function of the colon are responsible for producing the gastrointestinal symptoms of IBS such as altered bowel habits and abdominal pain.[25]
    • Visceral hypersensitivity:
    • IBS is associated with a decreased threshold for perception of visceral stimuli (i.e. visceral hypersensitivity).[25][27][28]Rectal distension produces painful and non-painful sensations at lower volumes in IBS patients as compared to healthy controls, suggesting the presence of afferent pathway disturbances in visceral innervation[29][30][31][32].
    • The factors which contribute to visceral hyperalgesia (i.e increased sensitivity of the intestines to normal sensations) are as follows:
    • Spinal hyperexcitability
    • Secondary to activation of an N-methyl D aspartate (NMDA) receptor, nitric oxide and possibly other neurotransmitters.
    • Activation of specific gastrointestinal mediators such as kinins and serotonin that lead to afferent nerve fiber sensitization.
    • Central (brainstem and cortical) modulation with increased activation of anterior cingulate cortex, thalamus and insula.
    • These structures are involved in processing of pain.
    • Cortical and brain stem modulation translate into long term hypersensitivity due to neuroplasticity.
    • Semi permanent changes(seen on functional magnetic resonance imaging and positron emission tomography) in the neural response to visceral stimulation contribute to visceral hypersensitivity.[27][33]
    • Recruitment of peripheral silent nociceptors cause increased end organ sensitivity due to hormonal or immune activation[27].


 
 
 
 
 
 
 
 
 
 
 
 
Spinal hyperexcitability
 
Activation of
N-methyl D aspartate (NMDA) receptor
nitric oxide
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Central (brainstem and cortical) modulation
 
Increased activation of:
• Anterior cingulate cortex
Thalamus
insula.
 
 
 
 
 
 
 
 
 
 
 
Visceral hypersensitivity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activation of specific gastrointestinal mediators
 
Kinins and serotonin activation lead to afferent nerve fiber sensitization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recruitment of peripheral silent nociceptors
 
Increased end organ sensitivity due to hormonal or immune activation