Acute liver failure pathophysiology: Difference between revisions

Jump to navigation Jump to search
Husnain Shaukat (talk | contribs)
Husnain Shaukat (talk | contribs)
Line 12: Line 12:


* The effects of [[acute liver failure]] are due to the loss of its metabolic, secretory and regulatory effects. This results in the accumulation of [[toxic]] substances and causes deleterious effects.
* The effects of [[acute liver failure]] are due to the loss of its metabolic, secretory and regulatory effects. This results in the accumulation of [[toxic]] substances and causes deleterious effects.
* The major pathophysiological mechanism of [[morbidity]] and [[mortality]] in patients with acute liver failure are cerebral edema, hypoperfusion to the liver, idiosyncratic drug reactions, depletion of glutathione, viral hepatitis, accumulation of copper, iron, and ammonia.
* The major pathophysiological mechanisms of [[morbidity]] and [[mortality]] in patients with acute liver failure are cerebral edema, hypoperfusion to the liver, idiosyncratic drug reactions, depletion of glutathione, viral hepatitis.  




*  Cerebral edema in acute liver failure can be vasogenic as well as cytotoxic. The increased ammonia concentration in liver failure in combination with the glutamine produced by the astrocytes causes excess levels of glutamine synthesis with the help of glutamine synthetase. The excess glutamine is cytotoxic and can disturb the osmotic gradient and cause brain swelling. In acute liver failure, the increased levels of nitric oxide in the circulation can also disrupt the cerebral autoregulation.
*  Cerebral edema in acute liver failure can be due to vasogenic and cytotoxic effects. The increased ammonia concentration in liver failure in combination with the glutamine produced by the astrocytes causes excess levels of glutamine with the help of enzyme glutamine synthetase. The excess glutamine is cytotoxic and can disturb the osmotic gradient which can result in brain swelling. In acute liver failure, the increased levels of nitric oxide in the circulation can also disrupt the cerebral autoregulation.


===Specific Conditions===
===Specific Conditions===


====Acetaminophen Toxicity====
====Acetaminophen Toxicity====
* [[Acetaminophen]] is the leading cause of acute liver failure.
* [[Acetaminophen]] is the leading cause of acute liver failure in the United States.
* Acetaminophen causes dose related toxicity.
* Acetaminophen causes dose-related toxicity.
* Toxic doses can be as low as 3-4 g/day but most toxic ingestion's are of >10 g/day.
* Toxicity is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease.
* Acetaminophen is mainly metabolized (90 %) in the liver and its metabolic end products (sulfate and glucuronide conjugates) are then excreted in the urine.
*Remaining one half unmetabolized acetaminophen is excreted unchanged in the urine and rest is metabolized by cytochrome P450 pathway to N-acetyl-p-benzoquinoneimine (NAPQI).
*(NAPQI) is hepatotoxic and converted to nontoxic cysteine and mercaptan compounds by hepatic glutathione which are then excreted in the urine.
*At toxic doses, the sulfate and glucuronide conjugation pathway are overwhelmed and led to increased acetaminophen to be metabolized by cytochrome P450.
*At toxic doses, the glutathione stores are depleted and it led to excess unattended NAPQI which causes hepatotoxicity.


====Other Drugs====
====Other Drugs====
Line 48: Line 53:
====Ischemic Injury====
====Ischemic Injury====
* This condition is called [[shock liver]].  It is a common occurrence in the ICU with a prevalence of 10%.<ref name="pmid20361374">{{cite journal |author=Fuhrmann V, Jäger B, Zubkova A, Drolz A |title=Hypoxic hepatitis - epidemiology, pathophysiology and clinical management |journal=[[Wiener Klinische Wochenschrift]] |volume=122 |issue=5-6 |pages=129–39 |year=2010 |month=March |pmid=20361374 |doi=10.1007/s00508-010-1357-6 |url=http://dx.doi.org/10.1007/s00508-010-1357-6 |accessdate=2012-10-27}}</ref>
* This condition is called [[shock liver]].  It is a common occurrence in the ICU with a prevalence of 10%.<ref name="pmid20361374">{{cite journal |author=Fuhrmann V, Jäger B, Zubkova A, Drolz A |title=Hypoxic hepatitis - epidemiology, pathophysiology and clinical management |journal=[[Wiener Klinische Wochenschrift]] |volume=122 |issue=5-6 |pages=129–39 |year=2010 |month=March |pmid=20361374 |doi=10.1007/s00508-010-1357-6 |url=http://dx.doi.org/10.1007/s00508-010-1357-6 |accessdate=2012-10-27}}</ref>
* Shock liver results from severe [[hypotension]] due to any causes such as [[heart failure]], severe vaso-constriction due to drugs like [[niacin]] and [[cocaine]].
* Shock liver results from severe [[hypotension]] due to any causes such as [[heart failure]], or vasoconstictive drugs.
* Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the [[ischemia]].
* Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the [[ischemia]].



Revision as of 20:11, 2 November 2017

Acute liver failure Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acute Liver Failure from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acute liver failure pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acute liver failure pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acute liver failure pathophysiology

CDC on Acute liver failure pathophysiology

Acute liver failure pathophysiology in the news

Blogs on Acute liver failure pathophysiology

Directions to Hospitals Treating Acute liver failure

Risk calculators and risk factors for Acute liver failure pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aditya Govindavarjhulla, M.B.B.S. [2]

Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.

Overview

Pathophysiology

Acute liver failure is a sudden and severe loss of liver function with evidence of encephalopathy and coagulopathy with elevated prothrombin time (PT) and (INR) in a person without preexisting liver disease.


  • The effects of acute liver failure are due to the loss of its metabolic, secretory and regulatory effects. This results in the accumulation of toxic substances and causes deleterious effects.
  • The major pathophysiological mechanisms of morbidity and mortality in patients with acute liver failure are cerebral edema, hypoperfusion to the liver, idiosyncratic drug reactions, depletion of glutathione, viral hepatitis.


  • Cerebral edema in acute liver failure can be due to vasogenic and cytotoxic effects. The increased ammonia concentration in liver failure in combination with the glutamine produced by the astrocytes causes excess levels of glutamine with the help of enzyme glutamine synthetase. The excess glutamine is cytotoxic and can disturb the osmotic gradient which can result in brain swelling. In acute liver failure, the increased levels of nitric oxide in the circulation can also disrupt the cerebral autoregulation.

Specific Conditions

Acetaminophen Toxicity

  • Acetaminophen is the leading cause of acute liver failure in the United States.
  • Acetaminophen causes dose-related toxicity.
  • Toxicity is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease.
  • Acetaminophen is mainly metabolized (90 %) in the liver and its metabolic end products (sulfate and glucuronide conjugates) are then excreted in the urine.
  • Remaining one half unmetabolized acetaminophen is excreted unchanged in the urine and rest is metabolized by cytochrome P450 pathway to N-acetyl-p-benzoquinoneimine (NAPQI).
  • (NAPQI) is hepatotoxic and converted to nontoxic cysteine and mercaptan compounds by hepatic glutathione which are then excreted in the urine.
  • At toxic doses, the sulfate and glucuronide conjugation pathway are overwhelmed and led to increased acetaminophen to be metabolized by cytochrome P450.
  • At toxic doses, the glutathione stores are depleted and it led to excess unattended NAPQI which causes hepatotoxicity.

Other Drugs

  • Drugs other than acetaminophen also cause acute liver failure.
  • These constitute 13% of cases of acute liver failure in US. [1]
  • They cause idiosyncratic drug hepatotoxicity.
  • They usually present within six months of drug initiation.

Mushroom Poisoning

  • This is mainly caused by the genus Amanita (Amanita phalloides).[2]
  • Presentations may vary from case to case and it constitutes a medical emergency.
  • Patients may recover from traditional medical treatment, or may require transplantation in more severe cases.

Viral Hepatitis

Autoimmune Hepatitis

Ischemic Injury

  • This condition is called shock liver. It is a common occurrence in the ICU with a prevalence of 10%.[4]
  • Shock liver results from severe hypotension due to any causes such as heart failure, or vasoconstictive drugs.
  • Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the ischemia.

HELLP Syndrome

Malignancy

Pathology

In the majority of acute liver failure (ALF) there is widespread hepatocellular necrosis beginning in the centrizonal distribution and progressing towards portal tracts. The degree of parenchymal inflammation is variable and is proportional to duration of disease[6].

References

  1. 1.0 1.1 Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM (2002). "Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States". Annals of Internal Medicine. 137 (12): 947–54. PMID 12484709. Retrieved 2012-10-27. Unknown parameter |month= ignored (help)
  2. Catalina MV, Núñez O, Ponferrada A, Menchén L, Matilla A, Clemente G, Bañares R (2003). "[Liver failure due to mushroom poisoning: clinical course and new treatment perspectives]". Gastroenterología Y Hepatología (in Spanish; Castilian). 26 (7): 417–20. PMID 12887855. Retrieved 2012-10-27.
  3. 3.0 3.1 Schiødt FV, Davern TJ, Shakil AO, McGuire B, Samuel G, Lee WM (2003). "Viral hepatitis-related acute liver failure". The American Journal of Gastroenterology. 98 (2): 448–53. doi:10.1111/j.1572-0241.2003.t01-1-07223.x. PMID 12591067. Retrieved 2012-10-27. Unknown parameter |month= ignored (help)
  4. Fuhrmann V, Jäger B, Zubkova A, Drolz A (2010). "Hypoxic hepatitis - epidemiology, pathophysiology and clinical management". Wiener Klinische Wochenschrift. 122 (5–6): 129–39. doi:10.1007/s00508-010-1357-6. PMID 20361374. Retrieved 2012-10-27. Unknown parameter |month= ignored (help)
  5. Woolf GM, Petrovic LM, Rojter SE, Villamil FG, Makowka L, Podesta LG, Sher LS, Memsic L, Vierling JM (1994). "Acute liver failure due to lymphoma. A diagnostic concern when considering liver transplantation". Digestive Diseases and Sciences. 39 (6): 1351–8. PMID 8200270. Unknown parameter |month= ignored (help); |access-date= requires |url= (help)
  6. Boyer JL, Klatskin G (1970). "Pattern of necrosis in acute viral hepatitis. Prognostic value of bridging (subacute hepatic necrosis)". N. Engl. J. Med. 283 (20): 1063–71. PMID 4319402.

Template:WH Template:WS