Irritable bowel syndrome pathophysiology: Difference between revisions
Line 26: | Line 26: | ||
==='''Environmental factors'''=== | ==='''Environmental factors'''=== | ||
* | *[[Diet (nutrition)|Diet]]<nowiki/> | ||
***Fermentable [[Oligosaccharide|oligosaccharides]], [[Monosaccharide|monosaccharides]], [[Disaccharide|disaccharides]], and [[Polyol|polyols]] (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and [[Legume|legumes]]. Changes in diet such as increased amounts (FODMAPs) can alter [[Gut flora|gut microflora]].<ref name="pmid23935555">{{cite journal |vauthors=Muir JG, Gibson PR |title=The Low FODMAP Diet for Treatment of Irritable Bowel Syndrome and Other Gastrointestinal Disorders |journal=Gastroenterol Hepatol (N Y) |volume=9 |issue=7 |pages=450–2 |year=2013 |pmid=23935555 |pmc=3736783 |doi= |url=}}</ref> | ***Fermentable [[Oligosaccharide|oligosaccharides]], [[Monosaccharide|monosaccharides]], [[Disaccharide|disaccharides]], and [[Polyol|polyols]] (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and [[Legume|legumes]]. Changes in diet such as increased amounts (FODMAPs) can alter [[Gut flora|gut microflora]].<ref name="pmid23935555">{{cite journal |vauthors=Muir JG, Gibson PR |title=The Low FODMAP Diet for Treatment of Irritable Bowel Syndrome and Other Gastrointestinal Disorders |journal=Gastroenterol Hepatol (N Y) |volume=9 |issue=7 |pages=450–2 |year=2013 |pmid=23935555 |pmc=3736783 |doi= |url=}}</ref> | ||
***[[Fermentation (biochemistry)|Fermentation]] and [[Osmosis|osmotic]] effects of FODMAPs produce [[Abdominal pain|abdominal discomfort]] and [[diarrhea]] in IBS. | ***[[Fermentation (biochemistry)|Fermentation]] and [[Osmosis|osmotic]] effects of FODMAPs produce [[Abdominal pain|abdominal discomfort]] and [[diarrhea]] in IBS. |
Revision as of 02:01, 31 October 2017
Irritable bowel syndrome Microchapters |
Differentiating Irritable bowel syndrome from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Irritable bowel syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Irritable bowel syndrome pathophysiology |
Risk calculators and risk factors for Irritable bowel syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Overview
IBS is caused by the complex interaction of various factors such as intrinsic gastrointestinal factors, CNS dysregulation and psychosocial factors, genetic and environmental factors. Intrinsic gastrointestinal factors include motor abnormalities, visceral hypersensitivity, immune activation and mucosal inflammation, altered gut microbiota and abnormal serotonin pathways. Visceral hypersensitivity is a decreased threshold for the perception of visceral stimuli that affects spinal excitability brain stem and cortical modulation, activation of specific gastrointestinal mediators and recruitment of peripheral silent nociceptors. Immune activation and mucosal inflammation involves an interaction of lymphocytes, mast cells and proinflammatory cytokines. Environmental factors encompass dietary changes and infections. Psychosocial factors such as stress, anxiety and depression directly shape adult connectivity in the executive control network consisting of structures such as the insula, anterior cingulate cortex and the thalamus. Semipermanent/permanent changes in complex neural circuits lead to central pain amplification and contribute to abdominal pain in IBS patients. The dorsolateral prefrontal cortex activity (responsible for vigilance and alertness of the human brain) and the mid-cingulate cortex (engaged in attention pathways and responses) is reduced in IBS patients, which may lead to alterations in the subjective sensations of pain. Genetic factors also play a role in IBS. It has high twin concordance and familial aggregation. It is associated with Single nucleotide polymorphisms (SNPs) in genes involved in immune activation, neuropeptide hormone function, oxidative stress, nociception, permeability of the GI tract, host-microbiota interaction, inflammation, and TNF activity.
Pathophysiology
Pathogenesis
IBS is an interplay between four main factors:
CNS dysregulation and psychosocial factors | |||||||||||||||||||||||||||||
Intrinsic gastrointestinal factors: • Motor abnormalities • Visceral hypersensitivity • Immune activation and mucosal inflammation • Altered gut microbiota • Abnormal serotonin pathways | IRRITABLE BOWEL SYNDROME | Genetic factors: • Twin concordance • Familial aggregation • Single Nucleotide Polymorphisms(SNPs) • TNF polymorphism | |||||||||||||||||||||||||||
Environmental factors | |||||||||||||||||||||||||||||
Environmental factors
- Diet
- Fermentable oligosaccharides, monosaccharides, disaccharides, and polyols (FODMAPs) are present in stone fruits, artificial sweeteners, lactose-containing foods, and legumes. Changes in diet such as increased amounts (FODMAPs) can alter gut microflora.[1]
- Fermentation and osmotic effects of FODMAPs produce abdominal discomfort and diarrhea in IBS.
- FODMAPs yield carbon dioxide, methane, and hydrogen that are responsible for bloating.
- Osmotically active carbohydrate by products lead to diarrhea by enhancing intestinal contractions and precipitating fluid secretion.[2][3][4][5][6][7][8][9]
- Infection
- Infectious gastroenteritis triggers micro inflammation, and up to one third of irritable bowel syndrome cases follow acute gastroenteritis.
- Micro inflammation of the gut causes activation of the lymphocytes, mast cells and pro inflammatory cytokines that stimulate the enteric nervous system and lead to abnormal visceral and motor responses within the gastrointestinal tract.
- Immune activation due to GI infection also increases enteroendocrine cells, calprotectin-positive macrophages, intraepithelial lymphocytes, and lamina propria T cells which contribute directly to abdominal pain perception. [10][11][12][13][14][15][16][17][18]
- Intrinsic gastrointestinal factors
- Motor abnormalities:
- IBS is referred to as ‘spastic colon’ due to changes in colonic motor function.
- Manometry recordings from the transverse, descending and sigmoid colon have shown that IBS leads to changed patterns of colonic and small intestinal motor function, such as increased frequency and irregularity of luminal contractions.
- Motor changes lead to symptoms of diarrhea and constipation.[19][20][21]
- Diarrhea-prone IBS patients have increased responses to ingestion, CRH (corticotropin releasing hormone), CCK (cholecystokinin), which increase the peak amplitude of high-amplitude propagating contractions (HAPCs) and lead to abdominal discomfort with accelerated transit through the colon. [22][23][24][25][26]
- Constipation-prone IBS patients show fewer high-amplitude propagating contractions (HAPCs) as compared to diarrhea prone IBS patients, delayed transit through the colon and decreased motility.
- Changes in the motor function of the colon are responsible for producing the gastrointestinal symptoms of IBS such as altered bowel habits and abdominal pain.[25]
- Visceral hypersensitivity:
- IBS is associated with a decreased threshold for perception of visceral stimuli (i.e. visceral hypersensitivity)[25][27][28]
- Rectal distension produces painful and non-painful sensations at lower volumes in IBS patients as compared to healthy controls, suggesting the presence of afferent pathway disturbances in visceral innervation[29][30][31][32].
- Visceral hypersensitivity contributes to IBS by involving the following:
- Spinal hyperexcitability
- Secondary to activation of neurotransmitters such as:
- N-methyl D aspartate (NMDA) receptor
- nitric oxide
- Activation of specific gastrointestinal mediators that lead to afferent nerve fiber sensitization:
- Central (brainstem and cortical) modulation with increased activation of anterior cingulate cortex, thalamus and insula.
- These structures are involved in processing of pain.
- Cortical and brain stem modulation translate into long term hypersensitivity due to neuroplasticity.
- Semi permanent changes(seen on functional magnetic resonance imaging and positron emission tomography) in the neural response to visceral stimulation contribute to visceral hypersensitivity.[27][33]
- Recruitment of peripheral silent nociceptors cause increased end organ sensitivity due to
- hormonal activation ( increased serotonin affects gastrointestinal motility and visceral pain perception)
- immune activation(recruitment of inflammatory mediators)[27]
- Motor abnormalities:
Spinal hyperexcitability | Activation of • N-methyl D aspartate (NMDA) receptor • nitric oxide | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Central (brainstem and cortical) modulation | Increased activation of: • Anterior cingulate cortex • Thalamus • insula | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Visceral hypersensitivity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Activation of specific gastrointestinal mediators | Kinins and serotonin activation lead to afferent nerve fiber sensitization | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recruitment of peripheral silent nociceptors | Increased end organ sensitivity due to hormonal or immune activation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
- Immune activation and mucosal inflammation
Mast cells IMMUNE ACTIVATION AND MUCOSAL INFLAMMATION Lymphocytes Proinflammatory cytokines - IBS in patients with history of inflammatory bowel disease, celiac disease or microscopic colitis points towards the fact that immune activation and local GI mucosal inflammation play an important role in its pathogenesis.[34][35][36][37][38][39][36]
- IBS patients have higher mucosal counts of lymphocytes (T cells, B cells), mast cells and immune mediators such as prostanoids, proteases, cytokines and histamines.[36][40][41][42][43]
- Lymphocytes:
- Activation of humoral immunity in IBS is specific for the gastrointestinal tract. Increased number of lymphocytes have been found in the small intestine and colon of IBS patients.[35][37][44][45]
- IBS patients with diarrhea have enhanced mucosal humoral activity, associated with activation and proliferation of B cells and immunoglobulin production, identified by microarray profiling.[45]
- IBS patients with severe disease have an increase in lymphocyte infiltration in the myentric plexus.[37]
- Mediators released by lymphocytes include histamine, proteases and nitric oxide. The stimulation of the enteric nervous system by these mediators leads to abnormal visceral and motor responses within the gastrointestinal tract.[35]
- Stool in patients with diarrhea prominent IBS demonstrates high levels of serine protease activity, which is produced by lymphocytes.[46][47]
- In response to high levels of serine protease, there is increased visceral pain and colonic cellular permeability. [46]
- Serine protease inhibitors prevent effects mediated by high levels of serine protease in IBS patients.[47][46]
- Mast cells:
- IBS leads to an increased number of mast cells in IBS patients in the jejunum, terminal ileum and colon.[39]
- Higher numbers of activated mast cells are found in proximity to colonic nerve fibres in the mucosa of the gastrointestinal tract of IBS patients. [39][38]
- Proinflammatory cytokines:
- Cytokines are protein mediators of the immune response. Increased levels of cytokines have been found in IBS patients.[43][42]
- Higher amounts of tumor necrosis factor are produced by the peripheral blood mononuclear cells of IBS patients.[48][36]
- Other cytokines such as interleukin 1β, interleukin 6, interleukin10, and TNFα are raised in IBS patients.
- Increased concentration of cytokines is directly proportional to the severity and frequency of pain.[36][49][48]
- The TNF antagonist infliximab counteracts pain in IBS patients, proving TNF involvement in mechanical hypersensitivity of the colonic afferent nerve endings . [49]
- Altered gut microbiota
- Fecal microflora in IBS patients differ from healthy individuals. Some IBS patients have colonic spirochaetosis, with a unique pathology of increased lymphoid follicles and eosinophils on histology.[40][50] [51][52][53][54][14][55]
- Acute GI infection alters gut microflora switches on a T-helper-2 immune-cell response with increased numbers of CD8 and CD4RA-positive intraepithelial lymphocytes, causing increased susceptibility to the development of IBS. [56][57][58]
- Altered gut microbiota causes increased colonic hypersensitivity. [59]
- Abnormal serotonin pathways
- Serotonin(5-HT) is an important neurotransmitter produced by the enterochromaffin cells in the colon, in response to chemical stimuli (short chain fatty acids produced by gastrointestinal microflora ) and mechanical stimuli ( food) and is increased in IBS patients.[60][61][62][63][64][65][66]
- Serotonin affects gastrointestinal motility and visceral pain perception. Spontaneous release of 5-HT correlates with abdominal pain severity.[67]
- There is an established relationship between IBS and polymorphisms in the gene for serotonin transport causing alteration in intestinal peristalsis due to change in the serotonin reuptake efficacy.[68][69][70][71]
- Increased serotonin production contributes to postprandial symptoms in IBS patients, hence providing the rationale for the therapeutic efficacy of 5-HT 3 receptor antagonists and 5-HT 4 receptor agonists on symptoms in IBS patients.[72][73]
Psychosocial factors and CNS dysregulation
- Symptom exacerbation occurs in IBS patients with emotional disturbances,stress, anxiety or depression. Traumatic experiences before 18 years of age directly shape adult connectivity in the executive control network consisting of structures such as the insula, anterior cingulate cortex and the thalamus.
- Semipermanent/permanent changes in complex neural circuits lead to central pain amplification and contribute to abdominal pain in IBS patients.[74][75]
- The dorsolateral prefrontal cortex activity (responsible for vigilance and alertness of the human brain) and the mid-cingulate cortex (engaged in attention pathways and responses) is reduced in IBS patients, seen on advanced brain imaging techniques as irregularities in the mid- cingulate cortex and prefrontal cortex on diffusion tensor imaging. [76]
- prefrontal cortex modulation may lead to increased perception of visceral pain.
- Modulation of the mid-cingulate cortex is associated with alterations in the subjective sensations of pain.[77][78]
- Patients with IBS have aberrant processing of central information, with decreased feedback on the emotional arousal network that controls the autonomic activity of the gastrointestinal tract and changes gut motility.[79][80]
- IBS is a brain gut disorder as rectal distension in patients causes increased engagement of regions of the brain associated with attentional and behavioral responses.[77][81][82]
- Psychological stress also impacts the release of gut proinflammatory cytokines, contributing to pain in IBS patients.[34]
Genetic factors
- IBS has high twin concordance and familial aggregation:[83][84][85][86][87][88]
- IBS has higher concordance in monozygotic as compared to dizygotic twins.[83][84][85][89]
- Individuals with a biologic relative with IBS have two times a higher risk of developing IBS. [90]
- Single nucleotide polymorphisms (SNPs) in genes:
- IBS has SNPs in genes playing an important role in host-microbiota interaction (TLR9, IL-6 and CDH1), immune activation and epithelial barriers.
- SNPs cause inflammation and increased permeability of the GI tract, leading to abdominal discomfort and increased motility.[91][92]
- Mutation of type V (alpha subunit) of SCN5A-encoded voltage gated sodium channel causes IBS.[93][94]
- Genome wide DNA methylation profiling is impaired in IBS and this involves genes linked to neuropeptide hormone function and oxidative stress.[95]
- IBS causes mutation in the neuropeptide S receptor gene (NPSR1) involved in nociception, inflammation and anxiety with abdominal pain.[96]
- Genes involved in the regulation of hepatic bile acid synthesis such as a functional Klothoβ gene are mutated in IBS.[97][98]
- TNF polymorphisms:
- SNPs in tumour necrosis factor alpha (TNFα) and genes coding for superfamily member 15 (TNFSF15) have proven associations with IBS.[92][99][100]
- TNF polymorphisms are also associated with post infectious IBS such as rs4263839 in TNFSF15 and IBS, particularly IBS associated with constipation.[100][99]
Gross Pathology
Microscopic Pathology
Microscopic changes that may be found in IBS patients are as follows:[101][17][60][102][103][104][105][106][107][37][108][39]
LOCATION LAYER OF INTESTINE INVOLVED MAST CELLS T LYMPHOCYTES ENTEROCHROMAFFIN CELLS Rectum Mucosa +++/- +/- +/- Terminal ileum Mucosa - ++ - Cecum Mucosa ++ - - Colon Muscularis externa +/- - - Jejunum Myentric plexus ++ - - References
- ↑ Muir JG, Gibson PR (2013). "The Low FODMAP Diet for Treatment of Irritable Bowel Syndrome and Other Gastrointestinal Disorders". Gastroenterol Hepatol (N Y). 9 (7): 450–2. PMC 3736783. PMID 23935555.
- ↑ Böhn L, Störsrud S, Törnblom H, Bengtsson U, Simrén M (2013). "Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life". Am. J. Gastroenterol. 108 (5): 634–41. doi:10.1038/ajg.2013.105. PMID 23644955.
- ↑ Young E, Stoneham MD, Petruckevitch A, Barton J, Rona R (1994). "A population study of food intolerance". Lancet. 343 (8906): 1127–30. PMID 7910231.
- ↑ David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014). "Diet rapidly and reproducibly alters the human gut microbiome". Nature. 505 (7484): 559–63. doi:10.1038/nature12820. PMC 3957428. PMID 24336217.
- ↑ Francis CY, Whorwell PJ (1994). "Bran and irritable bowel syndrome: time for reappraisal". Lancet. 344 (8914): 39–40. PMID 7912305.
- ↑ Elli L, Tomba C, Branchi F, Roncoroni L, Lombardo V, Bardella MT, Ferretti F, Conte D, Valiante F, Fini L, Forti E, Cannizzaro R, Maiero S, Londoni C, Lauri A, Fornaciari G, Lenoci N, Spagnuolo R, Basilisco G, Somalvico F, Borgatta B, Leandro G, Segato S, Barisani D, Morreale G, Buscarini E (2016). "Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge". Nutrients. 8 (2): 84. doi:10.3390/nu8020084. PMC 4772047. PMID 26867199.
- ↑ Coletta M, Gates FK, Marciani L, Shiwani H, Major G, Hoad CL, Chaddock G, Gowland PA, Spiller RC (2016). "Effect of bread gluten content on gastrointestinal function: a crossover MRI study on healthy humans". Br. J. Nutr. 115 (1): 55–61. doi:10.1017/S0007114515004183. PMID 26522233.
- ↑ Yang J, Fox M, Cong Y, Chu H, Zheng X, Long Y, Fried M, Dai N (2014). "Lactose intolerance in irritable bowel syndrome patients with diarrhoea: the roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity". Aliment. Pharmacol. Ther. 39 (3): 302–11. doi:10.1111/apt.12582. PMID 24308871.
- ↑ Staudacher HM, Irving PM, Lomer MC, Whelan K (2014). "Mechanisms and efficacy of dietary FODMAP restriction in IBS". Nat Rev Gastroenterol Hepatol. 11 (4): 256–66. doi:10.1038/nrgastro.2013.259. PMID 24445613.
- ↑ Ohman L, Simrén M (2010). "Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions". Nat Rev Gastroenterol Hepatol. 7 (3): 163–73. doi:10.1038/nrgastro.2010.4. PMID 20101257.
- ↑ Simrén M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG (2013). "Intestinal microbiota in functional bowel disorders: a Rome foundation report". Gut. 62 (1): 159–76. doi:10.1136/gutjnl-2012-302167. PMC 3551212. PMID 22730468.
- ↑ Ohman L, Simrén M (2013). "Intestinal microbiota and its role in irritable bowel syndrome (IBS)". Curr Gastroenterol Rep. 15 (5): 323. doi:10.1007/s11894-013-0323-7. PMID 23580243.
- ↑ Posserud I, Stotzer PO, Björnsson ES, Abrahamsson H, Simrén M (2007). "Small intestinal bacterial overgrowth in patients with irritable bowel syndrome". Gut. 56 (6): 802–8. doi:10.1136/gut.2006.108712. PMC 1954873. PMID 17148502.
- ↑ 14.0 14.1 Jeffery IB, O'Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, Simrén M (2012). "An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota". Gut. 61 (7): 997–1006. doi:10.1136/gutjnl-2011-301501. PMID 22180058.
- ↑ Spiller R, Garsed K (2009). "Postinfectious irritable bowel syndrome". Gastroenterology. 136 (6): 1979–88. doi:10.1053/j.gastro.2009.02.074. PMID 19457422.
- ↑ Joo YE (2015). "Alteration of fecal microbiota in patients with postinfectious irritable bowel syndrome". J Neurogastroenterol Motil. 21 (1): 135–7. doi:10.5056/jnm14133. PMC 4288086. PMID 25611066.
- ↑ 17.0 17.1 Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, Underwood JE, Read NW (1999). "The role of psychological and biological factors in postinfective gut dysfunction". Gut. 44 (3): 400–6. PMC 1727402. PMID 10026328.
- ↑ Nielsen HL, Engberg J, Ejlertsen T, Nielsen H (2014). "Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection". Scand. J. Gastroenterol. 49 (5): 545–51. doi:10.3109/00365521.2014.886718. PMID 24646319.
- ↑ Schmidt T, Hackelsberger N, Widmer R, Meisel C, Pfeiffer A, Kaess H (1996). "Ambulatory 24-hour jejunal motility in diarrhea-predominant irritable bowel syndrome". Scand. J. Gastroenterol. 31 (6): 581–9. PMID 8789897.
- ↑ Kumar D, Wingate DL (1985). "The irritable bowel syndrome: a paroxysmal motor disorder". Lancet. 2 (8462): 973–7. PMID 2865504.
- ↑ Simrén M, Castedal M, Svedlund J, Abrahamsson H, Björnsson E (2000). "Abnormal propagation pattern of duodenal pressure waves in the irritable bowel syndrome (IBS) [correction of (IBD)]". Dig. Dis. Sci. 45 (11): 2151–61. PMID 11215731.
- ↑ Chey WY, Jin HO, Lee MH, Sun SW, Lee KY (2001). "Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea". Am. J. Gastroenterol. 96 (5): 1499–506. doi:10.1111/j.1572-0241.2001.03804.x. PMID 11374689.
- ↑ Whitehead WE, Engel BT, Schuster MM (1980). "Irritable bowel syndrome: physiological and psychological differences between diarrhea-predominant and constipation-predominant patients". Dig. Dis. Sci. 25 (6): 404–13. PMID 7379673.
- ↑ Fukudo S, Nomura T, Hongo M (1998). "Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome". Gut. 42 (6): 845–9. PMC 1727153. PMID 9691924.
- ↑ 25.0 25.1 25.2 Camilleri M, McKinzie S, Busciglio I, Low PA, Sweetser S, Burton D, Baxter K, Ryks M, Zinsmeister AR (2008). "Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome". Clin. Gastroenterol. Hepatol. 6 (7): 772–81. doi:10.1016/j.cgh.2008.02.060. PMC 2495078. PMID 18456567.
- ↑ Kellow JE, Phillips SF (1987). "Altered small bowel motility in irritable bowel syndrome is correlated with symptoms". Gastroenterology. 92 (6): 1885–93. PMID 3569764.
- ↑ 27.0 27.1 27.2 Barbara G, Cremon C, De Giorgio R, Dothel G, Zecchi L, Bellacosa L, Carini G, Stanghellini V, Corinaldesi R (2011). "Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome". Curr Gastroenterol Rep. 13 (4): 308–15. doi:10.1007/s11894-011-0195-7. PMID 21537962.
- ↑ Whitehead WE, Holtkotter B, Enck P, Hoelzl R, Holmes KD, Anthony J, Shabsin HS, Schuster MM (1990). "Tolerance for rectosigmoid distention in irritable bowel syndrome". Gastroenterology. 98 (5 Pt 1): 1187–92. PMID 2323511.
- ↑ Mertz H, Naliboff B, Munakata J, Niazi N, Mayer EA (1995). "Altered rectal perception is a biological marker of patients with irritable bowel syndrome". Gastroenterology. 109 (1): 40–52. PMID 7797041.
- ↑ Prior A, Maxton DG, Whorwell PJ (1990). "Anorectal manometry in irritable bowel syndrome: differences between diarrhoea and constipation predominant subjects". Gut. 31 (4): 458–62. PMC 1378424. PMID 2338274.
- ↑ Posserud I, Syrous A, Lindström L, Tack J, Abrahamsson H, Simrén M (2007). "Altered rectal perception in irritable bowel syndrome is associated with symptom severity". Gastroenterology. 133 (4): 1113–23. doi:10.1053/j.gastro.2007.07.024. PMID 17919487.
- ↑ Bouin M, Plourde V, Boivin M, Riberdy M, Lupien F, Laganière M, Verrier P, Poitras P (2002). "Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds". Gastroenterology. 122 (7): 1771–7. PMID 12055583.
- ↑ Mertz H, Morgan V, Tanner G, Pickens D, Price R, Shyr Y, Kessler R (2000). "Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention". Gastroenterology. 118 (5): 842–8. PMID 10784583.
- ↑ 34.0 34.1 Coëffier M, Gloro R, Boukhettala N, Aziz M, Lecleire S, Vandaele N, Antonietti M, Savoye G, Bôle-Feysot C, Déchelotte P, Reimund JM, Ducrotté P (2010). "Increased proteasome-mediated degradation of occludin in irritable bowel syndrome". Am. J. Gastroenterol. 105 (5): 1181–8. doi:10.1038/ajg.2009.700. PMID 19997094.
- ↑ 35.0 35.1 35.2 Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P, Tie A, Wilson I (2002). "Activation of the mucosal immune system in irritable bowel syndrome". Gastroenterology. 122 (7): 1778–83. PMID 12055584.
- ↑ 36.0 36.1 36.2 36.3 36.4 Liebregts T, Adam B, Bredack C, Röth A, Heinzel S, Lester S, Downie-Doyle S, Smith E, Drew P, Talley NJ, Holtmann G (2007). "Immune activation in patients with irritable bowel syndrome". Gastroenterology. 132 (3): 913–20. doi:10.1053/j.gastro.2007.01.046. PMID 17383420.
- ↑ 37.0 37.1 37.2 37.3 Törnblom H, Lindberg G, Nyberg B, Veress B (2002). "Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome". Gastroenterology. 123 (6): 1972–9. doi:10.1053/gast.2002.37059. PMID 12454854.
- ↑ 38.0 38.1 Guilarte M, Santos J, de Torres I, Alonso C, Vicario M, Ramos L, Martínez C, Casellas F, Saperas E, Malagelada JR (2007). "Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum". Gut. 56 (2): 203–9. doi:10.1136/gut.2006.100594. PMC 1856785. PMID 17005763.
- ↑ 39.0 39.1 39.2 39.3 Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R (2004). "Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome". Gastroenterology. 126 (3): 693–702. PMID 14988823.
- ↑ 40.0 40.1 Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM (2010). "Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery". Gut. 59 (5): 605–11. doi:10.1136/gut.2009.202234. PMID 20427395.
- ↑ Wensaas KA, Langeland N, Hanevik K, Mørch K, Eide GE, Rortveit G (2012). "Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study". Gut. 61 (2): 214–9. doi:10.1136/gutjnl-2011-300220. PMID 21911849.
- ↑ 42.0 42.1 Mearin F, Perelló A, Balboa A, Perona M, Sans M, Salas A, Angulo S, Lloreta J, Benasayag R, García-Gonzalez MA, Pérez-Oliveras M, Coderch J (2009). "Pathogenic mechanisms of postinfectious functional gastrointestinal disorders: results 3 years after gastroenteritis". Scand. J. Gastroenterol. 44 (10): 1173–85. doi:10.1080/00365520903171276. PMID 19711225.
- ↑ 43.0 43.1 Gwee KA, Collins SM, Read NW, Rajnakova A, Deng Y, Graham JC, McKendrick MW, Moochhala SM (2003). "Increased rectal mucosal expression of interleukin 1beta in recently acquired post-infectious irritable bowel syndrome". Gut. 52 (4): 523–6. PMC 1773606. PMID 12631663.
- ↑ Ohman L, Lindmark AC, Isaksson S, Posserud I, Strid H, Sjövall H, Simrén M (2009). "B-cell activation in patients with irritable bowel syndrome (IBS)". Neurogastroenterol. Motil. 21 (6): 644–50, e27. doi:10.1111/j.1365-2982.2009.01272.x. PMID 19222763.
- ↑ 45.0 45.1 Vicario M, González-Castro AM, Martínez C, Lobo B, Pigrau M, Guilarte M, de Torres I, Mosquera JL, Fortea M, Sevillano-Aguilera C, Salvo-Romero E, Alonso C, Rodiño-Janeiro BK, Söderholm JD, Azpiroz F, Santos J (2015). "Increased humoral immunity in the jejunum of diarrhoea-predominant irritable bowel syndrome associated with clinical manifestations". Gut. 64 (9): 1379–88. doi:10.1136/gutjnl-2013-306236. PMID 25209656.
- ↑ 46.0 46.1 46.2 Bueno L (2008). "Protease activated receptor 2: a new target for IBS treatment". Eur Rev Med Pharmacol Sci. 12 Suppl 1: 95–102. PMID 18924448.
- ↑ 47.0 47.1 Gecse K, Róka R, Ferrier L, Leveque M, Eutamene H, Cartier C, Ait-Belgnaoui A, Rosztóczy A, Izbéki F, Fioramonti J, Wittmann T, Bueno L (2008). "Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity". Gut. 57 (5): 591–9. doi:10.1136/gut.2007.140210. PMID 18194983.
- ↑ 48.0 48.1 Dinan TG, Quigley EM, Ahmed SM, Scully P, O'Brien S, O'Mahony L, O'Mahony S, Shanahan F, Keeling PW (2006). "Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker?". Gastroenterology. 130 (2): 304–11. doi:10.1053/j.gastro.2005.11.033. PMID 16472586.
- ↑ 49.0 49.1 Hughes PA, Moretta M, Lim A, Grasby DJ, Bird D, Brierley SM, Liebregts T, Adam B, Blackshaw LA, Holtmann G, Bampton P, Hoffmann P, Andrews JM, Zola H, Krumbiegel D (2014). "Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients". Brain Behav. Immun. 42: 191–203. doi:10.1016/j.bbi.2014.07.001. PMID 25063707.
- ↑ Walker MM, Talley NJ, Inganäs L, Engstrand L, Jones MP, Nyhlin H, Agréus L, Kjellstrom L, Öst Å, Andreasson A (2015). "Colonic spirochetosis is associated with colonic eosinophilia and irritable bowel syndrome in a general population in Sweden". Hum. Pathol. 46 (2): 277–83. doi:10.1016/j.humpath.2014.10.026. PMID 25540866.
- ↑ Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007). "The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects". Gastroenterology. 133 (1): 24–33. doi:10.1053/j.gastro.2007.04.005. PMID 17631127.
- ↑ Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A (2005). "Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR". Am. J. Gastroenterol. 100 (2): 373–82. doi:10.1111/j.1572-0241.2005.40312.x. PMID 15667495.
- ↑ Rajilić-Stojanović M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011). "Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome". Gastroenterology. 141 (5): 1792–801. doi:10.1053/j.gastro.2011.07.043. PMID 21820992.
- ↑ Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J (2011). "Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome". Gastroenterology. 141 (5): 1782–91. doi:10.1053/j.gastro.2011.06.072. PMC 3417828. PMID 21741921.
- ↑ Ford AC, Thabane M, Collins SM, Moayyedi P, Garg AX, Clark WF, Marshall JK (2010). "Prevalence of uninvestigated dyspepsia 8 years after a large waterborne outbreak of bacterial dysentery: a cohort study". Gastroenterology. 138 (5): 1727–36, quiz e12. doi:10.1053/j.gastro.2010.01.043. PMID 20117111.
- ↑ Sundin J, Rangel I, Fuentes S, Heikamp-de Jong I, Hultgren-Hörnquist E, de Vos WM, Brummer RJ (2015). "Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress". Aliment. Pharmacol. Ther. 41 (4): 342–51. doi:10.1111/apt.13055. PMID 25521822.
- ↑ Wouters MM, Van Wanrooy S, Nguyen A, Dooley J, Aguilera-Lizarraga J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaegen J, Liston A, Boeckxstaens G (2016). "Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis". Gut. 65 (8): 1279–88. doi:10.1136/gutjnl-2015-309460. PMID 26071133.
- ↑ Riddle MS, Welsh M, Porter CK, Nieh C, Boyko EJ, Gackstetter G, Hooper TI (2016). "The Epidemiology of Irritable Bowel Syndrome in the US Military: Findings from the Millennium Cohort Study". Am. J. Gastroenterol. 111 (1): 93–104. doi:10.1038/ajg.2015.386. PMC 4759150. PMID 26729548.
- ↑ Crouzet L, Gaultier E, Del'Homme C, Cartier C, Delmas E, Dapoigny M, Fioramonti J, Bernalier-Donadille A (2013). "The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota". Neurogastroenterol. Motil. 25 (4): e272–82. doi:10.1111/nmo.12103. PMID 23433203.
- ↑ 60.0 60.1 Dunlop SP, Jenkins D, Neal KR, Spiller RC (2003). "Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS". Gastroenterology. 125 (6): 1651–9. PMID 14724817.
- ↑ Gershon MD, Wade PR, Kirchgessner AL, Tamir H (1990). "5-HT receptor subtypes outside the central nervous system. Roles in the physiology of the gut". Neuropsychopharmacology. 3 (5–6): 385–95. PMID 2078274.
- ↑ Berger M, Gray JA, Roth BL (2009). "The expanded biology of serotonin". Annu. Rev. Med. 60: 355–66. doi:10.1146/annurev.med.60.042307.110802. PMID 19630576.
- ↑ Dunlop SP, Coleman NS, Blackshaw E, Perkins AC, Singh G, Marsden CA, Spiller RC (2005). "Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome". Clin. Gastroenterol. Hepatol. 3 (4): 349–57. PMID 15822040.
- ↑ Atkinson W, Lockhart S, Whorwell PJ, Keevil B, Houghton LA (2006). "Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome". Gastroenterology. 130 (1): 34–43. doi:10.1053/j.gastro.2005.09.031. PMID 16401466.
- ↑ Gershon MD (2013). "5-Hydroxytryptamine (serotonin) in the gastrointestinal tract". Curr Opin Endocrinol Diabetes Obes. 20 (1): 14–21. doi:10.1097/MED.0b013e32835bc703. PMC 3708472. PMID 23222853.
- ↑ Shekhar C, Monaghan PJ, Morris J, Issa B, Whorwell PJ, Keevil B, Houghton LA (2013). "Rome III functional constipation and irritable bowel syndrome with constipation are similar disorders within a spectrum of sensitization, regulated by serotonin". Gastroenterology. 145 (4): 749–57, quiz e13–4. doi:10.1053/j.gastro.2013.07.014. PMID 23872499.
- ↑ Cremon C, Carini G, Wang B, Vasina V, Cogliandro RF, De Giorgio R, Stanghellini V, Grundy D, Tonini M, De Ponti F, Corinaldesi R, Barbara G (2011). "Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome". Am. J. Gastroenterol. 106 (7): 1290–8. doi:10.1038/ajg.2011.86. PMID 21427712.
- ↑ Grasberger H, Chang L, Shih W, Presson AP, Sayuk GS, Newberry RD, Karagiannides I, Pothoulakis C, Mayer E, Merchant JL (2013). "Identification of a functional TPH1 polymorphism associated with irritable bowel syndrome bowel habit subtypes". Am. J. Gastroenterol. 108 (11): 1766–74. doi:10.1038/ajg.2013.304. PMC 4067697. PMID 24060757.
- ↑ Jun S, Kohen R, Cain KC, Jarrett ME, Heitkemper MM (2011). "Associations of tryptophan hydroxylase gene polymorphisms with irritable bowel syndrome". Neurogastroenterol. Motil. 23 (3): 233–9, e116. doi:10.1111/j.1365-2982.2010.01623.x. PMC 3057463. PMID 21073637.
- ↑ Kim HJ, Camilleri M, Carlson PJ, Cremonini F, Ferber I, Stephens D, McKinzie S, Zinsmeister AR, Urrutia R (2004). "Association of distinct alpha(2) adrenoceptor and serotonin transporter polymorphisms with constipation and somatic symptoms in functional gastrointestinal disorders". Gut. 53 (6): 829–37. PMC 1774073. PMID 15138209.
- ↑ Yeo A, Boyd P, Lumsden S, Saunders T, Handley A, Stubbins M, Knaggs A, Asquith S, Taylor I, Bahari B, Crocker N, Rallan R, Varsani S, Montgomery D, Alpers DH, Dukes GE, Purvis I, Hicks GA (2004). "Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women". Gut. 53 (10): 1452–8. doi:10.1136/gut.2003.035451. PMC 1774243. PMID 15361494.
- ↑ Gershon MD, Tack J (2007). "The serotonin signaling system: from basic understanding to drug development for functional GI disorders". Gastroenterology. 132 (1): 397–414. doi:10.1053/j.gastro.2006.11.002. PMID 17241888.
- ↑ Camilleri M (2012). "Pharmacology of the new treatments for lower gastrointestinal motility disorders and irritable bowel syndrome". Clin. Pharmacol. Ther. 91 (1): 44–59. doi:10.1038/clpt.2011.261. PMID 22071696.
- ↑ Park SH, Videlock EJ, Shih W, Presson AP, Mayer EA, Chang L (2016). "Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity". Neurogastroenterol. Motil. 28 (8): 1252–60. doi:10.1111/nmo.12826. PMC 4956522. PMID 27061107.
- ↑ Gupta A, Kilpatrick L, Labus J, Tillisch K, Braun A, Hong JY, Ashe-McNalley C, Naliboff B, Mayer EA (2014). "Early adverse life events and resting state neural networks in patients with chronic abdominal pain: evidence for sex differences". Psychosom Med. 76 (6): 404–12. doi:10.1097/PSY.0000000000000089. PMC 4113723. PMID 25003944.
- ↑ Hong JY, Kilpatrick LA, Labus J, Gupta A, Jiang Z, Ashe-McNalley C, Stains J, Heendeniya N, Ebrat B, Smith S, Tillisch K, Naliboff B, Mayer EA (2013). "Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain". J. Neurosci. 33 (29): 11994–2002. doi:10.1523/JNEUROSCI.5733-12.2013. PMC 3713732. PMID 23864686.
- ↑ 77.0 77.1 Larsson MB, Tillisch K, Craig AD, Engström M, Labus J, Naliboff B, Lundberg P, Ström M, Mayer EA, Walter SA (2012). "Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome". Gastroenterology. 142 (3): 463–472.e3. doi:10.1053/j.gastro.2011.11.022. PMC 3288538. PMID 22108191.
- ↑ Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R (2016). "Bowel Disorders". Gastroenterology. doi:10.1053/j.gastro.2016.02.031. PMID 27144627.
- ↑ Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, Tillisch K (2013). "Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome". Pain. 154 (9): 1528–41. doi:10.1016/j.pain.2013.04.010. PMC 3758125. PMID 23721972.
- ↑ Hall GB, Kamath MV, Collins S, Ganguli S, Spaziani R, Miranda KL, Bayati A, Bienenstock J (2010). "Heightened central affective response to visceral sensations of pain and discomfort in IBS". Neurogastroenterol. Motil. 22 (3): 276–e80. doi:10.1111/j.1365-2982.2009.01436.x. PMID 20003075.
- ↑ Elsenbruch S, Rosenberger C, Bingel U, Forsting M, Schedlowski M, Gizewski ER (2010). "Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli". Gastroenterology. 139 (4): 1310–9. doi:10.1053/j.gastro.2010.06.054. PMID 20600024.
- ↑ Elsenbruch S, Rosenberger C, Enck P, Forsting M, Schedlowski M, Gizewski ER (2010). "Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study". Gut. 59 (4): 489–95. doi:10.1136/gut.2008.175000. PMID 19651629.
- ↑ 83.0 83.1 Levy RL, Jones KR, Whitehead WE, Feld SI, Talley NJ, Corey LA (2001). "Irritable bowel syndrome in twins: heredity and social learning both contribute to etiology". Gastroenterology. 121 (4): 799–804. PMID 11606493.
- ↑ 84.0 84.1 Morris-Yates A, Talley NJ, Boyce PM, Nandurkar S, Andrews G (1998). "Evidence of a genetic contribution to functional bowel disorder". Am. J. Gastroenterol. 93 (8): 1311–7. doi:10.1111/j.1572-0241.1998.440_j.x. PMID 9707057.
- ↑ 85.0 85.1 Lembo A, Zaman M, Jones M, Talley NJ (2007). "Influence of genetics on irritable bowel syndrome, gastro-oesophageal reflux and dyspepsia: a twin study". Aliment. Pharmacol. Ther. 25 (11): 1343–50. doi:10.1111/j.1365-2036.2007.03326.x. PMID 17509102.
- ↑ Saito YA, Petersen GM, Locke GR, Talley NJ (2005). "The genetics of irritable bowel syndrome". Clin. Gastroenterol. Hepatol. 3 (11): 1057–65. PMID 16271334.
- ↑ Wouters MM, Lambrechts D, Knapp M, Cleynen I, Whorwell P, Agréus L, Dlugosz A, Schmidt PT, Halfvarson J, Simrén M, Ohlsson B, Karling P, Van Wanrooy S, Mondelaers S, Vermeire S, Lindberg G, Spiller R, Dukes G, D'Amato M, Boeckxstaens G (2014). "Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome". Gut. 63 (7): 1103–11. doi:10.1136/gutjnl-2013-304570. PMID 24041540.
- ↑ Saito YA, Petersen GM, Larson JJ, Atkinson EJ, Fridley BL, de Andrade M, Locke GR, Zimmerman JM, Almazar-Elder AE, Talley NJ (2010). "Familial aggregation of irritable bowel syndrome: a family case-control study". Am. J. Gastroenterol. 105 (4): 833–41. doi:10.1038/ajg.2010.116. PMC 2875200. PMID 20234344.
- ↑ Bengtson MB, Rønning T, Vatn MH, Harris JR (2006). "Irritable bowel syndrome in twins: genes and environment". Gut. 55 (12): 1754–9. doi:10.1136/gut.2006.097287. PMC 1856463. PMID 17008364.
- ↑ Locke GR, Zinsmeister AR, Talley NJ, Fett SL, Melton LJ (2000). "Familial association in adults with functional gastrointestinal disorders". Mayo Clin. Proc. 75 (9): 907–12. doi:10.4065/75.9.907. PMID 10994826.
- ↑ Villani AC, Lemire M, Thabane M, Belisle A, Geneau G, Garg AX, Clark WF, Moayyedi P, Collins SM, Franchimont D, Marshall JK (2010). "Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis". Gastroenterology. 138 (4): 1502–13. doi:10.1053/j.gastro.2009.12.049. PMID 20044998.
- ↑ 92.0 92.1 Gonsalkorale WM, Perrey C, Pravica V, Whorwell PJ, Hutchinson IV (2003). "Interleukin 10 genotypes in irritable bowel syndrome: evidence for an inflammatory component?". Gut. 52 (1): 91–3. PMC 1773523. PMID 12477767.
- ↑ Locke GR, Ackerman MJ, Zinsmeister AR, Thapa P, Farrugia G (2006). "Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy". Am. J. Gastroenterol. 101 (6): 1299–304. doi:10.1111/j.1572-0241.2006.00507.x. PMID 16771953.
- ↑ Saito YA, Strege PR, Tester DJ, Locke GR, Talley NJ, Bernard CE, Rae JL, Makielski JC, Ackerman MJ, Farrugia G (2009). "Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy". Am. J. Physiol. Gastrointest. Liver Physiol. 296 (2): G211–8. doi:10.1152/ajpgi.90571.2008. PMC 2643921. PMID 19056759.
- ↑ Mahurkar S, Polytarchou C, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L (2016). "Genome-wide DNA methylation profiling of peripheral blood mononuclear cells in irritable bowel syndrome". Neurogastroenterol. Motil. 28 (3): 410–22. doi:10.1111/nmo.12741. PMC 4760882. PMID 26670691.
- ↑ Camilleri M, Carlson P, Zinsmeister AR, McKinzie S, Busciglio I, Burton D, Zucchelli M, D'Amato M (2010). "Neuropeptide S receptor induces neuropeptide expression and associates with intermediate phenotypes of functional gastrointestinal disorders". Gastroenterology. 138 (1): 98–107.e4. doi:10.1053/j.gastro.2009.08.051. PMC 2813358. PMID 19732772.
- ↑ Wong BS, Camilleri M, Carlson P, McKinzie S, Busciglio I, Bondar O, Dyer RB, Lamsam J, Zinsmeister AR (2012). "Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea". Clin. Gastroenterol. Hepatol. 10 (9): 1009–15.e3. doi:10.1016/j.cgh.2012.05.006. PMC 3565429. PMID 22610000.
- ↑ Wong BS, Camilleri M, Carlson PJ, Guicciardi ME, Burton D, McKinzie S, Rao AS, Zinsmeister AR, Gores GJ (2011). "A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea". Gastroenterology. 140 (7): 1934–42. doi:10.1053/j.gastro.2011.02.063. PMC 3109206. PMID 21396369.
- ↑ 99.0 99.1 Swan C, Duroudier NP, Campbell E, Zaitoun A, Hastings M, Dukes GE, Cox J, Kelly FM, Wilde J, Lennon MG, Neal KR, Whorwell PJ, Hall IP, Spiller RC (2013). "Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα". Gut. 62 (7): 985–94. doi:10.1136/gutjnl-2011-301213. PMID 22684480.
- ↑ 100.0 100.1 Zucchelli M, Camilleri M, Andreasson AN, Bresso F, Dlugosz A, Halfvarson J, Törkvist L, Schmidt PT, Karling P, Ohlsson B, Duerr RH, Simren M, Lindberg G, Agreus L, Carlson P, Zinsmeister AR, D'Amato M (2011). "Association of TNFSF15 polymorphism with irritable bowel syndrome". Gut. 60 (12): 1671–1677. doi:10.1136/gut.2011.241877. PMC 3922294. PMID 21636646.
- ↑ Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M, Neal KR (2000). "Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome". Gut. 47 (6): 804–11. PMC 1728147. PMID 11076879.
- ↑ Dunlop SP, Jenkins D, Spiller RC (2003). "Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome". Am. J. Gastroenterol. 98 (7): 1578–83. doi:10.1111/j.1572-0241.2003.07542.x. PMID 12873581.
- ↑ Weston AP, Biddle WL, Bhatia PS, Miner PB (1993). "Terminal ileal mucosal mast cells in irritable bowel syndrome". Dig. Dis. Sci. 38 (9): 1590–5. PMID 8359068.
- ↑ O'Sullivan M, Clayton N, Breslin NP, Harman I, Bountra C, McLaren A, O'Morain CA (2000). "Increased mast cells in the irritable bowel syndrome". Neurogastroenterol. Motil. 12 (5): 449–57. PMID 11012945.
- ↑ Park CH, Joo YE, Choi SK, Rew JS, Kim SJ, Lee MC (2003). "Activated mast cells infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome". J. Korean Med. Sci. 18 (2): 204–10. doi:10.3346/jkms.2003.18.2.204. PMC 3055014. PMID 12692417.
- ↑ Wang LH, Fang XC, Pan GZ (2004). "Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis". Gut. 53 (8): 1096–101. doi:10.1136/gut.2003.021154. PMC 1774156. PMID 15247174.
- ↑ Salzmann JL, Peltier-Koch F, Bloch F, Petite JP, Camilleri JP (1989). "Morphometric study of colonic biopsies: a new method of estimating inflammatory diseases". Lab. Invest. 60 (6): 847–51. PMID 2733385.
- ↑ HIATT RB, KATZ L (1962). "Mast cells in inflammatory conditions of the gastrointestinal tract". Am. J. Gastroenterol. 37: 541–5. PMID 13907162.